# **EPSON**

**EPSON RC+** 7.0 [Ver.7.5]

# User's Guide

Project Management and Development

Rev.10

ENM23YS6221F

Original instructions

EPSON RC+ 7.0 (Ver.7.5) User's Guide Project Management and Development Rev.10

EPSON RC+ 7.0 (Ver.7.5)

# User's Guide

Rev.10

©Seiko Epson Corporation 2012-2023

## **FOREWORD**

Thank you for purchasing our robot products.

This manual contains the information necessary for the correct use of the Manipulator.

Please carefully read this manual and other related manuals before installing the robot system.

Keep this manual handy for easy access at all times.

The robot system and its optional parts are shipped to our customers only after being subjected to the strictest quality controls, tests, and inspections to certify its compliance with our high performance standards. Please note that the basic performance of the product will not be exhibited if our robot system is used outside of the usage conditions and product specifications described in the manuals.

This manual describes possible dangers and consequences that we can foresee. Be sure to comply with safety precautions on this manual to use our robot system safety and correctly.

## **TRADEMARKS**

Microsoft, Windows, Windows logo, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Pentium is a trademark of Intel Corporation.

XVL is a registered trademark of Lattice Technology, Co., Ltd.

Other brand and product names are trademarks or registered trademarks of the respective holders.

# TRADEMARK NOTATION IN THIS MANUAL

Microsoft® Windows® 8 operating system

Microsoft® Windows® 10 operating system

Microsoft® Windows® 11 operating system

Throughout this manual, Windows 8, Windows 10 and Windows 11 refer to above respective operating systems. In some cases, Windows refers generically to Windows 8, Windows 10 and Windows 11.

# **NOTICE**

No part of this manual may be copied or reproduced without authorization.

The contents of this manual are subject to change without notice.

Please notify us if you should find any errors in this manual or if you have any comments regarding its contents.

## **MANUFACTURER**

#### SEIKO EPSON CORPORATION

## CONTACT INFORMATION

Contact information is described in "SUPPLIERS" in the first pages of the following manual:

Robot System Safety Manual Read this manual first

| 1. Introduction                                                                                                                                                                                                                                                                                                                                                             | 1                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1.1 Welcome to EPSON RC+ 7.0                                                                                                                                                                                                                                                                                                                                                | 1                                |
| 1.2 System Overview                                                                                                                                                                                                                                                                                                                                                         | 2                                |
| 1.2.1 Controller                                                                                                                                                                                                                                                                                                                                                            |                                  |
| 1.2.2 Software                                                                                                                                                                                                                                                                                                                                                              | 4                                |
| 1.2.3 Simulator                                                                                                                                                                                                                                                                                                                                                             | 5                                |
| 1.2.4 System Requirements                                                                                                                                                                                                                                                                                                                                                   | 5                                |
| 1.2.5 System Block Diagram                                                                                                                                                                                                                                                                                                                                                  |                                  |
| 1.3 Options                                                                                                                                                                                                                                                                                                                                                                 | 7                                |
| 1.4 Precautions When Using Windows 8                                                                                                                                                                                                                                                                                                                                        | 7                                |
| 1.5 EPSON RC+ 5.x and 6.x Users                                                                                                                                                                                                                                                                                                                                             | 7                                |
| 1.6 EPSON RC+ 3.x and 4.x Users                                                                                                                                                                                                                                                                                                                                             | 7                                |
| 1.7 SPEL for Windows Users                                                                                                                                                                                                                                                                                                                                                  | 7                                |
| 1.8 Manuals                                                                                                                                                                                                                                                                                                                                                                 | 8                                |
| 1.9 Security for Controller Ethernet Connection                                                                                                                                                                                                                                                                                                                             | 9                                |
| 1.9.1 Setting Password for PC Ethernet Controller Connec                                                                                                                                                                                                                                                                                                                    | ction9                           |
| 1.9.2 PC Ethernet Connection to Controller                                                                                                                                                                                                                                                                                                                                  | 11                               |
| 1.9.3 Remote Ethernet                                                                                                                                                                                                                                                                                                                                                       | 11                               |
| 1.9.4 Disable the PC Ethernet Controller Connection Author                                                                                                                                                                                                                                                                                                                  | entication11                     |
| 1.10 Security for Compact Vision CV2-A Ethernet Connection                                                                                                                                                                                                                                                                                                                  | 12                               |
| ,                                                                                                                                                                                                                                                                                                                                                                           | 12                               |
| 1.11 Security for Feeder Ethernet Connection                                                                                                                                                                                                                                                                                                                                |                                  |
| 1.11 Security for Feeder Ethernet Connection                                                                                                                                                                                                                                                                                                                                | 12                               |
|                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| 1.11 Security for Feeder Ethernet Connection                                                                                                                                                                                                                                                                                                                                | 12                               |
| Security for Feeder Ethernet Connection      Safety                                                                                                                                                                                                                                                                                                                         | 12<br>13<br>13                   |
| Security for Feeder Ethernet Connection      Safety      Conventions                                                                                                                                                                                                                                                                                                        | 12<br>13<br>13<br>13             |
| Safety      Conventions      Definitions                                                                                                                                                                                                                                                                                                                                    | 12<br>13<br>13<br>13             |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes                                                                                                                                                                                                                        | 12<br>13<br>13<br>13<br>14<br>14 |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode                                                                                                                                                                                                      | 12  1313131414                   |
| 2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode                                                                                                                                                                                                                     | 12  131313141415                 |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop.                                                                                                                                                | 12  13131314141515               |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant                                                                                                                            | 12  13131314151515               |
| 2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant  2.3 Installation and Design Precautions                                                                                                                                 | 12  1313131415151515             |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant  2.3 Installation and Design Precautions  2.4 Precautions regarding Robot Operation                                        | 12  1313131415151516             |
| 2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant  2.3 Installation and Design Precautions                                                                                                                                 | 12  1313131415151516             |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant  2.3 Installation and Design Precautions  2.4 Precautions regarding Robot Operation                                        | 12  1313131415151516             |
| 2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant  2.3 Installation and Design Precautions  2.4 Precautions regarding Robot Operation  2.5 Backup of Projects and Controller  3. Getting Started                           | 12  13131314151515161616         |
| 1.11 Security for Feeder Ethernet Connection  2. Safety  2.1 Conventions  2.2 Definitions  2.2.1 Robot Power  2.2.2 Safeguard  2.2.3 Operation Modes  2.2.4 Start Mode  2.2.5 Changing Operation Mode  2.2.6 Emergency Stop  2.2.7 Teach Pendant  2.3 Installation and Design Precautions  2.4 Precautions regarding Robot Operation  2.5 Backup of Projects and Controller | 12  1313131415151516161617       |

| 4. Operation 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | }                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 4.1 System Power Up Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | }                                                                                           |
| 4.2 Starting EPSON RC+ 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| 4.2.1 Startup Sequence18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 4.2.2 Startup Configuration21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 4.2.3 Start Mode21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
| 4.2.4 Start Mode Dialog22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>.</u>                                                                                    |
| 4.2.5 Start Mode: Program22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                                                                                    |
| 4.2.6 Start Mode: Auto23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | }                                                                                           |
| 4.2.7 Auto Start23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                           |
| 4.2.8 Using Monitor Mode24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ļ                                                                                           |
| 4.2.9 Windows Login24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| 4.2.10 Command Line Options25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 4.2.11 Using Command Line Options26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
| 4.3 Communications with Controller27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
| 4.3.1 Configuring Communications with the Controller27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 4.3.2 USB Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 4.3.3 Ethernet Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 4.3.4 Connecting When Control Device is not PC29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |
| 4.3.5 Project Controller Tracking30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
| 4.4 Writing your first Program31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |
| F The EDCON DC   7.0 CHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 5. The EPSON RC+ 7.0 GUI 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 5. The EPSON RC+ 7.0 GUI       36         5.1 GUI Overview       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                           |
| 5.1 GUI Overview36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )<br>,                                                                                      |
| 5.1 GUI Overview       36         5.2 Tool Bar       37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br>,                                                                                      |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>7<br>3                                                                                 |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>7<br>8                                                                                 |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>3<br>3<br>9                                                                            |
| 5.1 GUI Overview       .36         5.2 Tool Bar       .37         5.3 Project Explorer Pane       .38         5.4 Status Window Pane       .38         5.5 Status Bar       .39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3333                                                                                        |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )<br>3<br>3<br>3<br>9                                                                       |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 33 33 33 33 33 33 33 33 33 33 33 33                                                      |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42                                                                                                                                                                                                                                                                                                                                                                                                                | 33 33 33 33 33 33 33 33 33 33 33 33 33                                                      |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42                                                                                                                                                                                                                                                                                                                                                               | 33 33 33 33 33 33 33 33 33 33 33 33 33                                                      |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42         5.7.4 Save Command (File Menu)       43                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42         5.7.4 Save Command (File Menu)       43         5.7.5 Save As Command (File Menu)       43                                                                                                                                                                                                                                                            | 33<br>33<br>33<br>33<br>33<br>33                                                            |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42         5.7.4 Save Command (File Menu)       43         5.7.5 Save As Command (File Menu)       43         5.7.6 Restore Command (File Menu)       43         5.7.7 Rename Command (File Menu)       43         5.7.8 Delete Command (File Menu)       44                                                                                                     | 33<br>33<br>33<br>33<br>33<br>34                                                            |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42         5.7.4 Save Command (File Menu)       43         5.7.5 Save As Command (File Menu)       43         5.7.6 Restore Command (File Menu)       43         5.7.7 Rename Command (File Menu)       43         5.7.8 Delete Command (File Menu)       44         5.7.9 Import Command (File Menu)       45                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>5                                                   |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42         5.7.4 Save Command (File Menu)       43         5.7.5 Save As Command (File Menu)       43         5.7.6 Restore Command (File Menu)       43         5.7.7 Rename Command (File Menu)       43         5.7.8 Delete Command (File Menu)       44         5.7.9 Import Command (File Menu)       45         5.7.10 Print Command (File Menu)       46 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |
| 5.1 GUI Overview       36         5.2 Tool Bar       37         5.3 Project Explorer Pane       38         5.4 Status Window Pane       38         5.5 Status Bar       39         5.6 Online Help       40         5.7 [File] Menu       41         5.7.1 New Command (File Menu)       41         5.7.2 Open Command (File Menu)       42         5.7.3 Close Command (File Menu)       42         5.7.4 Save Command (File Menu)       43         5.7.5 Save As Command (File Menu)       43         5.7.6 Restore Command (File Menu)       43         5.7.7 Rename Command (File Menu)       43         5.7.8 Delete Command (File Menu)       44         5.7.9 Import Command (File Menu)       45                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |

|       | 5.8.1 [Undo] Command (Edit Menu)               | 48  |
|-------|------------------------------------------------|-----|
|       | 5.8.2 [Redo] Command (Edit Menu)               | 48  |
|       | 5.8.3 [Cut] Command (Edit Menu)                | 48  |
|       | 5.8.4 [Copy] Command (Edit Menu)               |     |
|       | 5.8.5 [Paste] Command (Edit Menu)              | 48  |
|       | 5.8.6 [Find] Command (Edit Menu)               | 49  |
|       | 5.8.7 [Find Next] Command (Edit Menu)          |     |
|       | 5.8.8 [Replace] Command (Edit Menu)            | 50  |
|       | 5.8.9 [Select All] Command (Edit Menu)         | 50  |
|       | 5.8.10 [Indent] Command (Edit Menu)            |     |
|       | 5.8.11 [Outdent] Command (Edit Menu)           |     |
|       | 5.8.12 [Comment Block] Command (Edit Menu)     | 51  |
|       | 5.8.13 [Uncomment Block] Command (Edit Menu)   |     |
|       | 5.8.14 [Go To Definition] Command (Edit Menu)  |     |
|       | 5.8.15 [Navigate Backward] (Edit Menu)         |     |
|       | 5.8.16 [Navigate Forward] (Edit Menu)          | 52  |
| 5.9 [ | View] Menu                                     | 52  |
|       | 5.9.1 [Project Explorer] Command (View Menu)   | 52  |
|       | 5.9.2 Status Window Command (View Menu)        | 52  |
|       | 5.9.3 System History Command (View Menu)       | 53  |
|       | 5.9.4 Start Window (View Menu)                 | 54  |
| 5.10  | [Project] Menu                                 | 55  |
|       | 5.10.1 [Wizard] Command (Project Menu)         | 55  |
|       | 5.10.1.1 How to Use [Wizard] Command           | 55  |
|       | 5.10.1.2 Controller Connection                 | 71  |
|       | 5.10.1.3 Camera Selection                      | 73  |
|       | 5.10.1.4 Inputs and Outputs                    |     |
|       | 5.10.1.5 Robot Points                          | 76  |
|       | 5.10.1.6 Jogging the robot and teaching points | 76  |
|       | 5.10.1.7 Robot Tool                            |     |
|       | 5.10.1.8 Teaching part detection for vision    | 77  |
|       | 5.10.1.9 Hand Settings                         |     |
|       | 5.10.2 [New] Command (Project Menu)            |     |
|       | 5.10.3 [Open] Command (Project Menu)           |     |
|       | 5.10.4 Recent Projects Submenu (Project Menu)  |     |
|       | 5.10.5 [Close] Command (Project Menu)          |     |
|       | 5.10.6 [Edit] Command (Project Menu)           |     |
|       | 5.10.7 [Save] Command (Project Menu)           |     |
|       | 5.10.8 [Save As] Command (Project Menu)        |     |
|       | 5.10.9 [Rename] Command (Project Menu)         |     |
|       | 5.10.10 [Import] Command (Project Menu)        |     |
|       | 5.10.11 [Export] Command (Project Menu)        |     |
|       | 5.10.12 [Copy] Command (Project Menu)          |     |
|       | 5.10.13 [Delete] Command (Project Menu)        | .93 |

|      | 5.10.14 | 4 [Build] Command (Project Menu)                 | 93  |
|------|---------|--------------------------------------------------|-----|
|      | 5.10.1  | 5 [Rebuild] Command (Project Menu)               | 93  |
|      | 5.10.16 | 6 [Properties] Command (Project Menu)            | 94  |
|      | 5.10.17 | 7 [Synchronize Project] Command (Project Menu)   | 108 |
| 5.11 | [Run] M | 1enu                                             | 110 |
|      | 5.11.1  | [Run Window] Command (Run Menu)                  | 110 |
|      | 5.11.2  | [Operator Window] Command (Run Menu)             | 110 |
|      | 5.11.3  | [Step Into] Command (Run Menu)                   | 110 |
|      | 5.11.4  | [Step Over] Command (Run Menu)                   | 110 |
|      | 5.11.5  | [Walk] Command (Run Menu)                        | 111 |
|      | 5.11.6  | [Resume] Command (Run Menu)                      | 111 |
|      | 5.11.7  | [Stop] Command (Run Menu)                        | 111 |
|      | 5.11.8  | [Toggle Breakpoint] Command (Run Menu)           | 111 |
|      | 5.11.9  | [Clear All Breakpoints] Command (Run Menu)       | 112 |
|      | 5.11.10 | ) [Display Variables] Command (Run Menu)         | 112 |
|      | 5.11.11 | [Call Stack] Command (Run Menu)                  | 113 |
| 5.12 | [Tools] | Menu                                             | 114 |
|      |         | [Robot Manager] Command (Tools Menu)             |     |
|      |         | [Command Window] Command (Tools Menu)            |     |
|      |         | [I/O Monitor] Command (Tools Menu)               |     |
|      |         | Task Manager Command (Tools Menu)                |     |
|      |         | Macros Command (Tools Menu)                      |     |
|      |         | [I/O Label Editor] Command (Tools Menu)          |     |
|      |         | User Error Editor Command (Tools Menu)           |     |
|      | 5.12.8  | [Controller] Command (Tools Menu)                | 173 |
|      |         | [Vision] Command (Tools Menu)                    |     |
| 5.13 |         | Menu                                             |     |
|      |         | [PC to Controller Communications] Command (Setup |     |
|      |         | [System Configuration] Command (Setup Menu)      | •   |
|      |         | [Preferences] Command (Setup Menu)               |     |
|      |         | [Options] Command (Setup Menu)                   |     |
| 5 14 |         | w] Menu                                          |     |
| 0    | -       | [Cascade] Command (Window Menu)                  |     |
|      |         | [Tile Vertical] Command (Window Menu)            |     |
|      |         | [Tile Horizontal] Command (Window Menu)          |     |
|      |         | [Arrange Icons] Command (Window Menu)            |     |
|      |         | [Close All] Command (Window Menu)                |     |
|      |         | 1, 2, 3 Command (Window Menu)                    |     |
|      |         | [Windows] Command (Window Menu)                  |     |
| 5 15 |         | Menu                                             |     |
| 0.10 |         | [How Do I] Command (Help Menu)                   |     |
|      |         | [Contents] Command (Help Menu)                   |     |
|      |         | [Index] Command (Help Menu)                      |     |
|      |         | [Search] Command (Help Menu)                     |     |
|      | J J. I  | [ 2]                                             |     |

| 5.15.5 [Manuals] Submenu (Help Menu)                 |      |
|------------------------------------------------------|------|
| 5.15.6 [About EPSON RC+ 7.0] Command (Help Menu      | ) 21 |
| 6. The SPEL+ Language                                | 21   |
|                                                      |      |
| 6.1 Overview                                         |      |
| 6.2 Program Structure                                |      |
| 6.2.1 What is a SPEL+ program?                       |      |
| 6.2.2 Calling functions                              |      |
| 6.3 Commands and Statements                          |      |
| 6.4 Function and Variable Names (Naming restriction) | 21   |
| 6.5 Data Types                                       | 21   |
| 6.6 Operators                                        | 21   |
| 6.7 Working with Variables                           | 21   |
| 6.7.1 Variable scopes                                | 21   |
| 6.7.2 Local variables                                | 21   |
| 6.7.3 Module variables                               | 21   |
| 6.7.4 Global variables                               | 21   |
| 6.7.5 Global Preserve variables                      | 21   |
| 6.7.6 Arrays                                         |      |
| 6.7.7 Initial values                                 | 21   |
| 6.7.8 Clearing arrays                                | 21   |
| 6.8 Working with Strings                             | 22   |
| 6.9 Working with Files                               | 22   |
| 6.10 Multi-statements                                | 22   |
| 6.11 Labels                                          | 22   |
| 6.12 Comments                                        | 22   |
| 6.13 Error Handling                                  | 22   |
| 6.14 Multi-tasking                                   |      |
| 6.15 Using Multiple Robots                           |      |
| 6.16 Coordinate Systems                              |      |
| 6.16.1 Overview                                      |      |
| 6.16.2 Robot Coordinate Systems                      |      |
| 6.16.3 Local Coordinate Systems                      |      |
| 6.16.4 Tool Coordinate Systems                       |      |
| 6.16.5 ECP Coordinate Systems (Option)               |      |
| 6.17 Robot Arm Orientations                          |      |
| 6.17.1 SCARA robot arm orientations                  |      |
| 6.17.2 6-axis robot arm orientations                 |      |
| 6.17.3 RS series arm orientations                    |      |
| 6.17.4 N series arm orientations                     |      |
| 6.18 Robot Motion Commands                           |      |
| 6.18.1 Homing the robot                              |      |

|       | 6.18.2 Point to point motion                                      | .255      |
|-------|-------------------------------------------------------------------|-----------|
|       | 6.18.3 Linear motion                                              | .255      |
|       | 6.18.4 Curves                                                     | .256      |
|       | 6.18.5 Joint motion                                               | .256      |
|       | 6.18.6 Controlling position accuracy                              | .256      |
|       | 6.18.7 CP Motion Speed / Acceleration and Tool Orientation        | .257      |
|       | 6.18.8 PTP Speed / Acceleration for Small Distances               | .257      |
|       | 6.18.9 Pressing Motion                                            | .257      |
|       | 6.18.10 Collision Detection Function (Detection Function of Robo  | t         |
|       | Motion Error)                                                     | .258      |
|       | 6.18.11 Torque Restriction Function                               | .261      |
|       | 6.18.12 Weight, Inertia, and Eccentricity / Offset Measurement Ut | tility263 |
| 6.19  | Working with Robot Points                                         | .270      |
|       | 6.19.1 Defining points                                            | .270      |
|       | 6.19.2 Referencing points by point label                          | .270      |
|       | 6.19.3 Referencing points with variables                          | .271      |
|       | 6.19.4 Using points in a program                                  | .271      |
|       | 6.19.5 Importing points into program                              | .271      |
|       | 6.19.6 Saving and loading points                                  | .272      |
|       | 6.19.7 Point attributes                                           | .272      |
|       | 6.19.8 Extracting and setting point coordinates                   | .273      |
|       | 6.19.9 Alteration of points                                       | .274      |
| 6.20  | Input and output control                                          | .275      |
|       | 6.20.1 Hardware I/O                                               | .275      |
|       | 6.20.2 Memory I/O                                                 | .275      |
|       | 6.20.3 I/O Commands                                               | .275      |
| 6.21  | Using Traps                                                       | .276      |
|       | 6.21.1 Cautions of Trap when it triggers the system condition     |           |
| 6 22  | Special Tasks                                                     |           |
| 0.22  | 6.22.1 Precautions to Use the Special Tasks                       |           |
|       | 6.22.2 NoPause/NoEmgAbort task specification                      |           |
|       | 6.22.3 NoPause/NoEmgAbort task example                            |           |
| 6 23  | Background Task                                                   |           |
| 0.20  | 6.23.1 Primary features of background task                        |           |
|       | 6.23.2 Setup and start the background task                        |           |
|       | 6.23.3 Holding background task (from being activated)             |           |
|       | 6.23.4 Commands that will cause error in background task          |           |
|       | 6.23.5 Background task and Remote control                         |           |
| 6 24  | Predefined Constants                                              |           |
|       |                                                                   |           |
| 0.25  | Calling Native Functions in Dynamic Link Libraries                | .∠ၓၓ      |
|       |                                                                   |           |
| 7. Bu | uilding SPEL+ Applications                                        | 294       |
| 7.1   | Designing Applications                                            | .294      |

| 7.1.1 Creating the simplest application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 294                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1.2 Application layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 294                                                                                                                                      |
| 7.1.3 Auto start at power up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 296                                                                                                                                      |
| 7.2 Managing Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 297                                                                                                                                      |
| 7.2.1 Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 297                                                                                                                                      |
| 7.2.2 Creating a new project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 298                                                                                                                                      |
| 7.2.3 Configuring a project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 298                                                                                                                                      |
| 7.2.4 Building a project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 299                                                                                                                                      |
| 7.2.5 Backing up a project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 299                                                                                                                                      |
| 7.3 Editing Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 300                                                                                                                                      |
| 7.3.1 Program rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 300                                                                                                                                      |
| 7.3.2 Typing in program code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 300                                                                                                                                      |
| 7.3.3 Syntax Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 301                                                                                                                                      |
| 7.3.4 Syntax Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 303                                                                                                                                      |
| 7.4 Editing Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 304                                                                                                                                      |
| 7.5 Running and Debugging Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 306                                                                                                                                      |
| 7.5.1 The Run window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 306                                                                                                                                      |
| 7.5.2 Debugging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 308                                                                                                                                      |
| 7.6 The Operator Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 312                                                                                                                                      |
| 7.6.1 Operator window configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 313                                                                                                                                      |
| 7.6.2 Auto start configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            |
| 7.7 Using Remote Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 314                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            |
| 7.8 Using Encrypt Files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 314                                                                                                                                      |
| 7.8 Using Encrypt Files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 314                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            |
| 8. Simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 316                                                                                                                                        |
| 8. Simulator 8.1 Simulator Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 316                                                                                                                                        |
| 8. Simulator 8.1 Simulator Functions 8.1.1 Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 316<br>. 316<br>. 316                                                                                                                      |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator.                                                                                                                                                                                                                                                                                                                                                                                                                                             | 316<br>. 316<br>. 316<br>. 318                                                                                                             |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator  8.2.1 Working with the samples                                                                                                                                                                                                                                                                                                                                                                                                              | 316<br>. 316<br>. 316<br>. 318<br>. 318                                                                                                    |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator  8.2.1 Working with the samples  8.2.2 Working with the user created system                                                                                                                                                                                                                                                                                                                                                                  | 316<br>. 316<br>. 316<br>. 318<br>. 318                                                                                                    |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator  8.2.1 Working with the samples  8.2.2 Working with the user created system  8.3 Description of Functions                                                                                                                                                                                                                                                                                                                                    | 316<br>. 316<br>. 316<br>. 318<br>. 318<br>. 320                                                                                           |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator  8.2.1 Working with the samples  8.2.2 Working with the user created system  8.3 Description of Functions  8.3.1 [Robot Simulator] window layout                                                                                                                                                                                                                                                                                             | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328                                                                                  |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator.  8.2.1 Working with the samples  8.2.2 Working with the user created system  8.3 Description of Functions  8.3.1 [Robot Simulator] window layout  8.3.2 Simulator Settings                                                                                                                                                                                                                                                                  | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360                                                                         |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator  8.2.1 Working with the samples  8.2.2 Working with the user created system  8.3 Description of Functions  8.3.1 [Robot Simulator] window layout  8.3.2 Simulator Settings  8.3.3 Part/Mounted Device Settings                                                                                                                                                                                                                               | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368                                                                |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator.  8.2.1 Working with the samples  8.2.2 Working with the user created system  8.3 Description of Functions  8.3.1 [Robot Simulator] window layout  8.3.2 Simulator Settings  8.3.3 Part/Mounted Device Settings  8.3.4 Collision detection                                                                                                                                                                                                   | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370                                                       |
| 8.1 Simulator Functions 8.1 Overview 8.2 Using the Simulator 8.2.1 Working with the samples 8.2.2 Working with the user created system 8.3 Description of Functions 8.3.1 [Robot Simulator] window layout 8.3.2 Simulator Settings 8.3.3 Part/Mounted Device Settings 8.3.4 Collision detection 8.3.5 CAD To Point                                                                                                                                                                                                          | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370                                                       |
| 8.1 Simulator Functions 8.1.1 Overview  8.2 Using the Simulator 8.2.1 Working with the samples 8.2.2 Working with the user created system  8.3 Description of Functions 8.3.1 [Robot Simulator] window layout 8.3.2 Simulator Settings 8.3.3 Part/Mounted Device Settings 8.3.4 Collision detection 8.3.5 CAD To Point 8.3.6 CAD to Point for ECP                                                                                                                                                                           | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370<br>. 372<br>. 380                                     |
| 8.1 Simulator Functions 8.1.1 Overview 8.2 Using the Simulator 8.2.1 Working with the samples 8.2.2 Working with the user created system 8.3 Description of Functions 8.3.1 [Robot Simulator] window layout 8.3.2 Simulator Settings 8.3.3 Part/Mounted Device Settings 8.3.4 Collision detection 8.3.5 CAD To Point 8.3.6 CAD to Point for ECP 8.3.7 Virtual controller                                                                                                                                                    | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370<br>. 372<br>. 380                                     |
| 8. Simulator  8.1 Simulator Functions  8.1.1 Overview  8.2 Using the Simulator  8.2.1 Working with the samples  8.2.2 Working with the user created system  8.3 Description of Functions  8.3.1 [Robot Simulator] window layout  8.3.2 Simulator Settings  8.3.3 Part/Mounted Device Settings  8.3.4 Collision detection  8.3.5 CAD To Point  8.3.6 CAD to Point for ECP  8.3.7 Virtual controller  8.3.8 Connection with controller                                                                                        | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370<br>. 372<br>. 380<br>. 386<br>. 386                   |
| 8.1 Simulator Functions 8.1.1 Overview 8.2 Using the Simulator. 8.2.1 Working with the samples 8.2.2 Working with the user created system 8.3 Description of Functions 8.3.1 [Robot Simulator] window layout 8.3.2 Simulator Settings 8.3.3 Part/Mounted Device Settings 8.3.4 Collision detection 8.3.5 CAD To Point 8.3.6 CAD to Point for ECP 8.3.7 Virtual controller 8.3.8 Connection with controller 8.3.9 Virtual Camera Settings and Camera View Display                                                            | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370<br>. 372<br>. 380<br>. 386<br>. 387<br>. 389          |
| 8.1 Simulator Functions 8.1 Simulator Functions 8.1.1 Overview  8.2 Using the Simulator 8.2.1 Working with the samples 8.2.2 Working with the user created system.  8.3 Description of Functions 8.3.1 [Robot Simulator] window layout 8.3.2 Simulator Settings 8.3.3 Part/Mounted Device Settings 8.3.4 Collision detection 8.3.5 CAD To Point 8.3.6 CAD to Point for ECP 8.3.7 Virtual controller 8.3.8 Connection with controller 8.3.9 Virtual Camera Settings and Camera View Display 8.3.10 Motion restriction by BOX | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370<br>. 372<br>. 380<br>. 386<br>. 387<br>. 389<br>. 391 |
| 8.1 Simulator Functions 8.1.1 Overview 8.2 Using the Simulator. 8.2.1 Working with the samples 8.2.2 Working with the user created system 8.3 Description of Functions 8.3.1 [Robot Simulator] window layout 8.3.2 Simulator Settings 8.3.3 Part/Mounted Device Settings 8.3.4 Collision detection 8.3.5 CAD To Point 8.3.6 CAD to Point for ECP 8.3.7 Virtual controller 8.3.8 Connection with controller 8.3.9 Virtual Camera Settings and Camera View Display                                                            | 316<br>. 316<br>. 318<br>. 318<br>. 320<br>. 328<br>. 328<br>. 360<br>. 368<br>. 370<br>. 372<br>. 380<br>. 386<br>. 387<br>. 389<br>. 391 |

| 8.4 Simulator Specifications and Restrictions                      | .397   |
|--------------------------------------------------------------------|--------|
| 8.4.1 EPSON RC+ 7.0 package                                        | .397   |
| 8.4.2 Specifications and precautions for the 3D display            | .397   |
| 8.4.3 Specifications and precautions for Simulation (program exe   | cution |
| on PC)                                                             |        |
| 8.4.4 Specifications and precautions of EPSON RC+                  |        |
| 8.4.5 Restriction on SPEL+ command execution                       |        |
| 8.4.6 Specifications and precautions of EPSON RC+ 7.0 Trial        | .404   |
|                                                                    |        |
| 9. Motion System                                                   | 405    |
| 9.1 Standard Motion System                                         | .405   |
| 9.2 Drive Module Software Configuration                            | .405   |
| 9.3 PG Motion System                                               | .405   |
|                                                                    |        |
| 10. Robot Configuration                                            | 406    |
| 10.1 Setting the Robot Model                                       | 406    |
| 10.1.1 Adding a standard robot                                     |        |
| 10.1.2 Calibrating a standard robot                                |        |
| 10.1.3 Changing robot system parameters                            |        |
| 10.1.4 Deleting a standard robot                                   |        |
| 10.1.5 Changing the Robot                                          |        |
| 10.2 Configuration of Additional Axes                              | .410   |
| 10.2.1 Adding the additional S axis                                | .410   |
| 10.2.2 Adding the additional T axis                                | .410   |
| 10.2.3 Changing the parameters of robot with additional axes inst  | talled |
|                                                                    |        |
| 10.2.4 Differences of the standard robot and robot with additional |        |
| 10.2 F. Doloting the additional even                               |        |
| 10.2.5 Deleting the additional axes                                | .413   |
| 44 1                                                               | 444    |
|                                                                    | 414    |
| 11.1 Overview                                                      |        |
| 11.2 I/O Commands                                                  |        |
| 11.3 I/O Configuration                                             |        |
| 11.4 Monitoring I/O                                                |        |
| 11.5 Virtual I/O                                                   | .416   |
| 11.6 Fieldbus Master I/O                                           | .416   |
| 11.7 Fieldbus Slave I/O                                            | .417   |
| 11.7.1 Modbus Slave                                                | .417   |
| 11.7.2 Supported Functions                                         | .417   |
| 11.7.3 Address map                                                 | .418   |

| 11.7.4       | Modbus RTU                                    | 419 |
|--------------|-----------------------------------------------|-----|
| 11.7.5       | Modbus TCP                                    | 419 |
| 11.7.6       | How to Configure Modbus                       | 419 |
|              |                                               |     |
| 12. Remote   | e Control                                     | 422 |
| 12.1 Remote  | e I/O                                         | 422 |
| 12.1.1       | Remote Control Input Output Configuration     | 423 |
| 12.1.2       | Control Device Configuration                  | 423 |
| 12.1.3       | Auto Mode with Remote Control                 | 424 |
| 12.1.4       | Teach Mode with Remote Control                | 424 |
| 12.1.5       | Debugging Remote Control                      | 424 |
| 12.1.6       | Remote Inputs                                 | 425 |
| 12.1.7       | Remote Outputs                                | 429 |
| 12.1.8       | Remote Input Handshake Timing                 | 433 |
| 12.2 Remote  | e Ethernet                                    | 436 |
| 12.2.1       | Remote Ethernet Configuration                 | 436 |
| 12.2.2       | Control Device Configuration                  | 437 |
| 12.2.3       | Remote Ethernet Control Execution             | 437 |
| 12.2.4       | Debugging Remote Ethernet Control             | 437 |
| 12.2.5       | Remote Ethernet Command                       | 438 |
| 12.2.6       | Monitoring command                            | 443 |
| 12.2.7       | Response                                      | 444 |
| 12.2.8       | Response timing of Remote Ethernet control    | 446 |
| 12.3 Remote  | e RS232                                       | 446 |
| 12.3.1       | Remote RS232 setting                          | 446 |
| 12.3.2       | Control device setting                        | 447 |
| 12.3.3       | Execution of remote RS232 control             | 447 |
| 12.3.4       | Debugging remote RS232 control                | 448 |
| 12.3.5       | Remote RS232 Command                          | 448 |
| 12.3.6       | Monitoring command                            | 454 |
| 12.3.7       | Response                                      | 454 |
| 12.3.8       | Response timing of Remote Ethernet control    | 457 |
| 12.4 User-de | efined Remote Output I/O                      | 457 |
| 12.4.1       | What is user-defined remote output I/O?       | 457 |
| 12.4.2       | Output conditions                             | 457 |
|              | Output                                        |     |
|              | Restrictions                                  |     |
| 12.4.5       | How to set the user-defined output remote I/O | 462 |
| 12.4.6       | Usage example                                 | 464 |
|              |                                               |     |
| 13. RS-232   | 2C Communications                             | 466 |
| 13.1 RS-232  | 2C Software Configuration                     | 466 |
| 13.2 RS-232  | 2C Commands                                   | 468 |

| 14. TCP/IP Communications 469                                |   |
|--------------------------------------------------------------|---|
| 14.1 TCP/IP Setup                                            |   |
| 14.1.2 IP Addresses                                          |   |
| 14.1.3 IP Gateway470                                         | ļ |
| 14.1.4 Testing Windows TCP/IP setup470                       |   |
| 14.2 TCP/IP Software Configuration471                        |   |
| 14.3 TCP/IP Commands471                                      |   |
|                                                              |   |
| 15. Security 472                                             |   |
| 15.1 Overview                                                |   |
| 15.2 Security Configuration472                               |   |
| 15.3 Security Audit Viewer477                                | , |
| 15.4 SPEL+ Security Command477                               | , |
|                                                              |   |
| 16. Conveyor Tracking 478                                    |   |
| 16.1 Overview478                                             | , |
| 16.2 Conveyor Tracking Processes480                          | J |
| 16.3 System Structure481                                     |   |
| 16.4 Hardware Installation484                                |   |
| 16.5 Wiring Example of Vision Conveyor Tracking System491    |   |
| 16.6 Conveyor Encoder Configuration                          |   |
| 16.7 Verifying Encoder Operation493                          | i |
| 16.8 Verifying Hardware Conveyor Trigger / Vision Trigger494 |   |
| 16.9 Key Terms495                                            | , |
| 16.10 Conveyor Tracking Commands496                          | i |
| 16.11 Creating Conveyors in a Project498                     | i |
| 16.12 Configuring Conveyors499                               | 1 |
| 16.13 Vision Conveyors501                                    |   |
| 16.14 Sensor Conveyors523                                    | i |
| 16.15 Calibration Results541                                 |   |
| 16.16 Pickup Area543                                         | i |
| 16.17 Adjusting the Z value551                               |   |
| 16.18 Queue Sorting553                                       | i |
| 16.19 Double Registration Prevention554                      |   |
| 16.20 Sample Program555                                      | ١ |
| 16.21 Multiple Conveyors560                                  | ١ |
| 16.22 Multi-robot Conveyor565                                | ) |
| 16.23 Abort Tracking570                                      | ) |

| 16.24 Conveyor Tracking with 6-Axis Robot                | 570   |
|----------------------------------------------------------|-------|
| 16.25 Tracking Mode                                      | 571   |
| 16.26 How to shorten the picking cycle time              | 580   |
| 16.27 Manipulator Posture                                | 580   |
| 16.28 Tracking Abort Line                                | 580   |
| 16.29 Tips for Accuracy Improvement of Conveyor Tracking |       |
| 16.29.1 Overview                                         |       |
| 16.29.2 Tips for System Construction                     | 588   |
| 16.29.3 Tips for Vision Calibration                      | 590   |
| 16.29.4 Tips for Conveyor Calibration                    | 591   |
| 16.29.5 Troubleshooting for Work Piece Detection         | 592   |
| 16.29.6 Offset                                           | 595   |
| 16.30 Dispense Application on Conveyors                  | 597   |
| 16.30.1 Overview                                         | 597   |
| 16.30.2 Setting a Target Point                           |       |
| 16.30.3 Adjusting an Amount of Dispensing                | 599   |
|                                                          |       |
| 17. ECP Motion                                           | 600   |
| 17.1 Overview                                            | 600   |
|                                                          |       |
| 18. Force Sensing                                        | 602   |
| 18.1 Overview                                            | 602   |
| 18.2 Specifications                                      |       |
| 18.3 Installation                                        |       |
| 18.4 Force Sensing Commands                              |       |
|                                                          |       |
| 18.5 Using the Force Sensing Trigger                     | 609   |
|                                                          | 0.4.0 |
| 19. Distance Tracking Function                           | 610   |
| 19.1 Overview                                            |       |
| 19.1.1 Distance Tracking Accuracy                        | .611  |
| 19.2 Connection Example                                  | 612   |
| 19.2.1 Basic Connection Example                          | 612   |
| 19.2.2 Connection Example for Dispense Application       | 612   |
| 19.3 Commands                                            | 613   |
| 19.4 Steps to adjust parameters                          | 613   |
| 19.4.1 Check Motions of Analog I/O Board                 |       |
| 19.4.2 Teaching a Robot                                  |       |
| 19.4.3 Create a Motion Program                           |       |
| 19.4.4 Add a Program for Distance Sensor Logging         |       |
| 19.4.5 ProportionalGain Setting                          | 619   |
| 19.4.6 IntegralGain Setting                              | 004   |

| 19.4.7 DifferentialGain Setting                                 | 622         |
|-----------------------------------------------------------------|-------------|
| 19.5 Example of Dispense Application                            | 623         |
| 19.5.1 Basic Example                                            | 623         |
| 19.5.2 Example with Application Amount Control                  | 624         |
|                                                                 |             |
| 20. Real-Time I/O                                               | 625         |
| 20.1 Overview                                                   | 625         |
| 20.2 Specifications                                             | 625         |
| 20.3 Usage                                                      |             |
| 3                                                               |             |
| 21. Additional Axis                                             | 631         |
| 21.1 Overview                                                   | 631         |
| 21.2 Specifications                                             |             |
| 21.3 Usage                                                      |             |
| 21.5 Usage                                                      | 033         |
| 22. Absolute Accuracy Calibration                               | 635         |
| •                                                               |             |
| 22.1 Overview                                                   |             |
| 22.2 Arm Length Calibration                                     |             |
| 22.2.1 Overview                                                 |             |
| 22.2.2 Replacing Parts Requiring Arm Length Cali Remeasurements |             |
| 22.2.3 Arm Length Measurements                                  |             |
| 22.2.4 Enabling and Disabling Arm Length Calibra                |             |
| 22.3 Area distortion correction                                 |             |
| 22.3.1 Overview                                                 |             |
| 22.3.2 Commands                                                 |             |
| 22.3.3 How to use                                               | 637         |
| 22.3.4 During restoration                                       | 639         |
| 22.3.5 When reconfiguration of the area is needed               | d639        |
| 22.4 Joint Accuracy Calibration                                 | 640         |
| 22.4.1 Overview                                                 | 640         |
| 22.4.2 Replacing Parts Requiring Joint Accuracy (               | Calibration |
| Remeasurements                                                  | 640         |
| 22.4.3 Joint Accuracy Measurements                              | 640         |
|                                                                 |             |
| 23. Calibration of Commercial Vision Sensor and                 | Robot 641   |
| 23.1 Overview                                                   | 641         |
| 23.2 Specifications                                             | 642         |
| 23.3 Camera Installation                                        | 643         |
| 23.4 Reference Points                                           | 644         |

| 23.5           | Reference Points for Mobile Camera                       | 644        |
|----------------|----------------------------------------------------------|------------|
| 23.6           | Reference Points for Fixed Camera                        | 644        |
| 23.7           | Command List                                             | 645        |
| 24. lr         | nstalling Controller Options                             | 646        |
| 25 S           | oftware License Agreement                                | 647        |
| 20. 0          | entrale <u>L</u> icelies / ig. comen                     | •          |
| Appe           | ndix A: Automatic Processing of Project Import           | 658        |
|                | Project Import for EPSON RC+ 6.*                         | 658        |
|                | Project Import for EPSON RC+ 5.*                         | 658        |
|                | Project Import for EPSON RC+ 3.* / 4.*                   | 658        |
|                | Project Import for SPEL for Windows 2.*                  | 660        |
| Appe           | ndix B: EPSON RC+ 7.0 Software                           | 662        |
|                | EPSON RC+ 7.0 Software Installation                      | 662        |
|                | To install the service pack                              | 664        |
|                | After Installing EPSON RC+ 7.0 Software                  | 665        |
|                | EPSON RC+ 7.0 Software Update                            | 665        |
| Appe<br>Models | ndix C: Simulator Functions List of Unsupported Manipula | tor<br>666 |
|                | X5 series Manipulators                                   | 666        |
|                | G6 series Manipulators                                   | 666        |
|                | G10 series Manipulators                                  | 667        |
|                |                                                          |            |

# 1. Introduction

# 1.1 Welcome to EPSON RC+ 7.0

Welcome to the EPSON RC+ 7.0 Project Management and Development Environment. EPSON RC+ 7.0 is used to develop application software for the Robot Controller.

#### EPSON RC+ 7.0 features

- Operable on Windows
- Integrated application development environment
- Communicates with the Controller by USB or Ethernet
- Allows you to connect one computer with multiple Controllers
- Multi simultaneous session
- SPEL+ programming language
   A powerful, easy to use BASIC-like programming language that supports multitasking, robot motion control, I/O control, and networking.
- I/O systems including Digital I/O boards and Fieldbus I/O
- TCP/IP and RS-232 communications
- Background task Controls entire system
- Database access
- Vision Guide option Integrated vision robot guidance
- RC+ API option Enables you to control the system using standard Microsoft .NET programming environments including Microsoft Visual Basic and Microsoft Visual C++.
- Security option
   Allows you to administrate all EPSON RC+ users on your system. It also includes usage auditing, so you can track how many hours are spent using the system, and if changes were made.
- Conveyor Tracking option
   Enables one or more robots to pick parts from moving conveyors using vision or sensors.
- PG Motion System option
  Allows you to use third party motors and drivers to control auxiliary equipment such as XY tables, slides, etc.
- ECP option
   Supports CP motion relative to a fixed point.
- GUI Builder option Integrated GUI development tool
- Force Guide option
   Allows a robot to use torque/force sensing and measurement
- Force Control
   Force is controlled or measured by force sensor.

- Absolute Accuracy Calibration

Makes sure the coordinates and trajectory match the actual robot position and trajectory.

This function is used for some options and applicable models.

- VRT option

Enables you to reduce vibration of Robot Motion.

- PartFeeding (Option)

You can easily supply parts by the Robot.

- Safety Function (Only for the Controller with Safety Board, some of them are option.)

Sets limit of operation speed and operating area for the robot, it allows you to make an application controlling robot safely.

# 1.2 System Overview

EPSON RC+ 7.0 software, which is installed to the computer connected to the robot controller, contains several components that enable you to control an entire robotic work cell. EPSON RC+ 7.0 communicates with the controller using USB or Ethernet.

EPSON RC+ 7.0 and the Controller can be used in following environments:

Slave system The Controller is PLC or PC cell slave.

Application is developed with EPSON RC+ 7.0.

After saving the object code to the Controller, it does not

need to be connected to the computer.

The Controller is controlled by I/O or fieldbus.

Standalone system Controls the robot and peripheral equipment as the robot

controller.

EPSON RC+ 7.0 displays the simple operator window in

AUTO mode.

By using RC+ API option, .NET application can be

controlled.

Offline development

system

Program edition and project build can be checked on the

offline PC.

Simulation system EPSON RC+ 7.0 on the PC which is connected to the

Controller can execute the program without the actual I/O or

robot by using the virtual I/O and dry run.

#### 1.2.1 Controller

#### RC700 series

The RC700 series Controller is a powerful robotic work cell controller that controls our SCARA robots and 6-axis robots.

#### Controller features

- Sophisticated yet achieving reliability and stability
- Built in Motion System

The motion drive system can control up to 6 axes simultaneously and 1 robot, and can add up to three drive units (RC700, RC700-A only)

- Includes standard I/O
- Wide variety of options

For detailed information on the Controller, refer to the RC700 controller manual.

#### RC90

The RC90 Controller with the following label attached can be used in combination with EPSON RC+ 7.0.



| EPSON RC+ 7.0      | RC90 Controller firmware |
|--------------------|--------------------------|
| EPSON RC+ 7.0      | Ver.7.0.2.0              |
| Before Ver.7.0.1   | :::                      |
| Ver.7.0.2 or later | OK                       |

OK: Compatible

All functions of the EPSON RC+ 7.0 and the Controller are available.

!!! : Compatible

Connection is OK. We recommend using EPSON RC+7.0 Ver. 7.0.2 or later.

NOTE

Manual PDF for this robot system is available from EPSON RC+ 7.0 Ver. 7.0.2

NOTE

This option is available for Robot Controller RC90 (EPSON RC+ 5.0) without the label.

The RC90 Controller is a robot controller that can drive LS series manipulators.

#### Features:

- Built in motion drive system. The motion drive system can control one robot.
- Standard I/O
- Optional digital I/O expansion boards
- Optional Fieldbus slave support for DeviceNet, PROFIBUS-DP, CC-Link Ethernet/IP, PROFINET, and EtherCAT.
- RS-232 ports (standard + optional)

For details on the Controller, refer to the RC90 Controller manual.

#### RC90-B

| EDOON DO. 7.0      | RC90-B controller firmware |  |  |
|--------------------|----------------------------|--|--|
| EPSON RC+ 7.0      | Ver.7.4.2.0 or later       |  |  |
| Before Ver.7.4.1   | !!!                        |  |  |
| Ver.7.4.2 or later | OK                         |  |  |

OK: Compatible

All functions of the EPSON RC+ 7.0 and the Controller are available.

!!! : Compatible

Connection is OK. We recommend using EPSON RC+7.0 Ver. 7.4.2 or later.



There is no label on RC90-B

The RC90-B Controller is a robot controller that can drive LS-B series manipulators.

#### Features:

- Built in motion drive system. The motion drive system can control one robot.
- Standard I/O
- Optional digital I/O expansion boards
- Optional Fieldbus slave support for DeviceNet, PROFIBUS-DP, CC-Link Ethernet/IP, PROFINET, and EtherCAT.
- RS-232 ports (standard + optional)

For details on the Controller, refer to the RC90 controller manual.

#### T series Manipulator

The T series Manipulators are Controller integrated SCARA robot.

For more details on Controller part, refer to T series Manipulator manual, T-B series Manipulator manual.

#### VT series Manipulator

The VT series Manipulators are Controller integrated 6-axis robot.

For more details on Controller part, refer to VT series Manipulator manual.

# 1.2.2 Software

EPSON RC+ 7.0 needs to be installed to your development PC. To communicate with the Controller, the computer should support USB 1.1 / 2.0 or Ethernet communication.

You can purchase options with the product or add them later.

Using EPSON RC+ 7.0, you can develop application software for the SPEL+ language that runs in the RC700 controller.

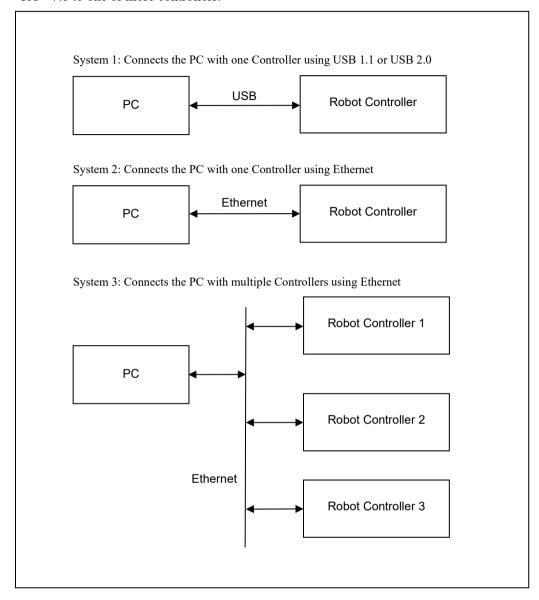
# 1.2.3 Simulator

Simulator functions enable easy robot motion check on your PC, which gives you flexibility to consider the system layout, measure the operation time, and create the robot programs.

They are useful in all the way from introduction stage of robot automation to launch of robot system.

Simulator is supported by EPSON RC+ 7.0 Ver. 7.0.0 or later as standard.

For details, refer to 8. Simulator.


# 1.2.4 System Requirements

To use RC+ adequately, following environment is required.

| OS                       | Windows 8.1 Pro 64-bit version |  |
|--------------------------|--------------------------------|--|
|                          | Windows 10 Pro 64-bit version  |  |
|                          | Windows 11 Pro 64-bit version  |  |
| CPU                      | Core i5 or greater             |  |
| Memory                   | 2 GB or more                   |  |
| Hard disk spare capacity | 4 GB or more                   |  |
| Graphic                  | DirectX10.1 or later           |  |
|                          | OpenGL2.1 or later             |  |

# 1.2.5 System Block Diagram

The following system block diagram shows methods for connecting a PC running EPSON RC+ 7.0 to one or more controllers.



# 1.3 Options

EPSON RC+ 7.0 enables the purchased Controller options.

Refer to 24. Installing Controller Options for details.

# 1.4 Precautions When Using Windows 8

Connecting development PC to Robot Controller using Ethernet

The robot controller does not support internet protocol version 6 (TCP/IPv6). When connecting the development PC to the robot controller using the Ethernet, be sure to use the internet protocol version 4 (TCP/IPv4).

#### 1.5 EPSON RC+ 5.x and 6.x Users

EPSON RC+ 7.0 is compatible with EPSON RC+ 5.x and 6.x for the operation and language.

For EPSON RC+ 7.0, you can use all commands of EPSON RC+ 5.x and 6.x.

You can use the current numbers for the I/O and communication port.

To enable the EPSON RC+ 5.x and 6.x project in EPSON RC+ 7.0 environment, convert the project using [Project] menu-[Import].

With above conversion, the entire project will be copied by EPSON RC+ 7.0.

\EPSONRC50\Project directory → \EpsonRC70\Project directory

\EPSONRC60\Project directory → \EpsonRC70\Project directory

# 1.6 EPSON RC+ 3.x and 4.x Users

EPSON RC+ 7.0 is compatible with EPSON RC+ 3.x and 4.x for the operation.

For EPSON RC+ 7.0, there are new commands added to SPEL<sup>+</sup> language. Though there are also some commands deleted or amended, most commands are available.

To enable the project of EPSON RC+ 3.x or 4.x in EPSON RC+ 7.0 environment, convert the project using [Project] menu-[Import].

With above conversion, the entire project will be copied by EPSON RC+ 7.0.

\EPSONRC\Project directory → \EpsonRC70\Project directory

Refer to Appendix A: Automatic Processing of Project Import for the details.

#### 1.7 SPEL for Windows Users

EPSON RC+ 7.0 is compatible with SPEL for Windows 1.x and 2.x for the operation.

For EPSON RC+ 7.0, there are many new commands added to SPEL<sup>+</sup> language, which replaces SPEL. Also there are some commands deleted or amended.

To enable the project of SPEL for Windows 2.x in EPSON RC+ 7.0 environment, convert the project using [Project] menu-[Import].

With above conversion, the file will be copied to a new directory or the program will optionally be converted by EPSON RC+ 7.0.

Refer to Appendix A: Automatic Processing of Project Import for the details.

# 1.8 Manuals

All documentation is installed on the PC in PDF format.

To view manuals on the PC:

- Select [Manuals] from the [Help] menu in EPSON RC+ 7.0
- From Windows desktop, click <Start>-[Programs]-[EPSON RC+ 7.0]

Available manuals are shown in the table below.

| Manual                               | Contents                                                                 |  |  |
|--------------------------------------|--------------------------------------------------------------------------|--|--|
| EPSON RC+ 7.0 Users Guide            | Information for the entire system                                        |  |  |
| SPEL <sup>+</sup> Language Reference | Information for the SPEL+ Language                                       |  |  |
| Vision Guide                         | Hardware, software, and reference for Vision Guide                       |  |  |
| Force Guide                          | Hardware, software, and reference for force sensor                       |  |  |
| Part Feeding                         | Integration guideline, introduction, hardware, software for part feeding |  |  |
| Teach Pendant                        | TP                                                                       |  |  |
| RC+ API 7.0                          | Information for options                                                  |  |  |
| GUI Builder 7.0                      |                                                                          |  |  |
| Fieldbus IO                          |                                                                          |  |  |
| PG Motion System                     |                                                                          |  |  |
| PLC Function Blocks                  |                                                                          |  |  |
| Remote Control Reference             | Information for Remote I/O control extended function                     |  |  |
| Manipulator manual                   | Information for the purchased robot                                      |  |  |
| iviampuiatoi manuai                  | Each series has its own manual                                           |  |  |
| Robot Controller manual              | Information for the purchased robot                                      |  |  |
| Safety manual                        | Information for using the robot system safely                            |  |  |
| Sarcty manual                        | Paper manual will come with the product                                  |  |  |
| Robot Controller Safety Function     | Information for the system of safety function                            |  |  |
| Manual                               | (Only for the Controller with Safety Board)                              |  |  |

| NOTE | The "NOTE" sections describe important information to be followed for operating the Robot system. |
|------|---------------------------------------------------------------------------------------------------|
| TIP  | The "TIP" sections describe hints for easier or alternative operations.                           |

# 1.9 Security for Controller Ethernet Connection

From the following firmware version password authentication is required when connecting Controllers and PCs to a public (global) accessible network.

F/W: Ver.7.4.8.x (except T series Manipulator / VT series Manipulator) Ver.7.4.58.x (T series Manipulator / VT series Manipulator)

Our robot system is provided on the assumption that customers use it in a closed local area network. We considered the use of a public IP address for the Controller that can be accessed via the Internet (directly or through a router) and changed the specification to support password authentication in order to secure the connection.

Password authentication is not performed in case of USB connections.

Be sure to use an IP address in the following private IP address ranges unless a public (global) IP address is required.

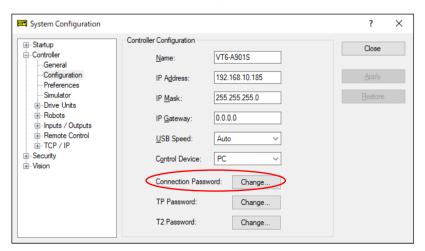
Private IP Address Ranges

| 10.0.0.1    | to | 10.255.255.254  |
|-------------|----|-----------------|
| 172.16.0.1  | to | 172.31.255.254  |
| 192.168.0.1 | to | 192.168.255.254 |

# 1.9.1 Setting Password for PC Ethernet Controller Connection

It is necessary to set the authentication password in the Controller and the PC connection client for Ethernet connection when a public (global) IP address is used in the Controller.

To use a public IP address in the Controller, the authentication password must be set in advance. If there is no authentication password configured, you cannot use a public IP address for the controller.




■ Set a private IP address for the Controller before use.

When setting a global IP address for the Controller, be sure to understand risks such as unauthorized access before use.

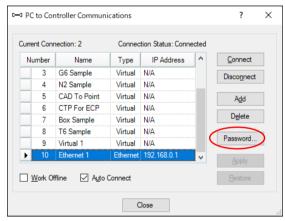
#### Setting a password for Controller

- (1) Select EPSON RC+ 7.0 menu-[Setup]-[System Configuration]-[Controller]-[Configuration].
- (2) Click [Connection Password]-<Change> button.



(3) Set the password. (The password must contain at least 8 characters.)




#### Setting a password for PC

On PC (RC+) side, the password can be set for each connection destination. (Ethernet connection only)

(1) Click the following icon on EPSON RC+ 7.0 menu.



(2) The [PC to Controller Communications] dialog box is displayed. Select the target "Ethernet" connection. Click the <Password> button.



(3) The [Change Connection Password] dialog box is displayed.

Type the password in [Enter connection password] and [Confirm connection password].



(4) Click the <OK> button.

(5) When both passwords have been input and match, the password will be registered and the [PC to Controller Communications] dialog box will close.

The following message will be displayed when the passwords do not match.



Click the <OK> button to return to the [PC to Controller Communications] dialog box

#### 1.9.2 PC Ethernet Connection to Controller

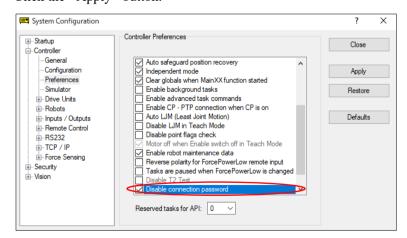
When connecting to a Controller for which a public (global) IP address is configured, connection authentication using password is required.

When connecting to a Controller for which a private (local) IP address is configured, connection authentication using password is optional.

Note: Authentication is performed when the authentication password for a PC Ethernet connection is configured.

### 1.9.3 Remote Ethernet

To login via Remote Ethernet, password authentication is required.


All commands are not available until you log in via Remote Ethernet.

If the command is executed without login via Remote Ethernet, error "11" occurs. For details on the error, refer to 12.2.7 Response-Error response.

#### 1.9.4 Disable the PC Ethernet Controller Connection Authentication

You can disable PC (Ethernet) connection authentication. (Connection authentication is enabled by default.)

- (1) Select EPSON RC+ 7.0 menu-[Setup]-[System Configuration]-[Controller]-[Preferences].
- (2) Select the [Disable connection password] checkbox. Click the <Apply> button.





■ Connection will not be secured if the connection authentication is disabled. Please be very careful when connecting to Internet.

# 1.10 Security for Compact Vision CV2-A Ethernet Connection

From the following firmware versions password authentication is required when connecting Compact Vision units, Controllers, and PCs to a public (global) accessible network.

Controller F/W : Ver.7.5.0.x Compact Vision F/W : Ver.3.1.3.x

Similar to our robot system, a Compact Vision CV2-A unit is provided on the assumption that customers use it in a closed local area network. We considered the use of a public IP address for the CV2-A that can be accessed via the Internet (directly or through a router) and changed the specification to support password authentication in order to secure the connection.

Be sure to use an IP address in the following private IP address ranges unless a public (global) IP address is required.

Private IP Address Ranges

|             |    | •               |
|-------------|----|-----------------|
| 10.0.0.1    | to | 10.255.255.254  |
| 172.16.0.1  | to | 172.31.255.254  |
| 192.168.0.1 | to | 192.168.255.254 |

For instructions on CV2-A connection password configuration, refer to the following manual.

Vision Guide Hardware & Setup 2.3.2 CV1/CV2 Camera Configuration

# 1.11 Security for Feeder Ethernet Connection

Similar to our robot system, a feeder (IF-240, IF-530, IF-80) is provided on the assumption that customers use it in a closed local area network. Be sure to use an IP address in the following private IP address ranges unless a public (global) IP address is required.

Private IP Address Ranges

| 10.0.0.1    | to | 10.255.255.254  |
|-------------|----|-----------------|
| 172.16.0.1  | to | 172.31.255.254  |
| 192.168.0.1 | to | 192.168.255.254 |

The feeder does not have a security feature such as password authentication to prevent unauthorized access. If it is necessary to set a global (public) IP address to use the feeder, please carefully consider the risk of unauthorized access via the Internet.

For instructions on the feeder, refer to the following manual.

Part Feeding 7.0 Introduction & Hardware (Common) & Software
Software 2.1.1 Part Feeding Page

# 2. Safety

Please read "Safety Manual" before installing the robot system or before connecting cables and check the safety requirements.

For the safety of the Controller with Safety Board, refer to the safety manual for the product you use.

# 2.1 Conventions

Important safety considerations are indicated throughout the manual by the following symbols. Be sure to read the descriptions shown with each symbol.

| WARNING | This symbol indicates that a danger of possible serious injury or death exists if the associated instructions are not followed properly.                                       |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WARNING | This symbol indicates that a danger of possible harm to people caused by electric shock exists if the associated instructions are not followed properly.                       |
| CAUTION | This symbol indicates that a danger of possible harm to people or physical damage to equipment and facilities exists if the associated instructions are not followed properly. |

# 2.2 Definitions

## 2.2.1 Robot Power

The status of robot power is explained below in terms of restriction to operation:

Operation-prohibited status: Robot cannot be operated.

Restricted (low power) status: Robot can operate at low speed and low torque.

Unrestricted (high power) status: Robot can operate without restriction.

The robot will not operate regardless of the control actions taken by the operator when in the operation-prohibited state. During operation, when the safeguard circuit opens, the system will switch to operation-prohibited state.

The robot will operate at low speed and torque in the restricted state (low power). In the unrestricted state (high power), the robot will operate at the programmed speed and torque.

In the event that the robot should make an unexpected movement, the restricted state (low power) decreases operating speed allowing the operator to avoid danger. The torque is also decreased to minimize serious injury to the operator should one be struck by the robot. The maximum values of the decreased speed and torque are set according to the robot used and cannot be changed by the user.

As a safety precaution the initial power state of the robot will be set to either the restricted (low power) state or the operation-prohibited state. The system will not change to the unrestricted (high power) state if the appropriate procedures are not followed.

When the system is in restricted (low power) state or operation-prohibited state, a single failure will not cause a runaway action that surpasses the assigned speed or torque decrease. This is due to the multi-protect circuit and mutual monitoring circuit in the control system.

#### 2.2.2 Safeguard

Safety barriers for safety must be installed around the Manipulator, and safeguards must be installed at the entrance and exit of the safety barriers.

The term "safeguard" mentioned in this manual is a safety device with an interlock that allows entry into the safety barriers. Safeguards include safety door switch, safety barriers, light curtains, safety gates, safety floor mats, and so on. The safeguard is an input that informs the Robot Controller that an operator may be inside the safeguard area.

#### For RC700-E:

You need to assign at least one Safeguard (SG) in Safety Function Manager. Refer to the following manual for details.

Robot Controller RC700-E Manual 4.10 Safety I/O Connector

#### For other than RC700-E:

Connect the interlock switch to the safeguard input of the controller's EMERGENCY connector. Refer to the following manual for details.

Robot Controller Manual EMERGENCY

When the safeguard is opened, Protective Stop operates to change the safeguard state to open (displayed: SO).

#### Safeguard open

Operations are prohibited. Further robot operation is not possible until either the safeguard is closed and the latch is released, or TEACH or TEST mode is turned on and the enable circuit is activated.

#### Safeguard closed

The robot can operate automatically in an unrestricted (high power) state. To ensure safe operation, install a safety system using safety doors, light curtains, safety floor mats, etc.



- If a third person accidentally releases the safeguard while an operator is working inside the Safety barriers, this may result in a hazardous situation. To protect the operator working inside the Safety barriers, implement measures to lock out or tag out the latch release switch.
- To protect operators working near the robot, be sure to connect a safeguard switch and make sure that it works properly.

#### 2.2.3 Operation Modes

The operation mode is defined as the single control point for the controller, therefore you cannot use more than one operation mode at the same time.

There are four operation modes for the controller: AUTO, PROGRAM, TEACH, and TEST.

- AUTO operation modes allow you to execute programs in the controller when the safeguard is closed.
- PROGRAM operation mode allows you to execute and debug programs when the safeguard is closed.
- TEACH operation mode allows you to jog and teach the robot at slow speed while inside the safeguarded area.
- TEST operation mode allows you to execute a program at slow speed while the safeguard is opened.



Teaching operation described in this manual is the operation of AUTO operation mode or PROGRAM operation mode. This intended for jogging the robot or teaching operation outside the safeguard.

#### 2.2.4 Start Mode

The Start mode specifies the operation mode for EPSON RC+ 7.0 when it starts.

You can set the EPSON RC+ 7.0 to start in AUTO or PROGRAM mode.

For information on how to change the start mode, refer to 4. Operation.

## 2.2.5 Changing Operation Mode

You can change from AUTO operation mode or PROGRAM operation mode to TEACH mode by setting the mode selector key switch on the Teach Pendant to the TEACH position.

TP1, TP2: Teach

TP3: TEACH/T1, TEACH/T2

When the mode selector key switch is changed back to Auto (TP1, TP2) or AUTO (TP3), the operation mode is returned to previous operation mode (AUTO or PROGRAM).

The AUTO operation mode can be changed to PROGRAM mode during the EPSON RC+ 7.0 startup sequence. A password can be used to allow only certain personnel to change the startup operation mode.

When EPSON RC+ 7.0 starts in AUTO operation mode, the AUTO operation mode cannot be changed to PROGRAM operation mode after the system has started. To change the operation mode, restart the system and log into PROGRAM mode, then set the start mode again and restart EPSON RC+ 7.0.

For more information, refer to 4. Operation.

To change to TEST operation mode:

- TP1: Switch the mode selector key switch on the Teach Pendant to Teach, and then select Function key F1: Test Mode.
- TP3: Switch the mode selector key switch on the Teach Pendant to TEACH/T1 or TEACH/T2, and then tap the [Test] tab.

For more information, refer to the following manuals.

Robot Controller option Teach Pendant TP1 or TP3 manual, 4. Operation Mode (TEACH/AUTO/TEST).



Robot Controller option Teach Pendant TP2 manual, 4. Operation Mode (TEACH/AUTO).

T2 mode cannot be used on RC700-A and RC700-D Controllers complying with the UL standards.

T2 mode can be use on RC700-E Controllers complying with the UL standards.

### 2.2.6 Emergency Stop

The controller is equipped with an emergency stop input terminal. If the normally closed emergency stop circuit is broken, the power supplied to all motors will be shut off (and enter servo-free status) and the robot will be stopped by dynamic braking.

For detailed wiring instructions, refer to the Robot Controller manual, EMERGENCY.

#### 2.2.7 Teach Pendant

Operators can use the teach pendant to operate the robot in the TEACH or TEST operation mode.

For operation instructions, refer to the following manuals.

Robot Controller option Teach Pendant TP1, TP2, or TP3 manual.

# 2.3 Installation and Design Precautions

For installation and design precautions, refer to the following manuals.

Safety Manual

Robot Controller Manual

Manipulator Manual

# 2.4 Precautions regarding Robot Operation

For precautions regarding robot operation, refer to the following manuals.

Safety Manual

Robot Controller Manual

Manipulator Manual

# 2.5 Backup of Projects and Controller

After a project has been created or edited, or after system data including robot parameters has been edited, the project and controller files should be copied and stored in media other than the hard disk on the PC (e.g. USB memory key). Keep the backup media in a safe place in case of damaged data on the hard disk

To backup, select [Controller] from the EPSON RC+ 7.0 [Tools] menu and execute Backup Controller. Refer to the section 5.12.8 [Controller] Command (Tools Menu). Backup Controller is a function to backup both the project and the controller.

To backup only the project data, select [Copy] from the [Project] menu. Refer to the section 5.10.12 Copy Command.



■ If your system cannot be restored by Restore Controller, you must restore robot calibration parameters (Hofs, CalPls) before operating the robot. If you fail to do so, the robot will move to incorrect positions.

# 3. Getting Started

This chapter contains instructions for setting up and using EPSON RC+ 7.0. It is recommended that first time users first read the preceding Safety chapter, then read through this chapter to get more familiar with the system.

#### **Contents**

- Hardware Installation
- Software Installation
- Windows Security Administration

## 3.1 Hardware Installation

EPSON RC+ 7.0 is used with the Controller. You need to install the controller and robot before you can use EPSON RC+ 7.0 to develop and run SPEL+ applications.

You need to prepare the PC which has Windows which can run the EPSON RC+7.0, and which can connect with the Controller using USB or Ethernet.

The Controller comes pre-configured at the factory. For instructions on installation, refer to the Robot Controller manual.

#### 3.2 Software Installation

EPSON RC+ 7.0 should be installed to the PC with Windows. For details of adding the options, version upgrade, and re-installation, refer to *Appendix B*: EPSON RC+ 7.0 Software.

# 3.3 Windows Security Administration

Users need Administrator rights to use the EPSON RC+. Other users such as Power User, Limited User, Guest User cannot use EPSON RC+.

To provide security within the EPSON RC+ environment, a Security software option is available. This option allows you to manage EPSON RC+ users and audit development activity. Refer to *15*. *Security* for details.

# 4. Operation

This chapter contains instructions for operation of the EPSON RC+ 7.0 system. The main topics are:

- System Power Up Procedure
- Starting EPSON RC+ 7.0
- System Shutdown Procedure
- Writing your first program

# 4.1 System Power Up Procedure

Follow this procedure to power up the system:

- 1. Ensure that all safeguards are in place and that all personnel are clear of the equipment.
- 2. Apply power to the Controller, monitor, and I/O devices.
- 3. Start the EPSON RC+ 7.0 software on the PC, if the PC is used in the system.

# 4.2 Starting EPSON RC+ 7.0

There are three ways to start EPSON RC+ 7.0. You can also configure the mode that EPSON RC+ 7.0 starts in.

#### Start Method 1

Double click on the EPSON RC+ 7.0 robot icon located on the Windows desktop.

#### Start Method 2

- 1. Click the Windows <Start> button.
- 2. Select the EPSON RC+ 7.0 [Program] group.
- 3. Select [EPSON RC+ 7.0]-[EPSON RC+ 7.0].

#### **Start Method 3**

Configure EPSON RC+ 7.0 to start automatically after Windows starts.

For details, refer to 4.2.7 Auto Start.



When using the RC+ API option, you do not need to start EPSON RC+ 7.0. The library provided with RC+ API will load EPSON RC+ 7.0 into your .NET application process automatically.

#### 4.2.1 Startup Sequence

When EPSON RC+ 7.0 starts, it reads initial settings for the current user and local system from the Windows registry.

The startup sequence depends on the following two factors:

- a. Control device
- b. Independent mode

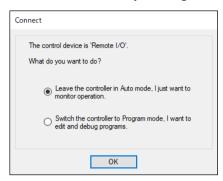
When start mode is other than Independent mode

(Any control device)

If there is no project file specified in the startup command line, the last-opened project will be opened.

If the start mode is Auto, the [Start Mode] dialog will be displayed (see 4.2.4 Start Mode Dialog).

If the start mode is Program, the EPSON RC+ 7.0 GUI will be displayed.


# When start mode is Independent mode

(Control device : Remote)

If there is no project file specified in the startup command line, the last-opened project will be opened as read only.

If tasks are currently running, EPSON RC+ 7.0 will prompt to enter Monitor Mode.

If no tasks are currently running, a dialog below will be displayed.



## Cooperative mode and Independent mode

The Robot Controller consists of the following two parts.

Real Part : Controls the SPEL<sup>+</sup> program (Specialized for the real time control)

Windows Part : Controls the Windows applications (GUI)

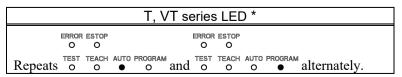
The main function of the robot can be run by Real Part and some functions of the Controller uses the connected Windows Part (See below).

| Function                     | RC+ Enabled                                             | PC Enabled                                              |
|------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Detail of available function | Vision Guide (PV1)<br>RC+ API option<br>Fieldbus master | PC file<br>PC RS-232C<br>Database access<br>DLL calling |

Real Part and connected Windows Part are started up separately at the each timing. To operate the robot system without problem, you should synchronize these two parts. At the shipment of the Robot Controller, the **Independent mode** which these parts operate individually is applied.



According to the design of robot system, it may not need to synchronize Real Part and connected Windows Part. In this case, change to **Cooperative mode**.


For the instructions of this settings, see the section below *How to set the Cooperative mode*.

When the controller is in Cooperative mode, it has to wait until both of Real Part and connected Windows Part can start up without failure.

Meanwhile, on the front surface of the controller displays as below:

| RC700 series Seven-segment LED | RC90 series LED                                                 |
|--------------------------------|-----------------------------------------------------------------|
| D                              | Repeats                                                         |
| Repeats  OGO and OGO           | E-STOP AUTO E-STOP AUTO ERROR TEACH PROGRAM ERROR TEACH PROGRAM |
| alternately.                   |                                                                 |
|                                | alternately.                                                    |

Then, it also has to wait until connected Windows part is ready and RC+ 7.0 can start up without failure.



\* Illustration: T series

The table below shows the startup sequence when the controller is in Cooperative mode:

|                                     | RC700 series<br>Seven-segment LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RC90 series<br>LED                                                                                  | T, VT series LED *                                                                                                            | Console instruction | Background<br>task    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| (1)<br>Power<br>ON                  | No display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E-STOP AUTO ERROR TEACH PROGRAM  Blinking                                                           | ERROR ESTOP O O  TEST TEACH AUTO PROGRAM Blinking                                                                             | Not<br>available    | Not<br>started<br>yet |
| (2)<br>Real Part<br>starts up       | Repeats  Official and Official alternately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Repeats  E-STOP AUTO  ERROR TEACH PROGRAM  G-STOP AUTO  ERROR TEACH PROGRAM  Alternately.           | Repeats  ERROR ESTOP O O  TEST TEACH AUTO PROGRAM O O O and ERROR ESTOP O O  TEST TEACH AUTO PROGRAM O O O alternately.       | Not<br>available    | Not<br>started<br>yet |
| (3)<br>Windows<br>part<br>starts up | Repeats  OFFICIENT AND THE STATE OF THE STAT | E-STOP AUTO  ERROR TEACH PROGRAM  — — — — and  E-STOP AUTO  ERROR TEACH PROGRAM  — — — alternately. | Repeats  ERROR ESTOP O O  TEST TEACH AUTO PROGRAM O O O O and  ERROR ESTOP O O  TEST TEACH AUTO PROGRAM O O O O  alternately. | Not<br>available    | Not<br>started<br>yet |
| (4)<br>RC+<br>starts up             | Blinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-STOP AUTO ERROR TEACH PROGRAM  Blinking                                                           | ERROR ESTOP O O  TEST TEACH AUTO PROGRAM O O O  Blinking                                                                      | Available           | Already<br>started    |

(\* Illustration: T series)

(Includes the startup of the Operator Window and RC+ API application)

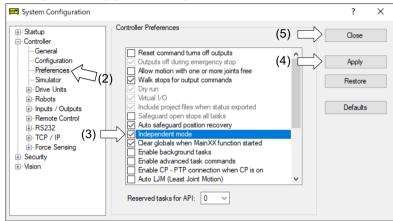
The table below shows the startup sequence when the controller is in Independent mode:

|                                     | RC700 series<br>Seven-segment LED | RC90 series<br>LED                               | T, VT series LED *                                       | Console instruction | Background<br>task |
|-------------------------------------|-----------------------------------|--------------------------------------------------|----------------------------------------------------------|---------------------|--------------------|
| (1)<br>Power<br>ON                  | No display                        | e-stop auto error teach program  Blinking        | ERROR ESTOP O O TEST TEACH AUTO PROGRAM Blinking         | Not<br>available    | Not<br>started yet |
| (2)<br>Real Part<br>starts up       | Blinking                          | E-STOP AUTO ERROR TEACH PROGRAM  Blinking        | ERROR ESTOP O O TEST TEACH AUTO PROGRAM O O O O Blinking | Available<br>*1     | Already<br>started |
| (3)<br>Windows<br>part<br>starts up | Blinking                          | E-STOP AUTO ERROR TEACH PROGRAM  Blinking        | ERROR ESTOP O O TEST TEACH AUTO PROGRAM O O O O Blinking | Available<br>*1     | Running            |
| (4)<br>RC+<br>starts up             | Blinking                          | E-STOP AUTO ERROR TEACH PROGRAM □ □ □ ■ Blinking | ERROR ESTOP O O TEST TEACH AUTO PROGRAM O O O   Blinking | Available           | Running            |

(\* Illustration: T series)

It waits the command execution from the Operator Window or RC+ API application. When the control device is other than "PC":

(2) At Real Part starts up, Remote function becomes enable and starts operating.


NOTE

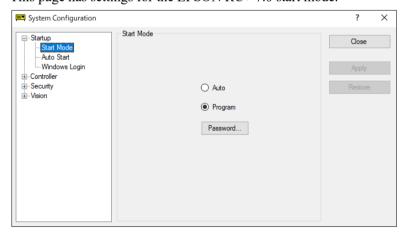
When the controller is in Cooperative mode, the state does not back to wait for the RC+ connection even after RC+ shutdown. Also when the control device is other than "PC", you need to be careful during the RC+ shutdown because the remote command is still executable.

<sup>\*1</sup> When the control device is "PC":

#### How to set the Cooperative mode

- (1) Select [Setup]-[System Configuration] from the main menu and displays the [System Configuration] dialog box as shown below.
- (2) Select [Controller]-[Preferences].




- (3) Uncheck the [Independent mode] checkbox.
- (4) Click < Apply > button.
- (5) Click the <Close> button.

# 4.2.2 Startup Configuration

To configure startup, select [System Configuration] from the [Setup] menu. The [Startup] section has pages for Start Mode, Auto Start, and Windows Login.

# 4.2.3 Start Mode

This page has settings for the EPSON RC+ 7.0 start mode.

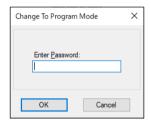


There are two start modes:

**Auto** This mode starts the system and displays the Operator Window.

**Program** This mode allows you to develop your projects. This is the default startup mode.

Use the <Password> button to change the start mode password.


## 4.2.4 Start Mode Dialog

When the start mode is set for Auto, then a dialog is displayed at start up that allows you to change the startup mode using a password. After a few seconds, if the <Change To Program Mode> button has not been clicked, the system will initialize and the Operator Window will be displayed.

You can disable this startup dialog using command line options described later in this section, 4.2.10 Command Line Options.



If you click the <Change To Program Mode> button, another dialog will be displayed, as shown below:



To change to Program mode, you must supply the password and click <OK>, or you can abort startup all together by clicking <Cancel>.

This allows authorized personnel to enter Program mode temporarily to make changes or adjustments.



When you change to PROGRAM mode from this dialog, it is only temporary. The next time EPSON RC+ 7.0 runs, the original start mode setting will be used.

## 4.2.5 Start Mode: Program

Program mode is the default start mode. This is the EPSON RC+ 7.0 development environment, from which you can:

- Create / edit projects.
- Configure the controller and set preferences.
- Run and debug programs.

## 4.2.6 Start Mode: Auto

Auto mode displays the Operator Window. The Operator Window is configured according to the settings in [Project]-[Properties].

The Auto mode is set by the control device as follows:

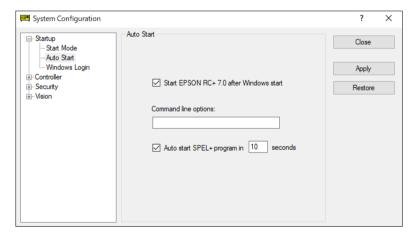
| Control Device                              | Description                                                                                              |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------|
| PC                                          | The Operator Window can be used as a simple operator interface for production.                           |
| Remote I/O Remote Ethernet Remote RS232 TP3 | The Operator window is displayed with no operator buttons to allow any diagnostic messages to be viewed. |

#### 4.2.7 Auto Start

You can configure EPSON RC+ 7.0 to automatically start when Windows starts.

From [Setup]-[System Configuration]-[Auto Start] page, set the [Start EPSON RC+ 7.0 after Windows start] checkbox.

In addition, if you set the checkbox above, you can specify EPSON RC+ 7.0 command line options (/auto, /nosplash, etc.) in the [Command line options] text box. Refer to the section 4.2.10 Command Line Options.


When the startup mode is Auto, a main function of the SPEL+ program can be started automatically. Check the [Auto start SPEL+ program in ## seconds] checkbox. Time from the EPSON RC+ 7.0 startup until a main function starts can be specified in the textbox on the right. In the example below, a main function starts 10 seconds after the EPSON RC+ 7.0 run. Startup of the main function can be aborted if it is within the specified time.

NOTE

When using auto start, ensure that your application can automatically start safely and inform operators how to abort the startup.



When using the Windows 8, select the [Desktop] tile on the start screen and then check if the EPSON RC+ 7.0 starts up automatically.

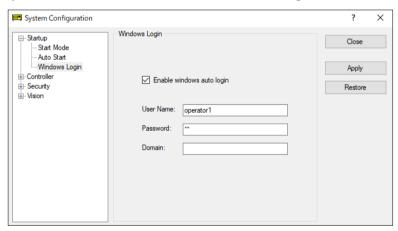


# 4.2.8 Using Monitor Mode

Monitor Mode allows you to monitor operation of the controller. In Monitor Mode, you can do the following:

- View print output on the Run window
- Monitor I/O status using the I/O Monitor.
- Monitor task status using the Task Manager.
- Monitor variable values using Display Variables.

To enter the monitor mode, follow the steps below.


When control device is remote and independent mode is on

- 1. Start the EPSON RC+ 7.0.
- 2. If tasks are running, you will be prompted to connect and monitor operation. If tasks are not running, you will be prompted to connect in monitor mode, or switch to the Program mode.

## 4.2.9 Windows Login

You can configure automatic Windows login from the EPSON RC+ 7.0. In [Setup]-[System Configuration]-[Startup]-[Windows Login] page, check the [Enable windows auto login] checkbox. Then, enter the name and password of the user logging in. Optionally, you can supply a domain, if required.

However, you must have the authority of Windows Administrator to set login parameters. To configure automatic Windows login from the EPSON RC+ 7.0, you must reboot the system the first time. After the reboot, Windows login will be automatic.



## 4.2.10 Command Line Options

Refer to 4.2.11 Using Command Line Options to see how to use the command line options.

There are command line options for the EPSON RC+ 7.0 that provide the following functions:

#### Starting EPSON RC+ 7.0 for a specific project

When you start the EPSON RC+ 7.0, you can optionally specify a project name in the command line.

```
ERC70.EXE [drive:project name]
```

drive:project\_name The drive letter and name of a project. The name can include a subfolder of the \EpsonRC70\Projects directory.

Example: Open project *myapp* on drive C: at startup:

```
ERC70.EXE c:myapp
```

## Change EPSON RC+ 7.0 startup mode

You can select the startup mode and override the startup dialog using command line options.

To start in Program mode (no password required)

```
ERC70.EXE / PROG
```

To start in Auto mode

ERC70.EXE /AUTO

Use these command line options to override and hide the startup dialog and open the Operator Window directly.

If only the AUTO flag is supplied and the control device is PC, EPSON RC+ 7.0 will open the project from the last session and display the operator window. EPSON RC+ 7.0 will only be visible in the Windows Task Manager. When the operator window is closed, EPSON RC+ 7.0 will be terminated.



When the control device is PC, you cannot close the operator window while tasks are running.

Example: Open project *myapp* on drive C and display the operator window:

```
ERC70.EXE c:myapp /AUTO
```

The Controller should be ON before starting EPSON RC+ 7.0 with the /AUTO command line option. If EPSON RC+ 7.0 cannot communicate with the controller, then an error message will be displayed with a retry button.

For more details, see 7.6 Operator Window.

#### Login

You can automatically login from the command line if you are not using the Auto Login feature for the security Option:

```
ERC70.EXE /LOGIN "userID", "password"
```

This is especially useful when you are starting in operator mode.

If the user I/D or password is invalid, it will display an error dialog and exit the EPSON RC+ 7.0.

## Starting EPSON RC+ 7.0 specifying the language

You can specify the language to use in EPSON RC+ 7.0 GUI.

```
Japanese : ERC70.EXE /LANG_JAPANESE *1

English : ERC70.EXE /LANG_ENGLISH

German : ERC70.EXE /LANG_GERMAN *2

French : ERC70.EXE /LANG_FRENCH *2

Spanish : ERC70.EXE /LANG_SPANISH *2

Chinese (Simplified) : ERC70.EXE /LANG_CHINESE_SIMP *3

Chinese (Traditional) : ERC70.EXE /LANG_CHINESE_TRAD *3
```

## Disabling the EPSON RC+ 7.0 splash window

You can suppress the splash window displayed at startup using the following syntax:

ERC70.EXE /NOSPLASH

## 4.2.11 Using Command Line Options

Examples of command line options are:

## Running from the Windows Run Box

You can specify a command from the Windows [Start] menu-[Run]-[Open] text box.

e.g. C:\EpsonRC70\exe\erc70.exe C:myapp

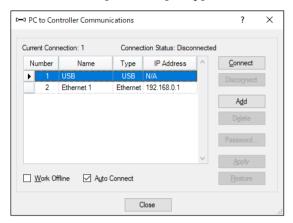
#### Making startup icons for your projects

You can create icons that automatically start EPSON RC+ 7.0 for different projects and start Auto or Program modes.

- 1. Right click on your desktop and select [New]-[Shortcut].
- 2. Click <Browse...> in the [Create Shortcut] dialog box. Select "C:\EpsonRC70\exe\erc70.exe" and click the <OK> button. After the dialog changes, click the <Next> button.
- 3. Type a name for the shortcut and click <Finish>.
- 4. Right click the created icon and select [Properties]. Add an option such as "/AUTO" or "/PROG" to [Target:].

<sup>\*1</sup> Available for Japanese OS

<sup>\*2</sup> Available for English, German, French, and Spanish OS


<sup>\*3</sup> Available for Chinese OS

# 4.3 Communications with Controller

Your PC running EPSON RC+ 7.0 can communicate with a Controller using USB or Ethernet.

## 4.3.1 Configuring Communications with the Controller

To configure communications with the Controller, select [PC to Controller Communications] from the [Setup] menu. This will open the dialog shown below:



The dialog has a list of connections. The first connection is for USB and is fixed. You cannot delete it or rename it.

You can add one or more Ethernet connections and give each one a meaningful name.

The name for each connection is also shown in the Connections dropdown list on the main toolbar. If no name is supplied, the Ethernet IP address is shown in the dropdown list.

For more information on PC to Controller Communications, refer to 5.13.1 PC to Controller Communications Command.

#### 4.3.2 USB Communications

USB 2.0 or USB 1.1 can be used to communicate with one controller. This is the default communication method for EPSON RC+ 7.0 and requires no configuration.

To connect to a controller via USB:

- (1) Connect a USB cable between the PC and the controller.
- (2) Turn ON the Controller.
- (3) Start EPSON RC+ 7.0.
- (4) Click the [PC to Controller Communications] button on the tool bar.
- (5) Ensure that connection #1 (USB) is selected.
- (6) Click the <Connect> button.
- (7) Click the <Close> button.



If the EPSON RC+ 5.0 is installed in the same computer and is performing the USB communication, the EPSON RC+ 7.0 cannot perform the USB communication. Make sure that the EPSON RC+ 5.0 is disconnected before connecting the EPSON RC+7.0.



When used with the Robot Controller RC620, the EPSON RC+ 7.0 cannot perform the USB communication.



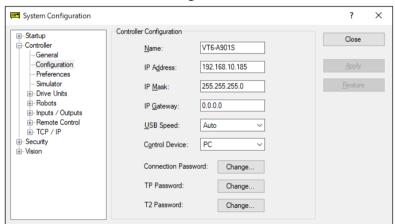
■ When performing the USB communication using the computer with Windows 8 or later, communication with the Controller is disconnected as the PC enters a sleep state. Before performing the USB communication, make sure to change the PC setting so that it will not enter the sleep mode.

#### 4.3.3 Ethernet Communications



The robot controller does not support internet protocol version 6 (TCP/IPv6). When you connect the development PC to the robot controller using the Ethernet, make sure to use internet protocol version 4 (TCP/IPv4).

You can communicate with one or more Controllers from one PC using Ethernet. For Ethernet communications, each Controller must have a unique IP address. You can set the IP address, mask, and gateway for the controller from [Setup]-[System Configuration]-[Controller]-[Configuration]. The gateway setting is only required if you will be accessing the controller from outside of the local network.


You can connect a PC to a controller directly using an Ethernet cable, or you can connect the PC and controller to an Ethernet switch or hub.

Before you can communicate with a controller using Ethernet, you must configure the controller's IP address, IP mask, and IP gateway. This is accomplished by first connecting to the controller with USB, and then from the EPSON RC+ 7.0 [Setup]-[System Configuration]-[Controller]-[Configuration] page, set the IP address, IP mask, and IP gateway of the controller as shown below.

The following is the configuration of the controller at the time of shipment.

IP Address: 192.168.0.1
IP Mask: 255.255.255.0
IP Gateway: 0.0.0.0

Use the USB connection to configure Ethernet communications.



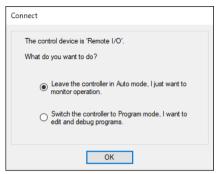


From the following firmware version password authentication is required when connecting Controllers and PCs to a global accessible network.

F/W: Ver.7.4.8.x (except T series Manipulator / VT series Manipulator) Ver.7.4.58.x (T series Manipulator / VT series Manipulator)

For details, refer to the following section.

1.9 Security for Controller Ethernet Connection

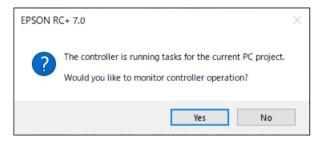

1.10 Security for Compact Vision CV2-A Ethernet Connection

1.11 Security for Feeder Ethernet Connection

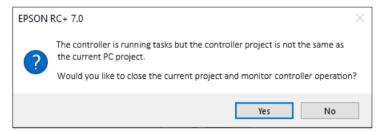
## 4.3.4 Connecting When Control Device is not PC

Connecting while control device is not PC and tasks are not running

If your PC is not a control device and tasks are not running, you will see the following message box:




This allows you to [Leave the controller in Auto mode] to monitor operation, or [Switch the controller to Program mode] so you can edit and debug programs. If you choose to [Switch the controller to Program mode], then the remote device cannot start programs until remote control has been enabled from the Run window.


#### Connecting from Remote Control while tasks are running

If the controller is running tasks with the control device set to Remote, you can connect the PC to the controller to monitor operation. For example, you can connect to a controller that is running tasks to temporarily monitor display output, tasks, and I/O, and then disconnect while tasks continue to run.

If the project on the PC is the same as on the controller, you will see the following message box when connection is established:



If the project on the PC is not the same as the project in the controller, you will see the following message box when connection is established:



If you choose to monitor controller operation, the Run window will open if EPSON RC+ 7.0 is started in Program mode. If EPSON RC+ 7.0 is started in Auto mode, the Operator window will appear. From the Run window or Operator window, you can view display output from Print statements executing in the application. You can also use the Task Manager and I/O monitor.

When monitoring controller operation, the controller remains in Auto mode. You cannot stop tasks from EPSON RC+7.0, because the control device is not PC. If you want to switch the controller to Program mode, you must first stop all tasks from the current control device, then connect to the controller from EPSON RC+7.0 and choose to switch to Program mode (see the previous section *Connecting while control device is not PC and tasks are not running*).

#### Disconnecting while tasks are running

You can only disconnect from the controller with tasks running when the control device is set to Remote.

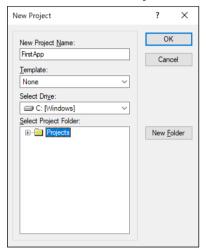
- 1. Stop communications with the controller by selecting [Offline] from the [Connection] dropdown list on the toolbar.
- 2. You may now disconnect the communications cable between the PC and the controller. Tasks will continue to run in the controller.

# 4.3.5 Project Controller Tracking

EPSON RC+ keeps track of which controller connection was used with a project. This is useful for when multiple projects and controllers are used from the same PC. When RC+ connects to a controller which is not the same as was previously used for the current project, a dialog is displayed showing information about the controller that was previously used with the current project and the currently connected controller. You can select which controller connection you want to use with the current project.



# 4.4 Writing your first Program


After installing the controller, robot, and EPSON RC+ 7.0 software on the RC700 Robot Controller, follow these instructions to create a simple application program so that you will become more familiar with the EPSON RC+ 7.0 development environment.

#### 1. Start EPSON RC+ 7.0

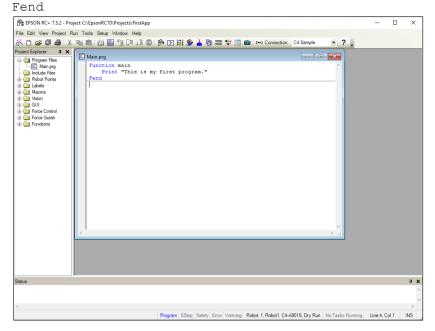
Double-click the EPSON RC+ 7.0 icon on the desktop.

## 2. Create a new project

(1) Select New from the Project Menu.

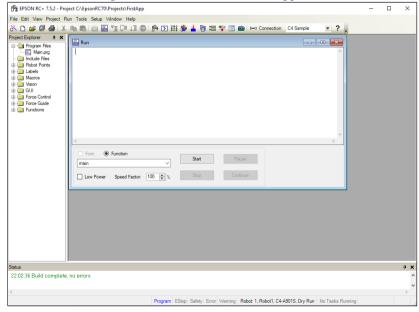


- (2) Type in a name for a project in the [New Project Name] box. e.g. FirstApp
- (3) Click **OK** to create the new project.


When the new project is created, a program called "Main.prg" is created.

You will see the "Main.prg" window open with a cursor flashing in the upper left corner. Now you are ready to start entering your first program.

#### 3. Edit the program


Type in the following program lines in the "Main.prg" edit window.

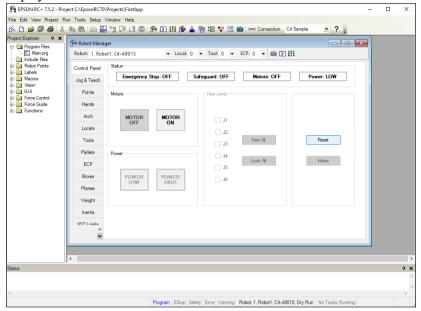
Function main
Print "This is my first program."



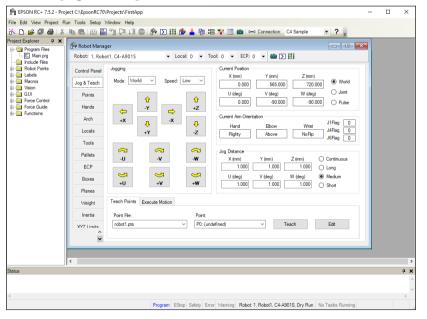
#### 4. Run the program

- (1) Press **F5** to run the program. (F5 is the hot key for the [Run Window] of the [Run] Menu). You will see the Status window located at the bottom of the main window showing the build operation status.
- (2) During project build, your program is compiled and linked. Then communications is established with the controller and project files are sent to the controller. If there are no errors during build, the Run window will appear.




- (3) Click the <Start> button on the [Run] window to run the program.
- (4) You should see text similar to the following displayed in the [Status] window:

```
19:32:45 Task main started 19:32:45 All tasks stopped
```


On the [Run] window, you will see the output of the print statement. Now let's teach some robot points and modify the program to move the robot.

#### 5. Teach robot points

(1) Ensure that it is safe to operate the robot. Click the <Robot Manager> button on the toolbar. You will see the [Robot Manager] window with the [Control Panel] page displayed.



- (2) Click on the <MOTOR ON> button to turn on the robot motors. You will be prompted to confirm the operation.
- (3) Answer <Yes> to continue.
- (4) Click the [Jog & Teach] tab.



- (5) Click the <Teach> button in the lower right corner to teach point P0. You will be prompted for a point label and description.
- (6) Jog the robot by clicking the <+Y> jog button. Hold the button down to continue jogging. Let go when the robot is about half way out in the work envelope.
- (7) Jog the robot down by clicking the <-Z> button.
- (8) Now change the current point to P1 by selecting P1 in the Point dropdown list next to the <Teach> button.
- (9) Click the <Teach> button. You will see a confirmation message to teach the point.
- (10) Answer < Yes>.

- (11)Click the  $\langle +X \rangle$  button to jog the robot in the +X direction.
- (12) Change the current point to P2 by selecting P2 in the Point dropdown list.
- (13)Click the <Teach> button. You will see a confirmation message to teach the point.
- (14) Answer < Yes>.
- (15)Click the < Save all files > toolbar button to save the changes.

#### 6. Modify the program to include robot motion commands

(1) Insert three new Go statements into the Main.prg program as shown below:

```
Function main
Print "This is my first program."
Motor On
Go P1
Go P2
Go P0
```

Fend

- (2) Run the program by pressing F5 and then click on the <Start> button on the Run window.
- (3) The robot should move to each of the points you taught.

#### 7. Modify the program to change speed of robot motion commands

(1) Insert the Power, Speed, and Accel commands as shown in the program below:

```
Function main
Print "This is my first program."
Motor On
Power High
Speed 50
Accel 50, 50
Go P1
Go P2
Go P0
Fend
```

- (2) Run the program by pressing F5
- (3) Click on the <Start> button on the Run window.

The robot should go to each of the points you taught at 50% speed, acceleration, and deceleration. The Power High statement enables your program to run the robot at high (normal) power, which in turn allows the robot speed and acceleration to be increased.

## 8. Backup the project and system configuration

Even though this is only a sample project, we will backup the project and controller configuration. This is easy to do with EPSON RC+ 7.0. It is important that you keep regular backups of your applications on an external media such as a USB memory key.

Follow these steps to backup the project and system configuration:

- (1) From the [Project] menu, select [Copy].
- (2) Change the [Destination Drive] to an arbitrary drive.
- (3) Click <OK>. The project will be copied to the external media.
- (4) From the [Tools] menu, select [Controller].
- (5) Click on the <Backup Controller> button.
- (6) Select the arbitrary drive.
- (7) Click <OK>. The system configuration will be backed up on the external media.

Now that you have written your first program, you should read 7.1.1 Creating the simplest application.

# 5. The EPSON RC+ 7.0 GUI

The chapter contains information on the EPSON RC+ 7.0 GUI.

- Overview

- Display Menu

- Tool Bar

- Project

- Project Explorer Pane

- Run

- Status Window Pane

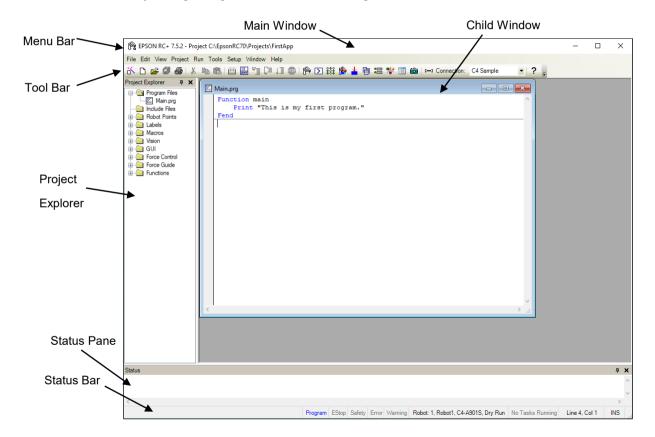
- Tools

- Status Bar

- Setup

- Online Help

- Window


- File Menu

- Help

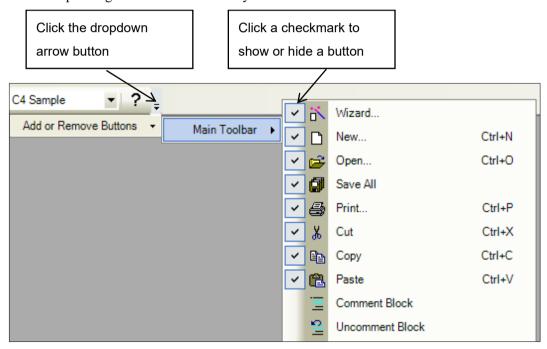
- Edit Menu

# 5.1 GUI Overview

EPSON RC+ 7.0 is a multiple document interface (MDI) application. There is one main parent window and several child windows which can be opened simultaneously. The main window has a menu bar, tool bar, and status bar, as shown below. In addition, there is a Project Explorer pane and Status Window pane.




# 5.2 Tool Bar


The main tool bar, located under the menu bar on the main window, has buttons for commonly used commands. Each button on the tool bar corresponds to a submenu selection from the menu bar. For example, the Wizard tool bar button corresponds to the Project menu Wizard command.



Hovering the mouse over a tool bar button will show a tool tip which briefly describes the command. For example, when the mouse pointer is over the Wizard tool bar button, the tool tip displays "Creates a new project".



You can add or remove command buttons on the tool bar by clicking the Add/Remove Buttons dropdown arrow button, then select Add or Remove Buttons and Main Toolbar. Next, click the checkmark on the left side of the command you want to add or remove. All tool bar command buttons have fixed positions. Adding and removing tool bar buttons is equivalent to showing or hiding the buttons. When you click a checkmark, the corresponding button will immediately be shown or hidden on the toolbar.



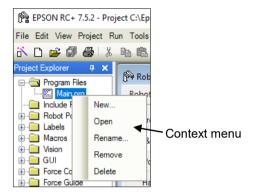
# 5.3 Project Explorer Pane

The Project Explorer pane enables you to quickly open any file in the current project or jump to any function. The project files and functions are organized in a sorted tree structure.

Open a file or jump to a function: Double-click on the item.

Hide the Project Explorer : Click the X button on the bar above the pane.

Show the Project Explorer : Select Project Explorer from the View Menu.


Resize the Project Explorer : Move the mouse cursor over the right side of the pane,

then drag the pane right or left to the desired width.

You can move the Project Explorer pane to either the left or right side of the main window. To move the pane, click down on the bar above the pane, then drag to either the left or right side of the main window and release the mouse button.

#### Context Menu

The Project Explorer Pane has a context menu for various operations for elements in the project tree. To access the context menu, right click on an item in the project tree.



# 5.4 Status Window Pane

The status pane displays status messages, such as project build status, system errors and warnings, etc.

Hide the Status pane : Click the X button on the bar above the pane. Show the Status pane : Select Status Window from the View Menu.

Resize the Status pane: Move the mouse cursor over the top edge of the pane, and then

drag the top edge up or down.

The Status pane is always located at the bottom of the main window and cannot be moved.



If the Status pane is closed and an error message is displayed on the status pane, such as during project build, the Status pane will automatically be opened so that the error message can be seen.

# 5.5 Status Bar

The status bar located at the bottom of the main window displays the following:

Message area Displays the syntax error for the current line and system

messages.

**Operation Mode status** Indicates the controller operation mode.

**Emergency Stop status** Indicates if emergency stop is active.

**Safeguard status** Indicates if one or more safeguard circuits is open.

**Error status** Indicates if the controller is in the error state. Put the mouse

cursor over the Error status area to see the warning message.

Warning status Indicates if there is a warning. Put the mouse cursor over the

Warning status area to see the warning message.

Current robot Displays the currently selected robot number, name, type

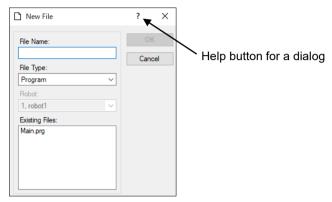
number, and the dry run status.

**Tasks running status** Indicates that one or more tasks are running.

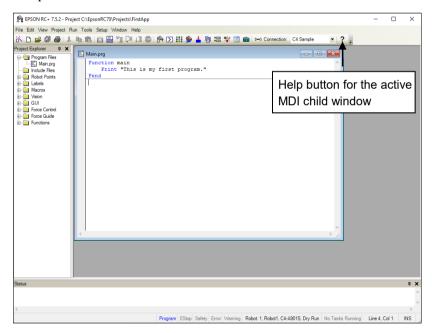
Current Line and Column When a program editor window is active, the current line and

column are displayed.

**INS / OVR status** Indicates insert or overtype mode.


# 5.6 Online Help

EPSON RC+ 7.0 has an extensive context sensitive help system.


There are several methods to get help.

- Select [Contents] from the [Help] menu to browse help topics.
- Select [Index] from the [Help] menu to enter the name of a specific topic.
- Select [Search] from the Help Menu to search for a specific topic.
- When editing programs, press F1 with the caret in the keyword of interest.

When a dialog is open, press F1 or click the Help button. For dialogs, the Help button is located in the window title bar on the right side and is shown as a question mark icon as shown below.

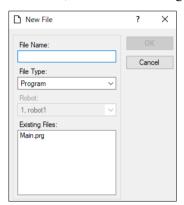


For MDI child windows, the Help button is located on the main toolbar and is also shown as a question mark icon as shown below.



# 5.7 [File] Menu

The EPSON RC+ 7.0 File Menu includes commands for managing and printing files in the current project.


# 5.7.1 New Command (File Menu)

#### **Shortcuts**

Toolbar:

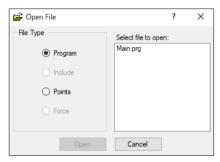
Keys: Ctrl + N

The New command is used to add new files to the current project. When the New command is selected, the New File dialog is opened.



| Item                  | Description                                                                                                                                                                                                                                                                |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Name             | Enter a name for the new file in this box. If you supply a valid file extension, the File Type selection will change to match the extension. For a file name, two byte characters such as Japanese, Chinese characters are not allowed.  Up to 24 characters can be input. |
| File Type             | Use this dropdown list to select Program, Include or Point file.                                                                                                                                                                                                           |
| <b>Existing Files</b> | Shows the files for the selected type currently in the Project folder.                                                                                                                                                                                                     |
| OK                    | Click OK when you are ready to create the new file.                                                                                                                                                                                                                        |
| Cancel                | Cancels the operation.                                                                                                                                                                                                                                                     |

# 5.7.2 Open Command (File Menu)


#### **Shortcuts**

Toolbar:

Keys: Ctrl + O

Open one or more files in the current project for editing. You can open program files, include files, or point files.

If there is a file in the current project folder (as shown in the Edit Project dialog box) and the file is not in the current project, you will not be able to open the file. You must add the file to the project before you can open it. This also applies to include files and point files.



| Item                | Description                                                                                                                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program             | Select this radio button to show a list of program files in the current project.                                                                                                                                            |
| Include             | Select this radio button to show a list of include files in the current project.                                                                                                                                            |
| Points              | Select this radio button to show a list of point files in the current project. For the details of editing points, refer to 7.4 Editing Points.                                                                              |
| Force               | Select this radio button to show a list of force files in the current project.                                                                                                                                              |
| Select file to open | Click on the file name you want to open. You can select more than one file by using the Ctrl key or Shift key. The Ctrl key allows you to select or deselect any file. The Shift key allows you to select a group of files. |
| Open                | Opens the selected file(s).                                                                                                                                                                                                 |
| Cancel              | Cancels the open operation.                                                                                                                                                                                                 |



You can also double click on a file name in the [Select file to open] list box to open the file without having to choose the <OK> button.

# 5.7.3 Close Command (File Menu)

#### **Shortcuts**

Keys: Ctrl + D

Close the currently active window.

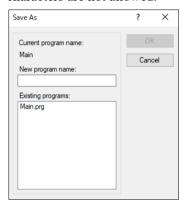
Any of the windows can be closed with this command: Programs, Include files, Point files, Command Window, Run window, I/O Label Editor, user errors.



You can also close a window or dialog box by double clicking on the control box button located in the upper left corner of the window or dialog box.

## 5.7.4 Save Command (File Menu)

#### **Shortcuts**


Keys: Ctrl + S

The [Save] command writes the current file to disk. The current file can be a program file, include file, points file, I/O label editor, etc. This command is disabled if the current file does not need to be saved.

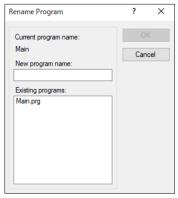
## 5.7.5 Save As Command (File Menu)

Save the program, include file, or point file in the currently active window with a new file name. The original file will be removed from the project but will remain on the disk. The new name will be used throughout the current project in place of the old name.

If you use [Save As] on an include file, you must rename the file in each of your #include statements that refer to it. For a file name, two byte characters such as Japanese, Chinese characters are not allowed.



# 5.7.6 Restore Command (File Menu)


Restores the currently active program, include file, I/O labels, user errors, or point files from disk.

Use this function to change a document to the state it was in since last saved.

You will be prompted to confirm this operation.

## 5.7.7 Rename Command (File Menu)

Use [Rename] to change the name of the program, include file, or point file you are currently editing.

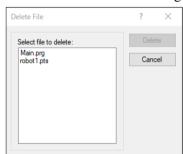


#### To rename a file

- Click anywhere on the program window
- Select the Open command from the File Menu
- Select the Window from the Window Menu
- Select from the Window Menu list

Select Rename from the File Menu. Type in a new name for the file and click <OK>.

The new file name cannot be the same as the existing files. You will get an error message if you enter a new name that is already being used.


If you use [Rename] on an include file, you must rename the file in each of your #include statements that refer to it.

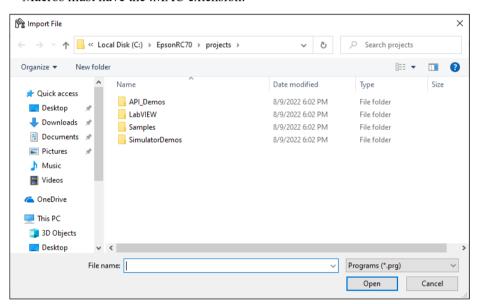
For a file name, two byte characters such as Japanese, Chinese characters are not allowed.

## 5.7.8 Delete Command (File Menu)

This command allows you to delete a file in the current project folder. You can delete program files, include files, and point files.

The file does not have to be registered in the project to delete.




| Item                  | Description                                                                                                                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select file to delete | Click on the file name you want to delete. This file list displays all .PRG, .INC, and .PTS files in the current project folder.                                                                                              |
| Delete                | Deletes the selected file. You will be prompted with a confirmation message before the file is deleted. If the file is currently open, it will be closed and removed from the current project before it is deleted from disk. |
| Cancel                | Cancels the delete operation.                                                                                                                                                                                                 |

## 5.7.9 Import Command (File Menu)

Import a file from other EPSON RC+ 7.0 projects. Use this command to import the following files, and macros.

Note that the following points for the file name to import.

- Program file names must have a .PRG extension.
- Include file names must have a .INC extension.
- Point file names must have a .PTS extension.
- GUI Builder file names must have a .GUI extension.
- Vision Guide file names must have a .VIS extension.
- Force file names must have a .FRC extension.
- Force Guide file names must have a .FG extension.
- Parts Feeding file names must have a .PF extension.
- I/O labels must have the file name IOLABEL.DAT
- User errors must have the file name USERERRORS.DAT.
- Macros must have the .MAC extension.



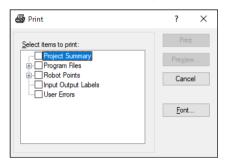
#### To import a file

- 1. Select the file type from the [File Type] list box.
- 2. Navigate to the file you want to import.
- 3. Click <Open> to continue. If a file name is already used in the project folder, you will be prompted to confirm overwrite. The file will then be copied to the current project's folder.



If you need to import files from previous versions of EPSON RC+ or from SPEL for Windows 2.0, you must first import the project using [Project]-[Import], which converts the point files and label files into EPSON RC+ 7.0 formats. Then you can use File Import to import the desired files.

# 5.7.10 Print Command (File Menu)


#### **Shortcuts**

Toolbar:

Keys: Ctrl + P

This command opens the Print dialog box. You can print programs, include files, point files, I/O labels, and user errors. Also you can print out a project summary.

Each document is printed with a header that includes the project name, product name, file name, date and time, and page number.



| Item                  | Description                                                                                                                                                                                                               |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select items to print | Check the items in the tree that you would like to print out.                                                                                                                                                             |
| Project Summary       | Select this checkbox to print a summary of the programs and points used in the current project.                                                                                                                           |
| Program Files         | Select this checkbox to print all program files, or click on the + button to view all program files and check the ones you want printed.                                                                                  |
| Include Files         | Select this checkbox to print all include files, or click on the + button to view all include files and check the ones you want printed. This checkbox is not shown if there are no include files in the current project. |
| <b>Robot Points</b>   | Select this checkbox to print all point files, or click on the + button to view all point files and check the ones you want printed.                                                                                      |
| Input Output Labels   | Select this checkbox to print a listing of the all of the I/O labels used in the project.                                                                                                                                 |
| User Errors           | Prints a listing of all user errors for the current project. If either the label or message is non-blank, then the error definition will be printed.                                                                      |
| Print                 | Prints the selected files. This button will be dimmed if nothing is selected to be printed.                                                                                                                               |
| Preview               | Preview the selected files before printing. This button will be dimmed if nothing is selected to be printed.                                                                                                              |
| Font                  | Opens a dialog for selecting the printer font. The selected font is saved for subsequent printing.                                                                                                                        |
| Cancel                | Closes the dialog box without printing anything.                                                                                                                                                                          |

# 5.7.11 Exit Command (File Menu)

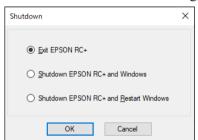
#### **Shortcuts**

Keys: Alt + F4

Exits from EPSON RC+ 7.0.

If you are running a program from the Run Window and the control device is PC, you will see a message that a program is running and you will not be allowed to exit. You must stop all tasks first before you can exit.

If there are any open program files, include files, point files, I/O labels, or user point files that have not been saved, for each file you will be prompted to save it with Yes, No, or Cancel.


If you select <Yes>, then the file will be saved.

If you select <No>, then the program will exit without saving the files.

If you select <Cancel>, it will return to the EPSON RC+ 7.0 main window.

If the display of the dialog at EPSON RC+ 7.0 shutdown is enabled, the following dialog will be displayed at the shutdown and you can select a termination process.

For details on the shutdown dialog, refer to 5.13.3 [Preferences] Command (Setup Menu).



#### **Item Description**

**Exit EPSON RC+** Exits the EPSON RC+ 7.0.

**Shutdown EPSON RC+** Exits the EPSON RC+ 7.0 and shutdown the Windows. **and Windows** 

**Shutdown EPSON RC+** Exits the EPSON RC+ 7.0 and reboot the Windows. **and Restart Windows** 

**OK** Executes the selected operation.

Cancel Cancels the operation and close the dialog.

# 5.8 [Edit] Menu

TIP

The EPSON RC+ 7.0 <Edit> menu includes commands for editing files.

You can also access the <Edit> menu by right-clicking anywhere in a program editor window.

## 5.8.1 [Undo] Command (Edit Menu)

#### **Shortcuts**

Keys: Ctrl + Z

Undo the changes to the currently active program since it was open.

# 5.8.2 [Redo] Command (Edit Menu)

#### **Shortcuts**

Keys: Ctrl+Y

Redo the previous undo.

## 5.8.3 [Cut] Command (Edit Menu)

#### **Shortcuts**

Toolbar:

Keys: Ctrl + X

Copies the current selection into the Clipboard and then deletes the selection.

# 5.8.4 [Copy] Command (Edit Menu)

#### **Shortcuts**

Toolbar:

Keys: Ctrl + C

Copies the current selection into the Clipboard.

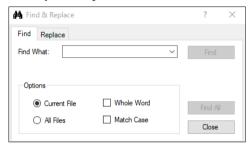
## 5.8.5 [Paste] Command (Edit Menu)

#### **Shortcuts**

Toolbar:

Keys: Ctrl + V

Puts the contents of the Clipboard into the currently active document starting at the insertion point.


# 5.8.6 [Find] Command (Edit Menu)

#### **Shortcuts**

Keys: Ctrl + F

Find a text string in the current program or all programs in the project.

The first time you execute this function, the dialog box will be centered over the main window. If you reposition it, then the next time Find is executed, the dialog will appear where you last positioned it.

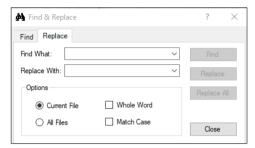


| Item                | Description                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find What           | Type the text you want to search for. If any text was selected when you execute the Find command, it will be displayed here. When executing the Find with a text string selected, selected text will be displayed. If no text was selected, then the text from the last Find will be displayed. You are limited to one line of text. If selecting more than one line before executing Find, the search will not start. |
| <b>Current File</b> | Searches only in the current program file and include file.                                                                                                                                                                                                                                                                                                                                                            |
| All Files           | Searches all files in the project.                                                                                                                                                                                                                                                                                                                                                                                     |
| Whole Word          | Searches for the full word by itself and not as part of another word.                                                                                                                                                                                                                                                                                                                                                  |
| <b>Match Case</b>   | Text must also match lower and upper case in order to be found.                                                                                                                                                                                                                                                                                                                                                        |
| Find                | Starts the search. If the text is found in a file that is not open, then the file will be opened to display. This button will be dimmed if nothing is entered to be searched.                                                                                                                                                                                                                                          |
| Find All            | Search for all occurrences and list the results in the Status pane. Each result shows the file name, line number, and line where the text was found. You can then double click on a result to open the file where the text was found. The Find & Replace dialog will close after the results are displayed. This button will be dimmed if nothing is entered to be searched.                                           |
| Close               | Closes the dialog box.                                                                                                                                                                                                                                                                                                                                                                                                 |

# 5.8.7 [Find Next] Command (Edit Menu)

## **Shortcuts**

Key: F3


Find the next occurrence of the search text specified in the last Find command.

# 5.8.8 [Replace] Command (Edit Menu)

#### **Shortcuts**

Keys: Ctrl + R

Search for a text string and replace it with new text. The first time you execute this function, the dialog box will be centered over the main window. If you reposition it, then the next time Replace is executed, the dialog will appear where you last positioned it.



| Item                | Description                                                                                                                                                                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find What           | Type the text you want to search for. If any text was selected when you execute the Replace command, it will be displayed here. If no text was selected, then the text from the last Find will be displayed. |
| Replace With        | Enter the replacement text here. The replacement text can be empty.                                                                                                                                          |
| <b>Current File</b> | Searches only in the current program file and include file.                                                                                                                                                  |
| All Files           | Searches all files in the project.                                                                                                                                                                           |
| Whole Word          | Searches for the full word by itself and not as part of another word.                                                                                                                                        |
| Match Case          | Text must also match lower and upper case in order to be found.                                                                                                                                              |
| Find                | Finds the next occurrence.                                                                                                                                                                                   |
| Replace             | If already found, replaces the current find, otherwise searches for<br>the next occurrence.                                                                                                                  |
| Replace All         | Replaces all occurrences.                                                                                                                                                                                    |
| Close               | Closes the dialog box.                                                                                                                                                                                       |

# 5.8.9 [Select All] Command (Edit Menu)

## **Shortcuts**

Keys: Ctrl + A

Selects the entire program file, include file, point file, I/O labels, or user errors. You can then execute Cut or Copy.

# 5.8.10 [Indent] Command (Edit Menu)

## **Shortcuts**

Key: Tab

Move the selected line one tab to the right.

## 5.8.11 [Outdent] Command (Edit Menu)

#### **Shortcuts**

Keys: Shift + Tab

Move the selected line one tab to the left.

## 5.8.12 [Comment Block] Command (Edit Menu)

Comments out the selected block of lines by adding the comment character to the beginning of each line.

To use, select one or more lines to be commented. Then:

- Select Comment Block from the Edit Menu.
- Right click and select Comment Block from the Context Menu.

A comment character will be added to the beginning of each of the selected lines.

# 5.8.13 [Uncomment Block] Command (Edit Menu)

Removes leading comment character from the selected block of lines.

To use, select one or more lines to be uncommented. Then:

- Select Uncomment Block from the Edit Menu.
- Right click and select Uncomment Block from the Context Menu.

The first comment character from each of the selected lines will be removed.

## 5.8.14 [Go To Definition] Command (Edit Menu)

Opens the window and sets the line where a function, variable, macro, point label, I/O label, or user error label is defined.

To use,

- Click on an identifier in a program window, and select Go To Definition from the Edit Menu.
- Right click on the identifier, and select Go To Definition from the Context Menu.

| Identifier type           | Display                                                       |
|---------------------------|---------------------------------------------------------------|
| Function name or variable | Program window where a function name or variable is declared. |
| Pont label                | Point file which a label is defined.                          |
| I/O label                 | I/O label editor which a label is defined.                    |
| User error label          | User error which a label is defined.                          |

## 5.8.15 [Navigate Backward] (Edit Menu)

Move the cursor to the line that was previously displayed by [Go to Definition] command. Repeat the operation to move the cursor through the history of [Go to Definition], starting with the most recent one.

# 5.8.16 [Navigate Forward] (Edit Menu)

Move the cursor to the line that was previously displayed by [Navigate Backward] command.

Repeat the operation to move the cursor through the history of [Go to Definition] in order from the oldest to the newest.

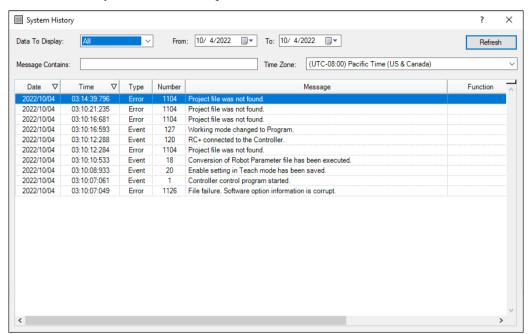
# 5.9 [View] Menu

The EPSON RC+ 7.0 View Menu includes commands for opening the Project Explorer and Status window. In addition, there is a command for viewing the system history.

# 5.9.1 [Project Explorer] Command (View Menu)

If you have closed the [Project Explorer] pane, you can open it by using this command. For details, refer to 5.3 Project Explorer Pane.

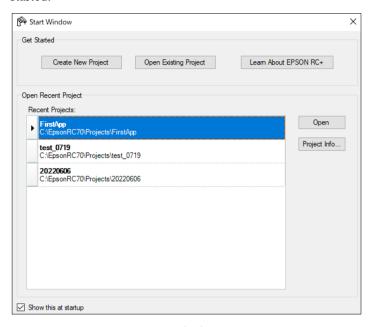
## 5.9.2 Status Window Command (View Menu)


If you have closed the [Status Window] pane, you can open it by using this command.

For details, refer to 5.4 Status Window Pane.

# 5.9.3 System History Command (View Menu)

This command opens the System History window. This window shows events, errors, and warnings that have been logged in the current controller's system history.


The data can be sorted by clicking on any column header. To sort multiple columns, hold down the shift key and click on multiple columns headers.



| Item                    | Description                                                                |
|-------------------------|----------------------------------------------------------------------------|
| Data To Display         | Select which data you would like to view.                                  |
|                         | Choices are All, Events, Errors, and Warnings.                             |
| From / To               | Select the dates you want to view data from. When the window is            |
|                         | first opened, these are automatically set to the first and last dates in   |
|                         | the history data.                                                          |
| <b>Message Contains</b> | Type in text to be found in the error message. After typing in the         |
|                         | text, click the Refresh button.                                            |
| Time Zone               | Select a time zone. Time of event, warning, and error occurrences          |
|                         | are displayed according to the selected time zone.                         |
| Refresh                 | Click this button to reload the data from the controller.                  |
| Type Event              | Information for operation and mode change.                                 |
| Warning                 | Program can be executed continuously, however, needs                       |
|                         | countermeasure.                                                            |
| Error                   | Error occurred in the program or the Robot.                                |
| Number                  | For details of the number, refer to SPEL <sup>+</sup> Error Message in the |
|                         | SPEL <sup>+</sup> Language Reference.                                      |
| Message                 |                                                                            |
| Function and            | Function name and the line number are displayed when error                 |
| Line number             | occurred while executing a program.                                        |
| Robot and               | Robot and the axis number are displayed when Robot error occurred.         |
| axis number             |                                                                            |
| Task number             | Task number of the task with error is displayed when error occurred        |
|                         | while executing the program. "0" is displayed for others.                  |
| Additional              | More details are displayed for some errors.                                |
| information             | For details, refer to SPEL+ Error Message in the SPEL+ Language            |
| 1 and 2                 | Reference.                                                                 |

# 5.9.4 Start Window (View Menu)

This command opens the Start Window. The Start Window by default opens when RC+ is started.



| Item                         | Description                                                          |
|------------------------------|----------------------------------------------------------------------|
| <b>Create New Project</b>    | This button starts the Project Wizard which assists you in creating  |
|                              | a new project. See the section [Project] Menu -[Wizard]              |
|                              | Command for details.                                                 |
| <b>Open Existing Project</b> | This button opens the Project Open dialog where you can select       |
|                              | an existing project to open.                                         |
| <b>Learn About EPSON</b>     | This button opens the help system to a page which has topics for     |
| RC+                          | learning about EPSON RC+.                                            |
| <b>Recent Projects</b>       | This is a list of recently used projects. Each row shows the         |
|                              | project name on the first line, and the project path on the second   |
|                              | line. You can select a project in the list, then click the Open      |
|                              | button to open the project, or click the Project Info button to view |
|                              | the project information. You can also double click on a project in   |
|                              | the list to open it. The list stores a maximum of 8 recent projects. |
| Show this at startup         | This is a checkbox that allows you to set whether the Start          |
|                              | Window opens during startup or not. You can also set this from       |
|                              | Setup   Preferences   Workspace.                                     |

# 5.10 [Project] Menu

The EPSON RC+ 7.0 Project Menu includes commands for managing and building projects.

## 5.10.1 [Wizard] Command (Project Menu)

The Project Wizard is a tool for creating new projects using step by step procedures. It is especially useful for new users. You can create the following types of projects:

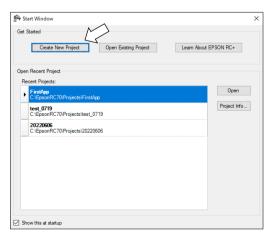
- Empty project
- Project from template
- Pick and place without vision
- Pick and place with vision



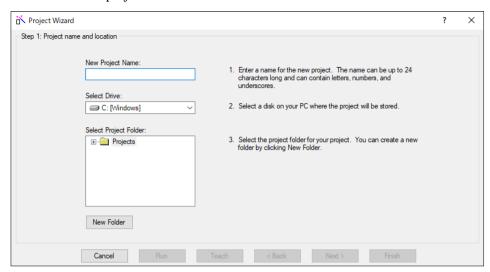
Before creating a project that will use a robot, ensure that you are familiar with all safety precautions and procedures. Always use caution when working with the robot, especially when working inside the safeguarded area. Refer to section 2.4 Precautions regarding Robot Operation for details.

## 5.10.1.1 How to Use [Wizard] Command

Step1. Start project wizard by one of three ways.


a. EPSON RC+ toolbar-<Create a new project> button.




b. Select EPSON RC+ 7.0 Menu-[Project]-[Wizard].

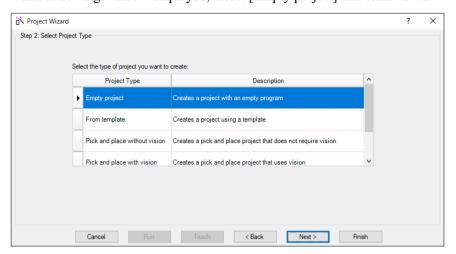


c. Select [Create New Project] in [Start Window] that displayed when EPSON RC+ 7.0 started.

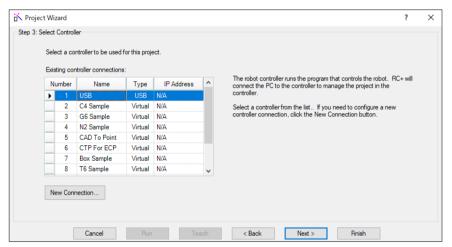


Enter a name and select a disk drive for the new project. Optionally, you can select a subfolder for the project.

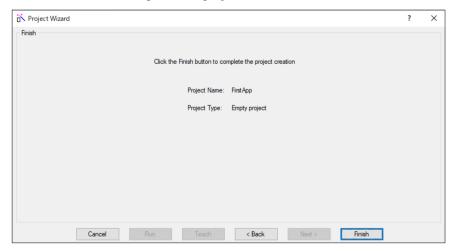



Select a project type you want to create, described in next page.

- (1) An empty project
- (2) A project from a template
- (3) A pick and place project without using vision
- (4) A pick and place project using vision

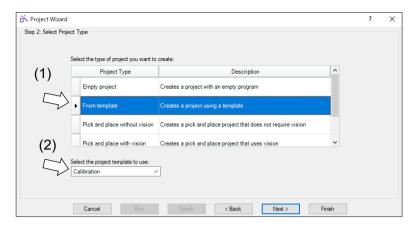

Next steps vary according to the selected project type.

## (1) An Empty Project

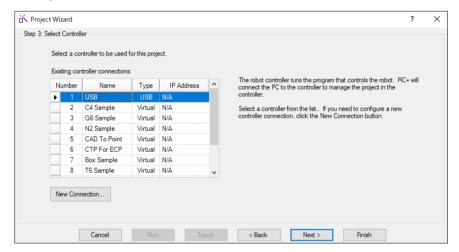

Step 2. When following window displayed, select [Empty project] and click <Next>.



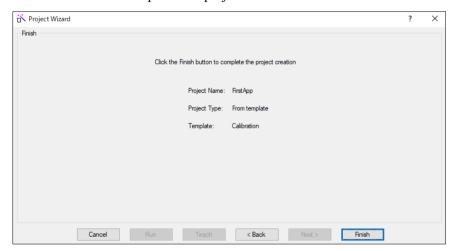
Step 3. Select a Controller to connect. If it doesn't have connecting Controller in the list, click [New Connection] then Controller connecting wizard will start. For more details, refer to 5.10.1.2 Controller Connection.




Step 4. This is the end of the steps for the project wizard.



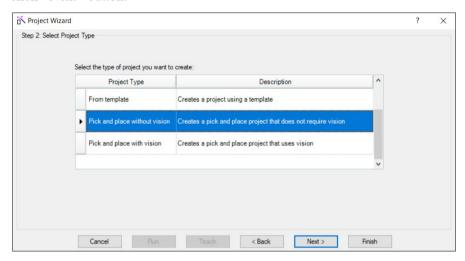

## (2) A Project from a Template


Step 2. When following window displayed, select [From template]. Then [Select the project template to use] will be displayed and select a template you want to create.

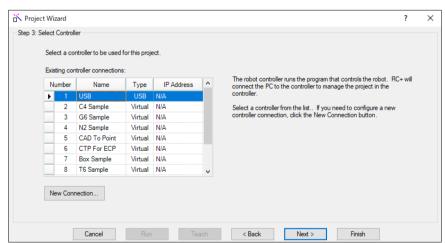


Step 3. Select a Controller to connect. If it doesn't have connecting Controller in the list, click [New Connection] then Controller connecting wizard will start. For more details, refer to 5.10.1.2 Controller Connection.




Step 4. This is the end of the steps for the project wizard.

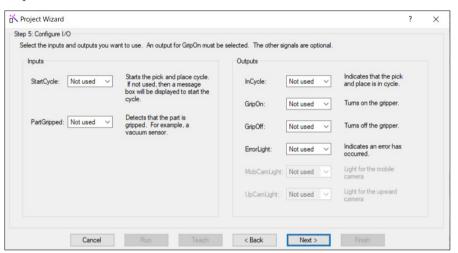



## (3) A Pick and Place Project without Using Vision

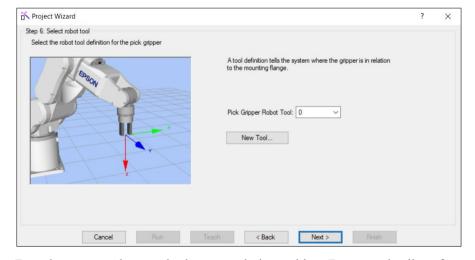
Beforehand, following preparations need to be done.

- i. Make sure that the connection settings of the robot controller are properly configured.
  - By default, EPSON RC+7.0 will connect to the Controller with USB. Make sure that the PC on which RC + is started and the robot controller are properly connected with a USB cable.
  - If you need a setting for Ethernet connection, you can set the connection from [Setup]-[PC to Controller Communications].
- ii. Mount a hand for gripping a part. Determine the robot controller output(s) required to open and close the hand.
- Step 2. When following window displayed, select [Pick and place without vision]. Then click <Next> button.



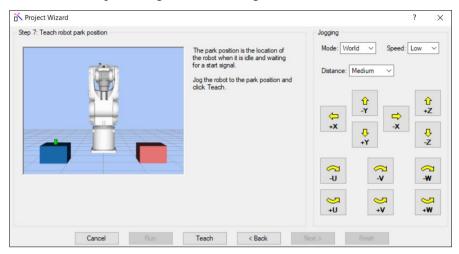

Step 3. Select a controller to connect. If it doesn't have connecting Controller in the list, click [New Connection] then Controller connecting wizard will start. For more details, refer to 5.10.1.2 Controller Connection.



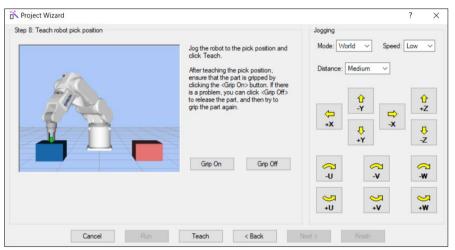

Step 4. Select a robot to use.



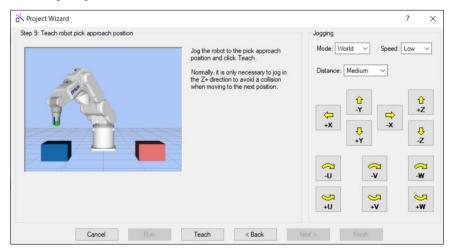
Step 5. Set main I/O to use. Make sure to select output bit "GripOn". For more details of each Input/Output bit, refer to "5.10.1.4 Inputs and Outputs".



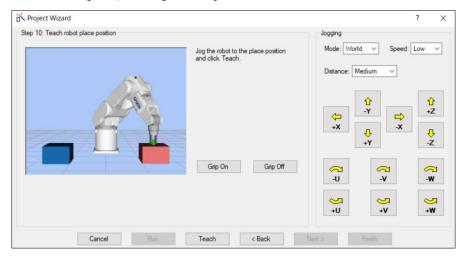

Step 6. Select a robot tool. By setting the tool according to the hand you're using, jog operation will be more intuitive. For more details, refer to "5.10.1.7 Robot Tool".



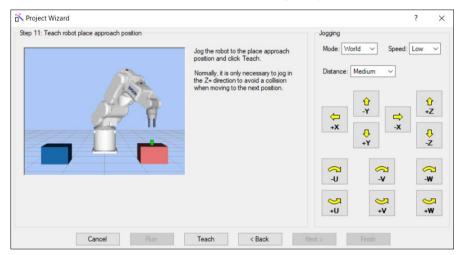

From here, move the actual robot to teach the position. For more details, refer to "5.10.1.6 Jogging the robot and teaching points".


Step 7. Jog the robot and teach the Park robot position. Park robot position is a point where a robot stops moving and waits for signals to start.

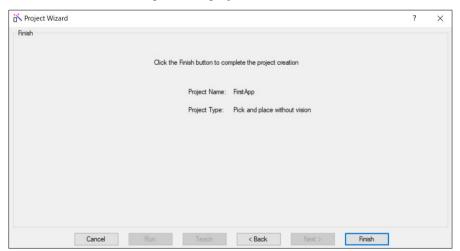



Step 8. Jog the robot and teach the Pick robot position. Pick robot position is a point to hold (pick) a target work piece.




Step 10. Jog the robot and teach the PickAppro (pick approach) robot position. It is recommended to specify the point for PickAppro robot position that is slightly moved in the +Z direction from the pick position to prevent collision with a jig near the pick position.




Step 10. Jog the robot and teach the Place robot position. Place robot position is a point to release (place) the target work piece.

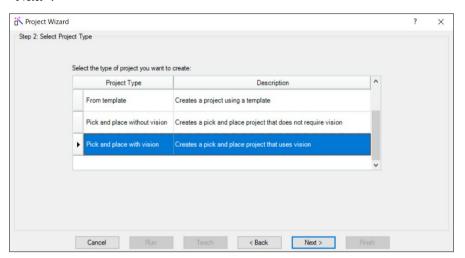


Step 11. Jog the robot and teach the PlaceAppro (place approach) robot position. Same as the PlaceAppro robot position, it is recommended to specify the point that is slightly moved in the +Z direction from the place position.

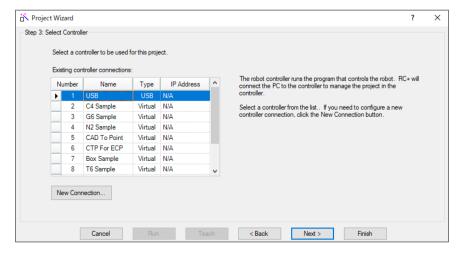


Step 12. This is the end of the steps for the project wizard.




## (4) A Pick and Place Project Using Vision

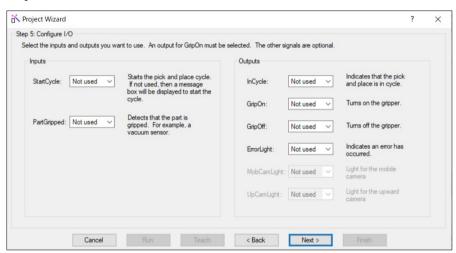
Beforehand, following preparations need to be done.


i. Make sure that the connection settings of the robot controller are properly configured. By default, EPSON RC+7.0 will connect to the Controller with USB. Make sure that the PC on which RC + is started and the robot controller are properly connected with a USB cable.

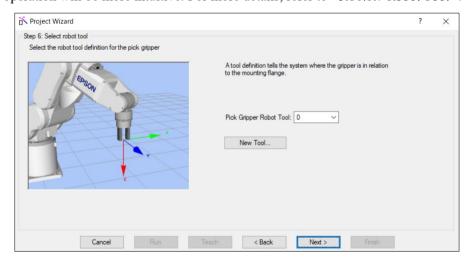
If you need a setting for Ethernet connection, you can set the connection from [Setup]-[PC to Controller Communications] Ethernet.

- ii. Mount a hand for gripping a part. Determine the robot controller output(s) required to open and close the hand.Also determine whether to use vision for positioning part to pick.
- iii. If you need vision to locate the part for pickup, and if it is necessary, mount a camera on the robot. For SCARA robots, mount the camera on joint 2 or joint 4. For 6 axis robots, mount the camera on joint 5 or joint 6. You may also need to mount a light for the camera. Determine a robot controller output required to operate the light.
- iv. Determine if you need vision to locate the part on the gripper to calculate place position. This is accomplished with an upward looking camera. After the part has been picked up, the robot moves so that the grasped part is over the upward looking camera. The vision system then determines the place position of the part. You may also need to mount a light for the camera. Determine a robot controller output required to operate the light.
- Step 2. When following window displayed, select [Pick and place with vision] and click <Next>.



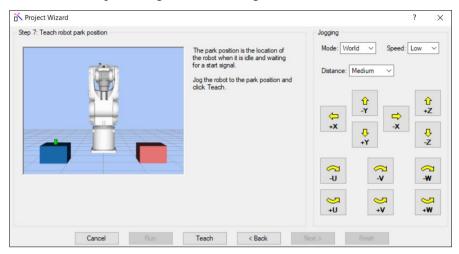

Step 3. Select a controller to connect. If it doesn't have connecting Controller in the list, click [New Connection] then Controller connecting wizard will start. For more details, refer to 5.10.1.2 Controller Connection.




Step 4. Select a robot to use.

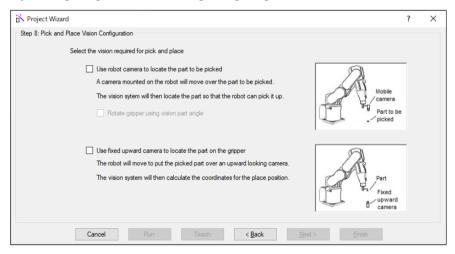


Step 5. Set main I/O to use. Make sure to select output bit "GripOn". For more details of each Input/Output bit, refer to "5.10.1.4 Inputs and Outputs".

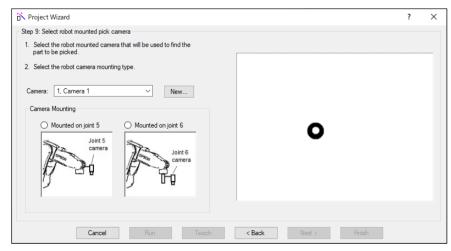



Step 6. Select a robot tool. By setting the tool according to the hand you're using, jog operation will be more intuitive. For more details, refer to "5.10.1.7 Robot Tool".

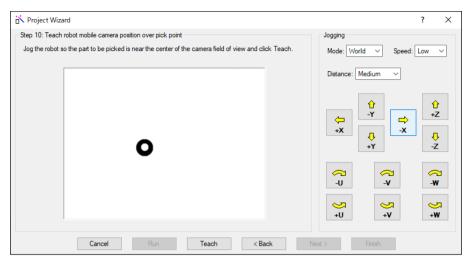



From here, move the actual robot to teach the position. For more details, refer to "5.10.1.6 Jogging the robot and teaching points".

Step 7. Jog the robot and teach the Park robot position. Park robot position is a point where a robot stops moving and waits for signals to start.

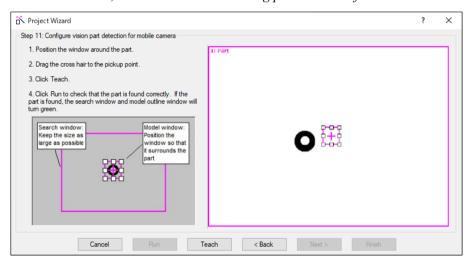



Step 8. Select a position of mounting a camera.

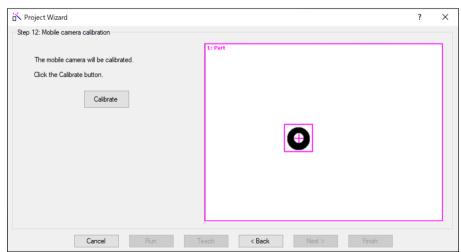

You can configure a mobile camera and/or an upward camera. Check "Use robot camera to locate the part to be picked" if you need to locate the part before picking it. Optionally, you can check "Rotate gripper using vision part angle". This will cause the robot to rotate the gripper to match the angle of the part. Check "Use fixed upward camera to locate the part on the gripper" if you need the robot to adjust for pickup variations when placing the part.



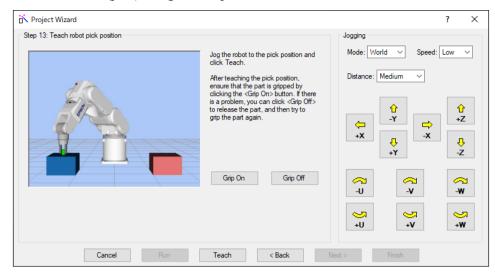
Step 9. When mobile camera is selected in step 8, the wizard moves to the wizard of selecting mobile camera. If you are not using a mobile camera to find the part to pick up, go to step 13.



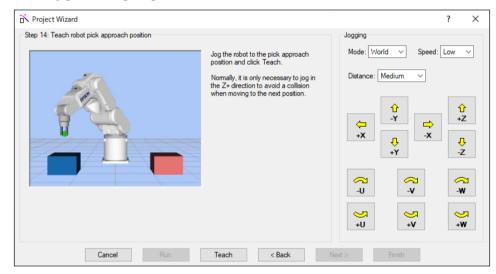

Step 10. Jog the robot until the camera is positioned so that the part is near the center of the field of view.



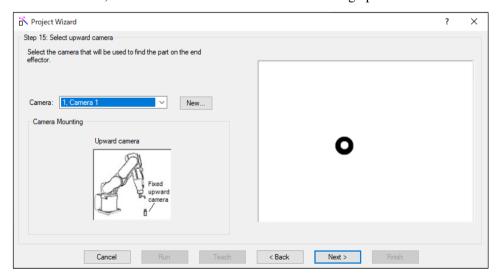

Step 11. Teach the vision system for part detection. Use the mouse to position the model window so that is surrounds the part. Position the cross hair to the pick position on the part.


For more details, refer to "5.10.1.8 Teaching part detection for vision".

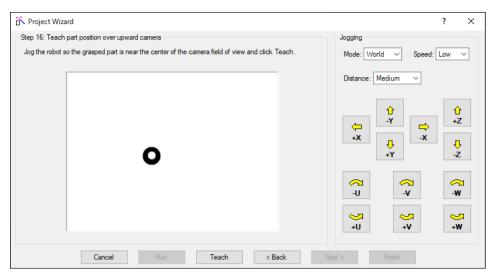



Step 12. Calibrate the mobile camera by clicking the [Calibrate] button. Calibration is automatic and will use the part as the calibration target. Click the Abort button if you want to stop the calibration. When the calibration is completed, a message is displayed stating whether the calibration was successful or not.

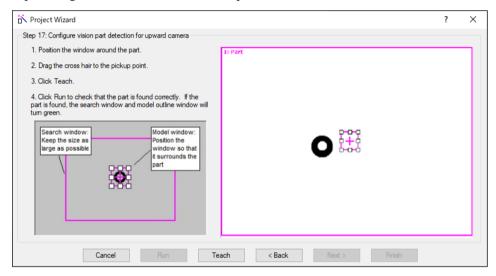



Step 13. Jog the robot and teach the Pick robot position. Pick robot position is a point to hold (pick) a target work piece.

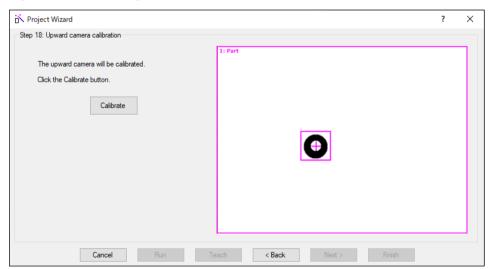



Step 14. Jog the robot and teach the PickAppro (pick approach) robot position. It is recommended to specify the point for PickAppro robot position that is slightly moved in the +Z direction from the pick position to prevent collision with a jig near the pick position.

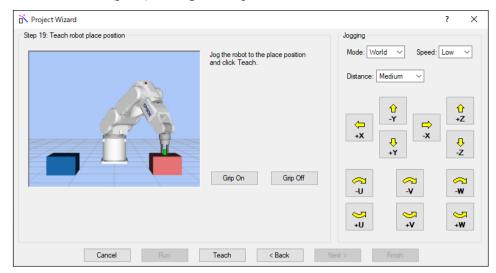



Step 15. When upward camera is selected in the step of selecting a position of mounting a camera, the wizard moves to the wizard of selecting upward camera.

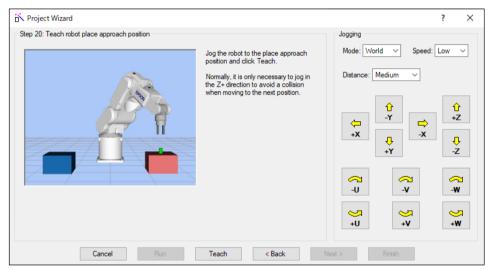



Step 16. Jog the robot until the camera is positioned so that the part is near the center of the field of view.

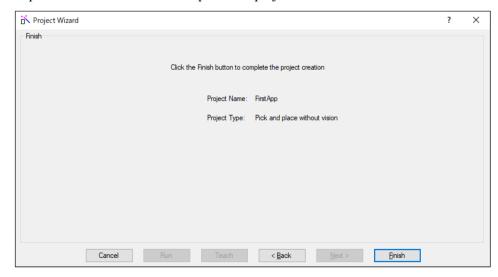



Step 17. Register the vision model of the part.




Step 18. Calibrate the upward camera.




Step 19. Jog the robot and teach the Place robot position. Place robot position is a point to release (place) the target work piece.

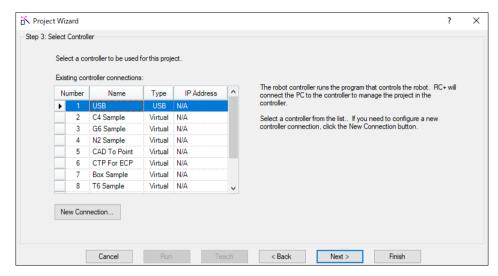


Step 20. Jog the robot and teach the PlaceAppro (place approach) robot position. Same as the PlaceAppro robot position, it is recommended to specify the point that is slightly moved in the +Z direction from the place position.



Step 21. This is the end of the steps for the project wizard.



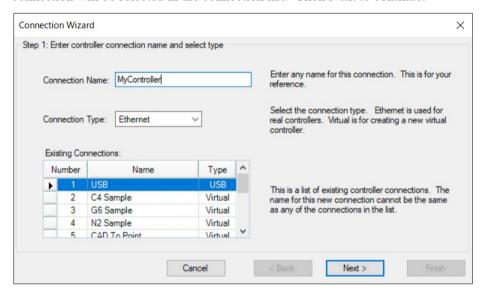

## After Project Wizard

After finished wizard, <Finish> button will be enabled. Click the button and create a new project.

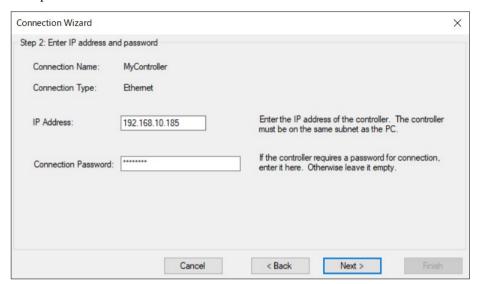
- 1. After clicking [Finish], SPEL+ code and related objects are automatically generated for a new project.
- 2. Press F5 to run the new program. Use caution when running a program that moves the robot.
- 3. You can make changes to the generated program to refine operation to suit customer's needs

## 5.10.1.2 Controller Connection

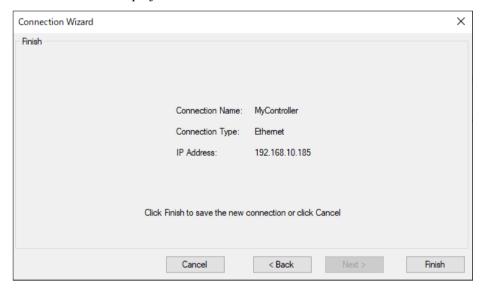
For each project type, you must select a connection to a robot controller when the Project Wizard asks you to select a controller. You can select from existing connections, or you can create a new connection.




#### Select an existing connection

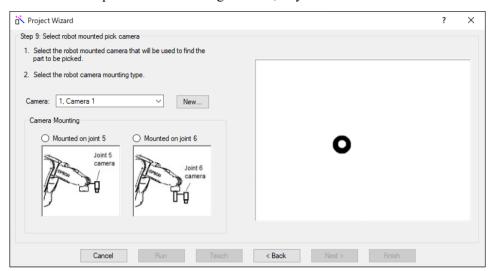

Select a connection in the list of connections, then click Next.

#### Create a new connection


Click the New Connection button. This opens the Connection Wizard. Follow the steps in the wizard to add a new controller connection. When the wizard is completed, the new connection will be selected in the connection list. Click Next to continue.



When the connection type is Ethernet, enter the IP address. If the controller connection requires a password, enter the connection password. Click Next. EPSON RC+ will attempt to connect with the controller. If unsuccessful, an error message will be displayed. Check the IP address, password, connection and network cables. Click Next again to reattempt the connection.



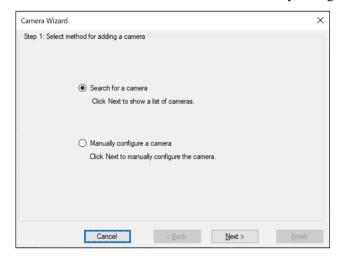

Click Finish to create the new connection. The new connection will be added to the connection list in the project wizard and it will be selected.



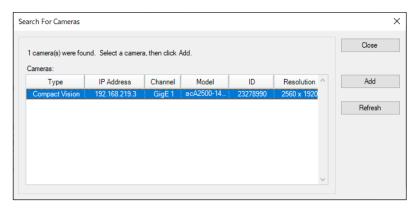
## 5.10.1.3 Camera Selection

For project types that require vision, you must select a camera where required. You can select from a dropdown list of existing cameras, or you can add a new camera.



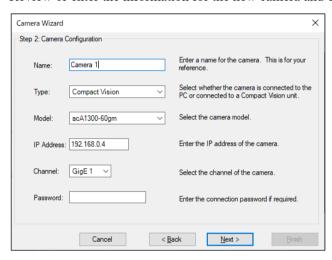

## Select an existing camera

Select a camera from the Camera dropdown list, then click Next.

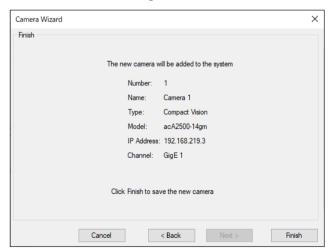

#### Add a new camera

Click the New Camera button. This opens the Camera Wizard. Follow the steps in the wizard to add a new camera.

Select whether to search for a camera or manually configure a camera and click Next.




If you selected to search for a camera, a list of available cameras is displayed. Select a camera in the list and click Add.




The camera configuration information is populated by the selected camera.

Review or enter the information for the new camera and click Next.



Review the camera configuration and click Finish to add the new camera.



The new camera will be selected in the camera list.

# 5.10.1.4 Inputs and Outputs

For pick and place project types, you will be prompted by the wizard to configure input and output signals. Only the GripOn output is required. All other I/O signals are optional. I/O labels for the new project are automatically created. The signals that are defined are used in the generated SPEL+ program. Signals that have been reserved for use with remote I/O are not allowed.

| Signal Name | Type   | Description                                                |
|-------------|--------|------------------------------------------------------------|
| StartCycle  | Input  | Starts a pick and place cycle. If not defined, a           |
|             |        | message box is added to the generated code that            |
|             |        | prompts the operator to start a cycle.                     |
| PartGripped | Input  | Used to detect if the part is grasped or not. For          |
|             |        | example, if a vacuum gripper is used, the                  |
|             |        | PartGripped signal could be a vacuum sensor that           |
|             |        | detects that a part was picked up or released. If this     |
|             |        | signal is not specified, then a predefined delay is        |
|             |        | added to the program after turning the part gripper on     |
|             |        | and off.                                                   |
| InCycle     | Output | Indicates that a pick and place cycle is running.          |
| GripOn      | Output | Turns on the gripper to grip the part.                     |
| GripOff     | Output | If specified, this turns off the hand to release the part. |
|             |        | The hands with two points requires to specify. If not      |
|             |        | specified, the part is released when GripOn is Off.        |
| ErrorLight  | Output | Indicates that an error occurred.                          |
| MobCamLight | Output | Controls the light mounted with the mobile camera.         |
| UpCamLight  | Output | Controls the light mounted with the upward camera.         |

## 5.10.1.5 Robot Points

For pick and place project types, you will be prompted by the wizard to teach robot points, shown in the table below. Point labels for the new project are automatically created and used in the generated SPEL+ program.

| Robot point | Description                                                  |  |
|-------------|--------------------------------------------------------------|--|
| Park        | This is the idle position for the robot when waiting for the |  |
|             | next cycle to start                                          |  |
| Pick        | This is the part pick position.                              |  |
| PickCam     | For vision pick and place. This is the position of the robot |  |
|             | mobile camera over the part to be picked.                    |  |
| PickAppro   | Used for 6 axis robots. This is the approach position above  |  |
|             | the pick position.                                           |  |
| UpCam       | For vision pick and place. This is the position of the       |  |
|             | grasped part over the upward looking camera.                 |  |
| Place       | This is the part place position.                             |  |
| PlaceAppro  | Used for 6 axis robots. This is the approach position above  |  |
|             | the place position.                                          |  |

## 5.10.1.6 Jogging the robot and teaching points

The project wizard supports integrated simple jogging when it is required to teach a robot point.

Select the jog mode, jog speed, and jog distance from the dropdown lists. For safety, continuous jogging is not used in the project wizard.

Click a jog button to move the robot in the direction shown on the button. If you want to jog multiple steps, hold down the jog button.

When you click a jog button and some condition prevents jogging, such as motors off, EStop active, Safeguard active, etc., you will be prompted for motors to be turned on or to clear Estop or Safeguard. Then you can click the jog button again to jog the robot.

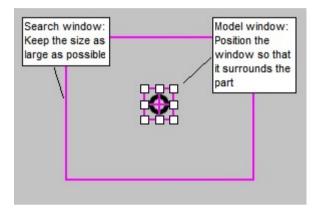
After jogging to the required position, click the [Teach] button to teach the robot point. If necessary, you can jog the robot again, then click [Teach] again to re-teach the point.

#### 5.10.1.7 Robot Tool

For pick and place project types, you will be prompted to select a robot tool. A tool informs the system of the location of the end effector.

For a simple application that uses vacuum end effector and does not require rotation of a part for placement, you may not need to use a robot tool and can use Tool 0 (default).

For an application that uses an end effector that is not centered on the robot mounting flange and needs to rotate the part for pickup and / or for placement, you should define a robot tool. When you select a tool in the wizard, you can click on [New Tool...] to use the Tool Wizard.


You can also define the tool before using the project wizard by running the Tool Wizard from the Robot Manager Tool page.

For more details on defining robot tools, refer to 5.12.1 Robot Manager – Tools in this manual and the section TLSet Statement in the SPEL+ Language Reference manual.

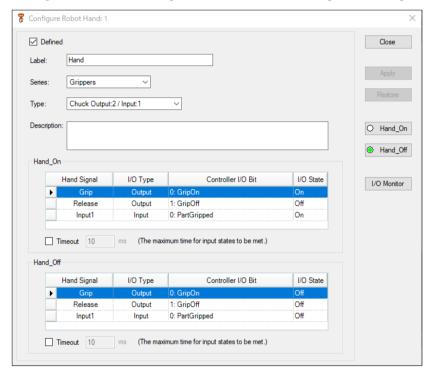
## 5.10.1.8 Teaching part detection for vision

When creating a project that requires vision part detection, you will be asked to perform the following:

- 1. Outline the part using a mouse to change the size and position of the model window.
- 2. Use the mouse to drag the model reference cross-hair. For a mobile camera to find the part to be picked up, drag the cross-hair to the desired pick position on the part. For an upward camera used to find the part on the end effector, drag the cross-hair so that it is near the center of the part.
- 3. Optionally, you can click on the search window and change its size. Try to keep the size as large as possible. The part should be able to be found anywhere in the search window.



- 4. Click the Teach button to teach the vision model of the part.
- 5. Click the Run button to check how the part is found by the vision system. You can change the model window and re-teach the model again if desired.


# 5.10.1.9 Hand Settings

In the created SPEL+ program, commands related to hand On/Off can also be written using hand control commands. By using the hand function, you can easily check the motion including the operation of the hand from the GUI.

This section describes how to register a hand and how to replace it with a hand control command. For details on hand settings, refer to the "Hand Function Manual".

## Example of hand registration

Hand registration is performed on the [Configure Robot Hand: \*] screen. The figure below is an example when a chuck with 2 outputs and 1 input is set.



Follow the steps below to register a hand on the [Configure Robot Hand: \*] screen.

Depending on the hand, the I/O On/Off setting may be the opposite of the value described in the steps.

- 1. Select the EPSON RC+ menu- [Tools]-[Robot Manager]-[Hands] tab.
- 2. Select any hand number.
- 3. Click the <Configure...> button. The [Configure Robot Hand \*] screen is displayed.
- 4. Check the [Defined] check box.
- 5. Set [Series:] to "Grippers".

6. Refer to the table below and set the type according to the usage of the output bit GripOff and the input bit PartGripped.

|                    | With PartGripped        | Without PartGripped     |
|--------------------|-------------------------|-------------------------|
| With GripOff       | Chuck* Output2 / Input1 | Chuck* Output2 / Input0 |
| Without<br>GripOff | Chuck* Output1 / Input1 | Chuck* Output1 / Input0 |

<sup>\*</sup> For suction hands, use Suction instead of Chuck.

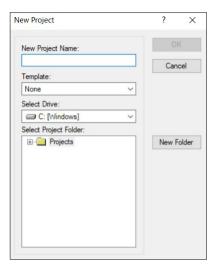
- 7. Select [Hand\_On]-[Grip] to set [Controller I/O Bit] to "GripOn". Set [I/O State] to "On".
- 8. Select [Hand\_Off]-[Grip] to set [Controller I/O Bit] to "GripOn". Set [I/O State] to "Off".

Perform the steps 9 and 10 only when using a hand with two outputs.

- 9. Select [Hand\_On]-[Release] to set [Controller I/O Bit] to "GripOff". Set [I/O State] to "Off".
- 10. Select [Hand\_Off]-[Release] to set [Controller I/O Bit] to "GripOff". Set [I/O State] to "On".

Perform the steps 11 and 12 only when using a hand with input.

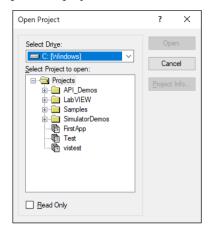
- 11. Select [Hand\_On]-[Input1] to set [Controller I/O Bit] to "PartGripped". Set [I/O State] to "On".
- 12. Select [Hand\_Off]-[Input1] to set [Controller I/O Bit] to "PartGripped". Set [I/O State] to "Off".
- 13. Click the <Apply> button to complete the hand registration.


#### How to replace with hand control command

The commands related to hand On/Off can be replaced with hand control commands as shown in the table below.

| Before replacement         | After replacement                   |
|----------------------------|-------------------------------------|
| Off GripOff<br>On GripOn   | Hand_On {Hand number}               |
| On GripOff<br>Off GripOn   | Hand_Off {Hand number}              |
| Wait Sw(PartGripped) = On  | Wait Hand_On({Hand number}) = True  |
| Wait Sw(PartGripped) = Off | Wait Hand_Off({Hand number}) = True |

# 5.10.2 [New] Command (Project Menu)


The New command is used to create a new EPSON RC+ 7.0 project. Projects can be on any disk drive on the system. They are stored in the \EpsonRC70\Projects folder on the selected drive. Subfolder can also be created.



| Item                  | Description                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| New Project Name      | Type in a new name for the project. The name can include alphanumeric characters along with underscores.                                                                                                                                                                                                                                                                         |  |
|                       | For a project name, two byte characters such as Japanese, Chinese characters are not allowed.                                                                                                                                                                                                                                                                                    |  |
| Template              | Select a project template. The new project will be a copy of the template project.                                                                                                                                                                                                                                                                                               |  |
| <b>Select Drive</b>   | Select the desired disk drive for the new project.                                                                                                                                                                                                                                                                                                                               |  |
| Select Project Folder | This is a list of folders and projects on the selected drive. If you click on a name in this list, it will be displayed in the New Project Name text box. You can then edit the name, or you can create a new project with the same name as one that has already been created. In the later case, you will be prompted to overwrite the old project if it is in the same folder. |  |
| New Folder            | Creates a new folder in the currently selected folder.                                                                                                                                                                                                                                                                                                                           |  |
| OK                    | Creates the new project.                                                                                                                                                                                                                                                                                                                                                         |  |
| Cancel                | Aborts creating a new project.                                                                                                                                                                                                                                                                                                                                                   |  |

## 5.10.3 [Open] Command (Project Menu)

Use this command to open an EPSON RC+ 7.0 project. When the project is opened, the previous project is closed. You will be prompted to save changes.

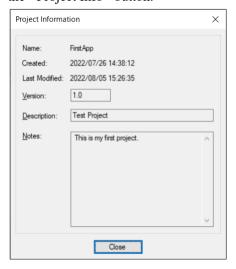


# **Item Description**

**Select Drive** Select the desired disk drive for the project you want to open.

Select Project to open Select a project name from the list box. To open a folder, double

click on the folder or click the + box located to the left of the folder.


**Read Only** If you set this checkbox and open a project, you cannot edit the program file, include file, point file, I/O label, and user error.

**Open** Opens the selected project.

Cancel Cancels the operation.

**Project Info**Displays general project properties for the selected project. To view project information, first select a project in the list, then click

the <Project Info> button.



NOTE

(B)

Project information for a project can be changed by selecting [Properties] from the [Project] menu after opening the project.

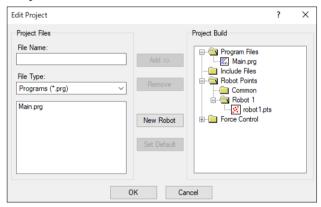
## 5.10.4 Recent Projects Submenu (Project Menu)

The Recent Projects submenu contains up to eight of the most recently used projects.

When you select a project in the menu, the current project is closed and the selected project is opened the same as if you used the [Open] command from the [Project] menu.



## 5.10.5 [Close] Command (Project Menu)


Use the [Close] command to close the current project. Several menu and toolbar commands will be disabled after the project is closed.

## 5.10.6 [Edit] Command (Project Menu)

The [Edit] command is used to define which program files, include files, and point files are to be used in the current project.

The [Project Files] contains a list of files in the current project folder. You can select which files to view from the [File Type] list box.

The [Project Build] contains a project make tree that includes program files, include files, and point files.



The files shown in the file list are in the current project disk directory. Before you can use a file in the project, you must put it into the project make tree using the <Add> button.

#### To create a new program

- 1. Type the name of program file in the [File Name] text box in the Program Files section. Add the PRG extension to the file name. For a file name, two byte characters such as Japanese, Chinese characters are not allowed.
- 2. Click the <Add> button. You will be prompted to create a new file. Answer <Yes> to create the file and put it in Program Files folder in the project make tree.

### To add an existing program file

- 1. Select the Program in the [File Type] list box.
- 2. Select the program file name you want to add to the project from the list box.
- 3. Click the <Add> button, or double click on the program file name in the file list box.

The file will be added to the Program Files folder in the project make tree.

#### To create a new include file

- Type the name of the include file in the [File Name] text box.
   Add the INC extension to the file name. The name of the include file can also be the same name as a program. For a file name, two byte characters such as Japanese, Chinese characters are not allowed.
- 2. Click the <Add> button. You will get a message asking if it is okay to create the new file. Click <Yes> to create the file and put it in the Include Files folder in the project make tree.

#### To add an existing include file to the project

- 1. Select Include in the <File Type> list box.
- 2. Select the include file name you want to add to the project from the list box.
- 3. Click the <Add> button, or double click on the include file name in the file list box. The file will be added to the list of include files of [Project Build] tree.

#### To add a new point file

- 1. Type the name of the point file you want to create into the [File Name] text box. Add the PTS extension. For a project name, two byte characters such as Japanese, Chinese characters are not allowed.
- 2. Select the robot folder you want to register from the Robot Points folder in the [Project Build] tree.
- 3. Click the <Add> button. You will be prompted to create a new file. Click <Yes> to create the file and put it in the selected robot of the Robot Points folder.

#### To add an existing point file to the project

- 1. Select Points from the [File Type] list box.
- 2. Select the robot folder you want to register from the Robot Points folder in the [Project Build] tree.
- 3. Select the point file name you want to add to the project from the list.
- 4. Click the <Add> button. The file will be put in the selected robot of the Robot Points folder.

#### To remove a program file, include file, or point file

- 1. Select the file you want to remove in the [Project Build] tree.
- 2. Click the <Remove> button to remove the file from the [Project Build]. The file is not deleted from the project folder, so you will still see the file in the file list.

#### To add a new robot

Click the <New Robot> button. A robot will be added to the Robot Points folder in the [Project Build] tree.

#### To set a default point file

- 1. Select a point file to set as the default from each robot of Robot Points folder in the [Project Build] tree.
- 2. Click the <Set as default> button. The file will be set as the default of the registered robot.



The common point file is a point file that is available for all robots on the controller. To use this point file, you need to load it from the SPEL<sup>+</sup> program to the robot using LoadPoints command.

The default point file is a point file that is automatically loaded to a robot with the project load. Each robot can have one point file as the default.

## 5.10.7 [Save] Command (Project Menu)

#### **Shortcuts**

Toolbar:



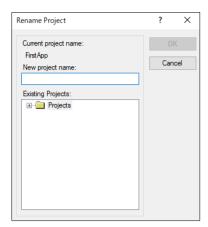
This command saves the active program file, include file, point file, I/O labels, or user errors. This menu selection will be dimmed if nothing needs to be saved.



It's a good idea to save files frequently while you are editing project files. Just click the <Save all files> button on the toolbar to save all of your files.

## 5.10.8 [Save As] Command (Project Menu)

Saves all files in the current project to a new drive and/or project name. The current project will be preserved.


If [Setup]-[Preferences]-[Workspace]-[Auto file save] is enabled, the project will be saved simultaneously when you select [Save As] command. If you want to change the project, copy the current project by using [Copy] command in advance.



| Item                     | Description                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| New Project Name         | Type in a new name for the project. The name can include alphanumeric characters along with underscores but cannot include two byte characters such as Japanese, Chinese characters. The maximum number of characters is 24. You can use the same name as the current project if you select a drive and folder that is not the same as the current project folder and the folder drive. |  |
| <b>New Project Drive</b> | Drives for the new project location.                                                                                                                                                                                                                                                                                                                                                    |  |
| Select Project Folder    | Click on the desired folder for the project.                                                                                                                                                                                                                                                                                                                                            |  |
| New Folder               | Click this button to create a new folder under the Projects folder.                                                                                                                                                                                                                                                                                                                     |  |
| OK                       | Saves the project using the new name and location.                                                                                                                                                                                                                                                                                                                                      |  |
| Cancel                   | Cancels the operation.                                                                                                                                                                                                                                                                                                                                                                  |  |

# 5.10.9 [Rename] Command (Project Menu)

This command renames the current project. The project folder and all associated project files are also renamed.



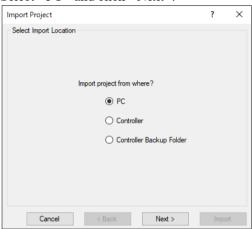
| Item                     | Description                                                                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New project name         | Type in a new name for the project. The name can include alphanumeric characters along with underscores but cannot include two byte characters such as Japanese, Chinese characters. |
| <b>Existing Projects</b> | This list box shows other projects on the selected drive. The new name you choose cannot be one of the names in this list.                                                           |
| ОК                       | Renames the project.                                                                                                                                                                 |
| Cancel                   | Cancels the operation.                                                                                                                                                               |

# 5.10.10 [Import] Command (Project Menu)

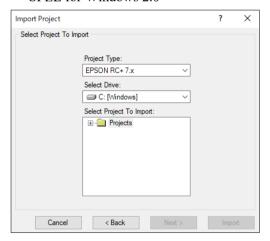
The Project Menu Import Command uses a wizard to import projects from a PC, the current controller, or a controller status folder.

When a project is imported, the files are copied to a new project folder, so the original project is not changed.




If the project to be imported is an EPSON RC+ 3.x / 4.x / 5.x / 6.x project or a SPEL for Windows 2.0 project, the files are converted to EPSON RC+ 7.0 format.

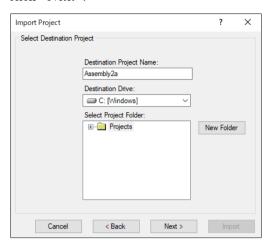
The sections below have instructions for importing a project from each type of source location.


#### Importing a PC project

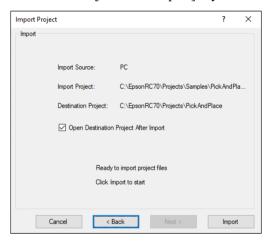
Follow these steps to import a project from a PC:

- 1. Select Import from the [Project] menu to open the [Import Project] dialog box.
- 2. Select <PC> and click <Next>.




- 3. Select the project type. You can select from the following:
  - EPSON RC+ 7.0
  - EPSON RC+ 3.x / 4.x / 5.x / 6.x
  - SPEL for Windows 2.0



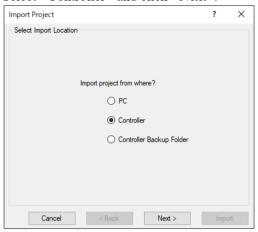



When project for EPSON RC+ 3.x / 4.x / 5.x / 6.x or SPEL for Windows 2.0 is imported, the project is converted to project for EPSON RC+ 7.0 by automatic processing. For details, refer to *Appendix A: Automatic Processing of Project Import*.

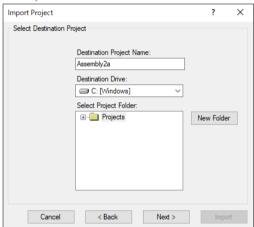
- 4. Select the drive. After you select the project type and drive, the project list will be updated to show the projects available for import. Select the project to import in the list and click <Next>.
- 5. The new project name is set to the name of the imported project. You can modify the destination project name if desired. Select the destination drive and project folder, then click <Next>.



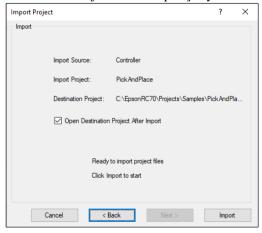
6. Verify the import source, import project, and destination project. Check [Open Destination Project After Import] if you want the project to open after import.




7. Click the <Import> button. If the destination project already exists, you will be asked if you want to overwrite it.


#### Importing a Controller project

Follow these steps to import a project from a controller:


- 1. Select Import from the [Project] menu to open the [Import Project] dialog box.
- 2. Select <Controller> and click <Next>.



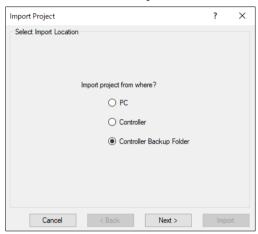
3. The new project name is set to the name of the current project in the controller. You can modify the new project name if desired. Select the destination drive and project folder, then click <Next>.



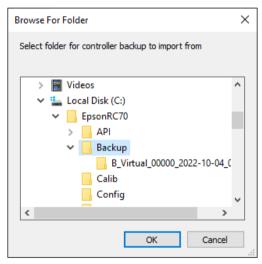
4. Verify the import source, import project, and destination project. Check [Open Destination Project After Import] if you want the project to open after import.



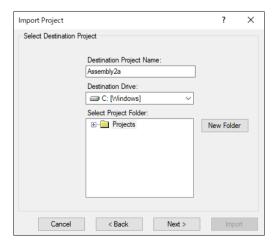
- 5. Click the <Import> button. If the destination project already exists, you will be asked if you want to overwrite it.
- 6. The project in the destination project will be built.


#### Importing a Controller Status project

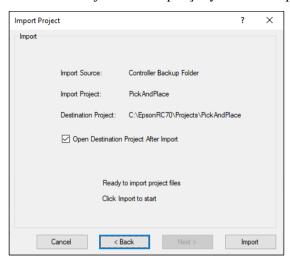
NOTE


The projects using Vision Guide cannot be imported from the Controller Status Folder.

Follow these steps to import a project from a Controller Status Folder:


- 1. Select [Import] from the [Project] menu to open the [Import Project] dialog box.
- 2. Select < Controller Backup Folder> and click [Next].




3. Select a controller status folder and click <OK>.



4. The new project name is set to the project found in the controller status folder. You can modify the new project name if desired. Select the destination drive and folder, then click <Next>.



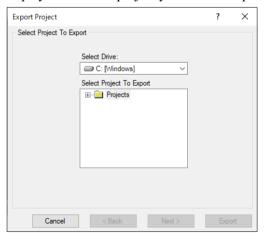
5. Verify the import source, import project, and destination project. Check [Open Destination Project After Import] if you want the project to open after import.



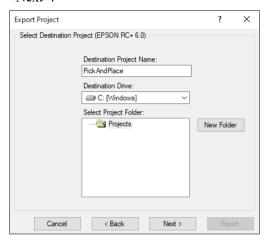
6. Click the <Import> button. If the destination project already exists, you will be asked if you want to overwrite it.

## 5.10.11 [Export] Command (Project Menu)

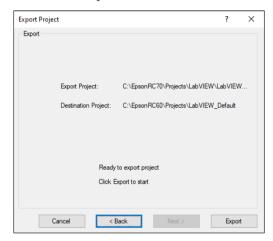
The Project Menu Export Command uses a wizard to export projects to EPSON RC+ 6.0 projects.


When a project is exported, the files are copied to a new project folder, so the original project is not changed.




SPEL+ commands and syntax added to the EPSON RC+ 7.0 are not supported by EPSON RC+ 6.0. It is recommended to change the compiler version according to the version of your controller and check the compatibility before exporting projects. For details, refer to [Project]-[Properties]-[Compiler] Page in 5.10.15 [Properties] Command (Project Menu).

Follow these steps to export a project:

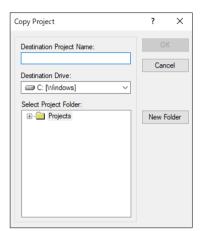

- 1. Select EPSON RC+ 7.0 menu-[Project]-[Export] to display the [Export Project] dialog.
- 2. Select a drive. A project list will be refreshed and exportable projects will be displayed. Select a project you want to export from the list and click <Next> button.



3. Name of a new project is set to the name of the exported project. The name of the new project can be changed. Select the destination drive and project folder. Then, click <Next>.



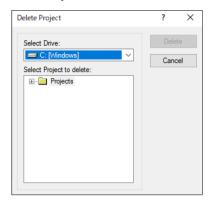
4. Confirm the export source and destination.




5. Click <Export>. If the destination already exists, you will be asked whether or not to overwrite the project.

# 5.10.12 [Copy] Command (Project Menu)

The [Copy] command copies all files in the current project to a specified drive, folder, and project name. You can use the current project name for the destination name if you select a new drive or folder. You can also specify a new name for the destination project.


You should use the [Copy] command to make backup copies of your project on a regular basis.



| Item                        | Description                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Destination<br>Project Name | Type in a name for the new copy of the project.  The name can include alphanumeric characters along with underscores but cannot include two byte characters such as Japanese, Chinese characters. The maximum number of characters is 24. You can use the same name as the current project if you select a drive and folder that is not the same as the current project's drive and folder. |  |
| <b>Destination Drive</b>    | Drives for the project copy.                                                                                                                                                                                                                                                                                                                                                                |  |
| OK                          | Performs the copy process.                                                                                                                                                                                                                                                                                                                                                                  |  |
| Cancel                      | Cancels the operation.                                                                                                                                                                                                                                                                                                                                                                      |  |

## 5.10.13 [Delete] Command (Project Menu)

This command deletes an entire project from a PC disk. All files in the project folder will be destroyed.



**Item Description** 

Select Drive Select drive for the project to delete.

Select Project to delete Select a project to delete from the list.

**Delete** Delete the project. You will be prompted to confirm the

operation.

Cancel the operation.

## 5.10.14 [Build] Command (Project Menu)

#### **Shortcuts**

Toolbar: Keys: Ctrl + B

This command builds the current project so that it can be executed. The Build command does the minimum amount of work required to bring the project up to date in the robot controller. For example, if a change was made to one program file in the project, then Build will compile the changed file, link it with the remaining object files (if they exist), and send the new files to the controller.

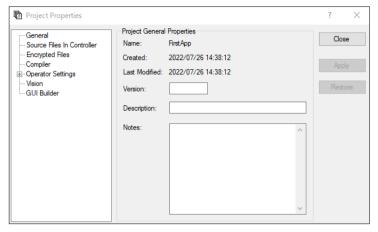
When sending the required files to the compact vision, make sure to rebuild not build.

During the build process, the status window displays each step of the build. If there are any errors, they will be displayed on the status window.

## 5.10.15 [Rebuild] Command (Project Menu)

#### **Shortcuts**

Keys: Ctrl + Shift + B


Rebuilds the entire current projects. All program files are re-compiled, linked, and sent to the controller. All point files in the project are sent to the controller.

If using the camera of the compact vision, rebuild to send the required files to the compact vision.

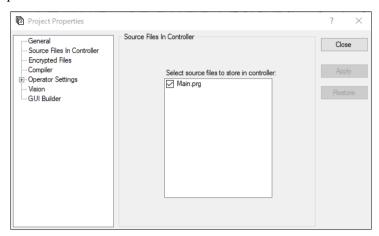
# 5.10.16 [Properties] Command (Project Menu)

### [Project]-[Properties]-[General] Page

Use this page to view and edit general properties for the current project. All project property settings are stored in the project file, which is also stored in the controller during project build.



| Item                 | Description                                                     |  |
|----------------------|-----------------------------------------------------------------|--|
| Name                 | The name of the current project.                                |  |
| Created              | Date and time when the project was created.                     |  |
| <b>Last Modified</b> | Date and time when the project was last modified.               |  |
| Version              | User version number of the project. You can type any text here. |  |
| Description          | A description of the project. You can type any text here.       |  |
| Notes                | Any project notes can be entered into this section.             |  |
| Apply                | Set current values after changes have been made.                |  |
| Restore              | Revert back to previous values.                                 |  |
| Close                | Close the Project Properties dialog.                            |  |




When the [Open Project] dialog is used, clicking the <Project Info> button will open a dialog that contains the general project properties entered on this page.

## [Project]-[Properties]-[Source Files In Controller] Page

This page allows you to select which source files will be stored in the controller during project build.

After changes are applied, the next project build will clear the project in the controller and perform a rebuild.



### **Item Description**

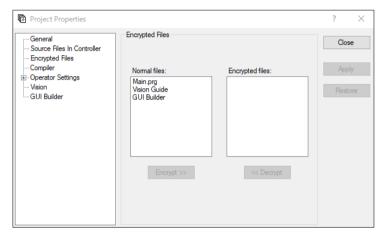
**Select source files to store**This is a list of the source files in the project. Select which **in controller** source files you want to have stored in the controller.

**Apply** Set current values after changes have been made.

Restore Reverts back to the previous values.

Close Closes the [Project Properties] dialog.

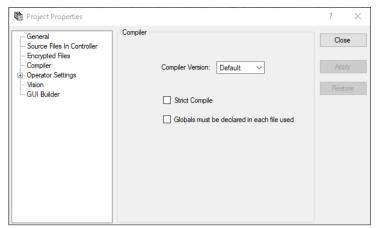
## [Project]-[Properties]-[Encrypted Files] Page


This page allows you to encrypt files in the current project.

For details on using encrypted files, refer to section 7.8 Using Encrypt Files.

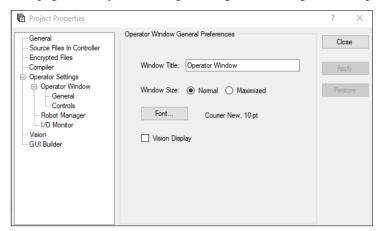


# ■ USE EXTREME CAUTION!


Keep a record of the password(s) used for encryption in a safe place. Once a file is encrypted, it can only be opened with the password you enter. If you forget the password, the file contents CANNOT BE RECOVERED

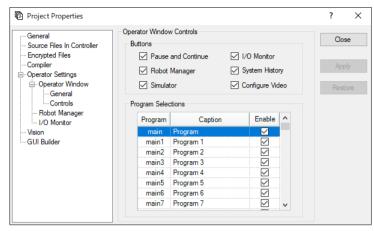


| Item                                                                                                                                                                                                    | Description                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal files                                                                                                                                                                                            | This is a list of the source files in the project that are not encrypted. Select which source files you want to encrypt.                                                    |
| Encrypted files                                                                                                                                                                                         | This is a list of the source files in the project that are encrypted. Select which source files you want to decrypt.                                                        |
| Encrypt >>                                                                                                                                                                                              | Encrypts the files selected in the [Normal files] list. When this button is clicked, you will be prompted for a password that will be used to access these encrypted files. |
| < <decrypt< td=""><td>Decrypts the files selected in the [Encrypted files] list. When this button is clicked, you will be prompted for the password that was used to encrypt the files.</td></decrypt<> | Decrypts the files selected in the [Encrypted files] list. When this button is clicked, you will be prompted for the password that was used to encrypt the files.           |
| Apply                                                                                                                                                                                                   | Set current values after changes have been made.                                                                                                                            |
| Restore                                                                                                                                                                                                 | Reverts back to the previous values.                                                                                                                                        |
| Close                                                                                                                                                                                                   | Closes the [Project Properties] dialog box.                                                                                                                                 |


#### [Project]-[Properties]-[Compiler] Page

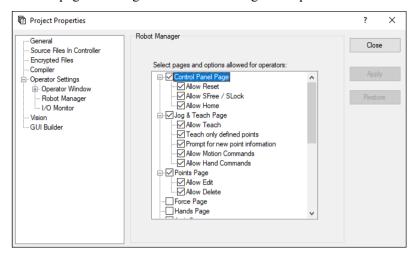
This page allows you to configure the compiler settings.




#### Description Item **Compiler Version** [Default] is the normal setting. When the projects cannot be built because new SPEL+ language keywords have been added that conflict with your variable names, you can select a previous version to build the projects. Specify the controller version that compiles the project. **Strict Compile** Checks the Boolean type strictly. If the program contains following descriptions, an error will occur. Boolean variables are assigned to other numerical types Specifies a wait time to Wait Compares Boolean types Globals must be Checks the Global variables (including Global Preserve variables) declared in each for each file. file used When this item is checked, you must declare Global variables in each file in which they are used, otherwise an error will occur at Enabling this item reduces a build time of a project which uses B many Global variables. **Apply** Sets current values after changes have been made. Restore Reverts back to the previous values. Close Closes the [Project Properties] dialog box.

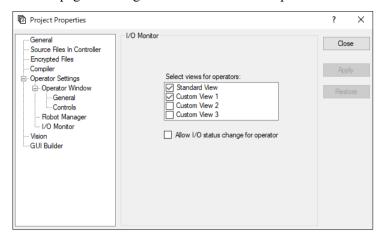
[Project]-[Properties]-[Operator Settings]-[Operator Window]-[General] Page This page allows you to configure the general settings for the Operator Window.




| Item           | Description                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Window Title   | Type in the title that you want to appear at the top of the operator window.                                                                                                                  |
| Window Size    | Choose Normal or Maximized.                                                                                                                                                                   |
| Font           | Click on the <font> button to open the fonts dialog. Choose the font you desire for the operator window. The current font name and size is displayed next to the <font> button.</font></font> |
| Vision Display | If this checkbox is set, the Vision Guide image will be displayed in the operator window.                                                                                                     |
| Restore        | Reverts back to the previous values.                                                                                                                                                          |
| Close          | Closes the [Project Properties] dialog box.                                                                                                                                                   |

[Project]-[Properties]-[Operator Settings]-[Operator Window]-[Controls] Page This page allows you to configure the controls for the Operator Window.




| Item               | Description                                                                                                                                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pause and Continue | Check this box if you want the <pause> and <continue> buttons to be displayed. This will allow the operator to pause and continue from the operator window.</continue></pause>                                                                         |
| I/O Monitor        | Check this box if you want the <i monitor="" o=""> button to be displayed. This will allow the operator to view input and output status.</i>                                                                                                           |
| Robot Manager      | Check this box if you want the <robot manager=""> button to be displayed. This will allow the operator to open the Robot Manager from the operator window.</robot>                                                                                     |
| System History     | If this checkbox is set, the <system history=""> button will appear. You can check the system history.</system>                                                                                                                                        |
| Simulator          | Check this box if you want the <simulator> button to be displayed. This will allow the operator to open the Robot Manager from the operator window.</simulator>                                                                                        |
| Configure Video    | Check [Project Properties]-[Operator Settings]-[General]-[Vision Display].                                                                                                                                                                             |
|                    | Check this box if you want the <configure> button to be displayed.</configure>                                                                                                                                                                         |
| Program Selections | Each project can have up to 64 programs that can be started from the Operator Window. The programs are named main, main1 main2, main63. Each program has an associated startup function using the same name as the program (main, main1, main2main63). |
|                    | In the program selections grid, you can define a friendly name for each of the 64 programs. You can also define which selections will be displayed in the Operator Window program list by checking the Enable checkbox.                                |
| Apply              | Set current values after changes have been made.                                                                                                                                                                                                       |
| Restore            | Reverts back to the previous values.                                                                                                                                                                                                                   |
| Close              | Closes the [Project Properties] dialog.                                                                                                                                                                                                                |

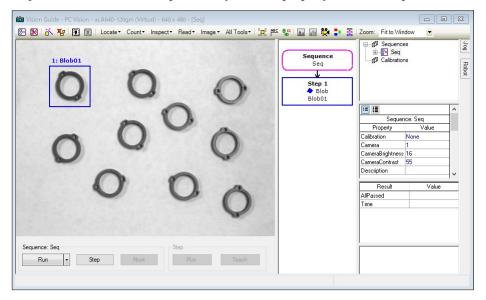
[Project]-[Properties]-[Operator Settings]-[Robot Manager] Page Use this page to configure the Robot Manager for operators.



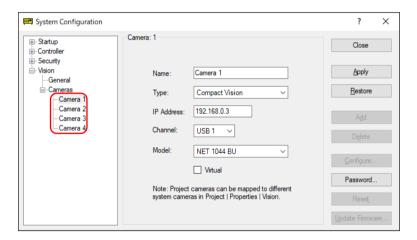
| Item Description                       |                                                                                                                                                                         |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page and options enabled for operators | Check the pages that you want the operator to have access to when the Robot Manager is displayed from the operator window. In some pages, there are additional options. |
| Allow Reset                            | Allows the operator to reset the Emergency Stop status from the [Control Panel] page.                                                                                   |
| Allow SFree / SLock                    | Allows the operator to free or lock joints from the [Control Panel] page.                                                                                               |
| Allow Home                             | Allows the operator to home the robot from the [Control Panel] page.                                                                                                    |
| Allow Teach                            | Allows the operator to teach points from the [Jog & Teach] page.                                                                                                        |
| Teach only defined points              | Only defined points are shown in the point list on the [Jog & Teach] page.                                                                                              |
| Prompt for new point information       | When the operator teaches a new point, a dialog will be displayed for entering the point label and description.                                                         |
| Allow Motion<br>Commands               | Allows the operator to execute motion commands from the [Jog & Teach] page.                                                                                             |
| Allow Hand<br>Operation                | Allows the operator to execute hand commands from the [Jog & Teach] page.                                                                                               |
| Allow Edit                             | Allows the operator to edit point data on the [Points] page.                                                                                                            |
| <b>Allow Delete</b>                    | Allows the operator to delete points on the [Points] page.                                                                                                              |
| Apply                                  | Set current values after changes have been made.                                                                                                                        |
| Restore                                | Reverts back to the previous values.                                                                                                                                    |
| Close                                  | Closes the [Project Properties] dialog box.                                                                                                                             |

# [Project]-[Properties]-[Operator Settings]-[I/O Monitor] Page Use this page to configure the I/O Monitor for operators.




| Item                                       | Description                                                                                            |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Select views for operators                 | Configures the I/O views that operators use when opening the [I/O Monitor] from the [Operator Window]. |
|                                            | You can configure the custom views.                                                                    |
| Allow I/O status<br>change for<br>operator | Check this box if you want to allow operators to turn on or off<br>the inputs and outputs.             |
| Apply                                      | Set current values after changes have been made.                                                       |
| Restore                                    | Reverts back to the previous values.                                                                   |
| Close                                      | Closes the [Project Properties] dialog box.                                                            |

## [Project]-[Properties]-[Vision]


#### **Project Camera Mapping**

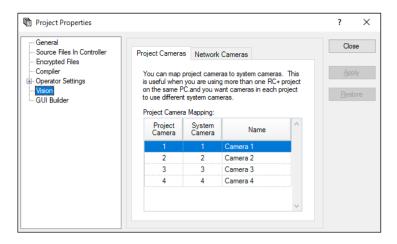
You can map project cameras to system cameras.

Project camera is a camera specified by Camera property of vision sequence or calibration.



System camera is a camera configured on System Configuration of RC+.




This function is useful when you use multiple projects on the same PC and refer to the different system camera numbers from the each project camera.

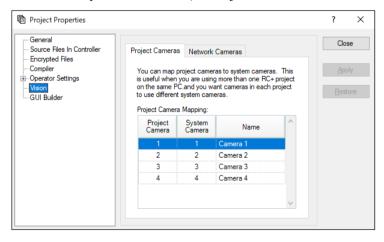
By default, project cameras are mapped one to one with system cameras.

When a project is opened, the cameras used in the project are automatically mapped to system cameras. If one or more cameras cannot be mapped, the [Resolve Camera Configuration] dialog box is displayed.

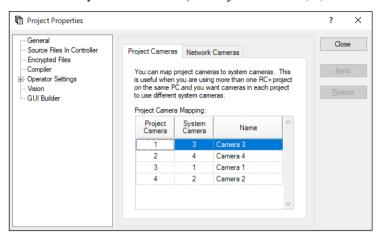
For more details, refer to the following manual.

Vision Guide Hardware & Setup System Cameras and Project Cameras




| Item Description |                                                         |  |
|------------------|---------------------------------------------------------|--|
| Project Camera   | The project camera number to be mapped.                 |  |
| System Camera    | Select the system camera to use for the project camera. |  |
| Apply            | Set current values after changes have been made.        |  |
| Restore          | Reverts back to the previous values.                    |  |
| Close            | Closes the [Project Properties] dialog box.             |  |

### Mapping of a project camera:


For example, let's assume four system cameras are set in RC+ that has two projects; A and B as shown in the table below.

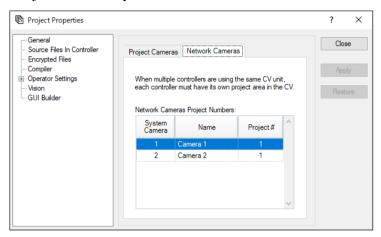
| System camera | Model        |
|---------------|--------------|
| 1             | NS1044BU     |
| 2             | NS4133CU     |
| 3             | acA1600-60gm |
| 4             | acA2500-14gm |

To map a camera for the project A, select [Project]-[Properties]-[Vision] with opening the project A. When setting NS1044BU as a camera 1 that is used in this project, map Project Camera 1 to System Camera 1. (set Project Camera 2, 3, and 4 in the same step.)



To map a camera for the project B, select [Project]-[Properties]-[Vision] with opening the project B. When setting acA1600-60gm as camera 1 that is used in this project, map Project Camera 1 to System Camera 3. (set Project Camera 2, 3, and 4 in the same step.)




## **Network Camera Projects**

The Compact Vision systems can manage two vision projects simultaneously.

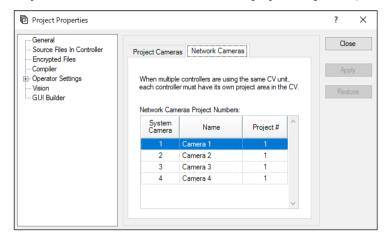
Each vision project can be used by one Controller, so two Controllers can use the same Compact Vision unit.

In this page, you can configure the vision project number of the Compact Vision cameras used for this project.

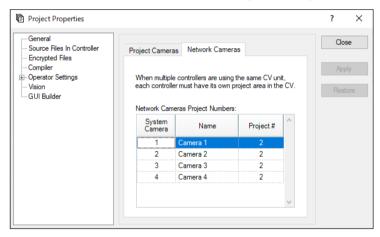
"Project 1" is used by default.



| Item                                             | em Description                                          |  |
|--------------------------------------------------|---------------------------------------------------------|--|
| System Camera                                    | Select the system camera to use for the project camera. |  |
| Project #<br>(Network Camera<br>Project Numbers) | Select the vision project number.                       |  |
| Apply                                            | Set current values after changes have been made.        |  |
| Restore                                          | Reverts back to the previous values.                    |  |
| Close                                            | Closes the [Project Properties] dialog box.             |  |


#### Setting of a network camera project:

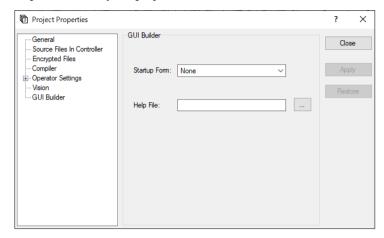
For example, let's assume there are two controllers, two projects, and a CV. Four cameras are connected to the CV and they are set as four system cameras to RC+ as shown in the table below.


| System camera | Model        |
|---------------|--------------|
| 1             | NS1044BU     |
| 2             | NS4133CU     |
| 3             | acA1600-60gm |
| 4             | acA2500-14gm |

The two projects controlled by the compact vision must use different cameras. In here, the project A uses the system camera 1 and 2, and the project B uses the system camera 3 and 4.

To set network camera project for the project A, select [Project]-[Properties]-[Vision] with opening the project A. Set Project # for the system cameras 1 and 2 that is used in this project to 1 as shown below. (Project # for the system cameras 3 and 4 is set to 1, however, Project # for a camera that is not used in a project is optional.)




To set network camera project for the project B, select [Project]-[Properties]-[Vision] with opening the project B. Set Project # for the system cameras 3 and 4 that is used in this project to 2 as shown below. (Project # for the system cameras 1 and 2 is set to 2, however, Project # for a camera that is not used in a project is optional.)



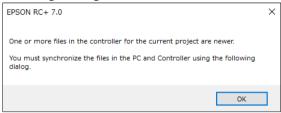
Now, the two projects; A and B can be used by the CV simultaneously.

# [Project]-[Properties]-[GUI Builder]

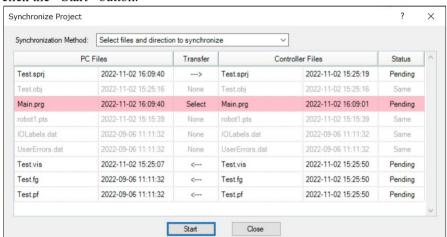
On this page, you can specify the startup form for GUI Builder and also set the value of the help file used in your project.



| Item         | Description                                                                                                                             |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Startup Form | Select the startup form for the current project. If no forms have been created in GUI Builder, then there will be no forms in the list. |  |
| Help File    | Set help file that will be used by forms in GUI Builder.                                                                                |  |
| Apply        | Set current values after changes have been made.                                                                                        |  |
| Restore      | Reverts back to the previous values.                                                                                                    |  |
| Close        | Closes the [Project Properties] dialog box.                                                                                             |  |


## 5.10.17 [Synchronize Project] Command (Project Menu)

If following conditions are fulfilled when PC and Controller are connected, [Synchronize Project] can be selected.

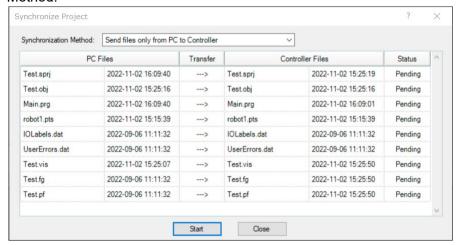

- When the project name on the PC and on the Controller was the same.
- When the file in the Controller has been changed after the last project build on the PC.

#### How to set the synchronization:

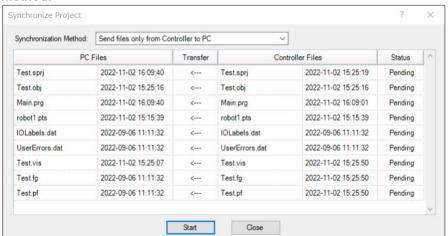
(1) Select EPSON RC+ 7.0 Menu-[Project]-[Synchronize Project]. You will see the following message box:



- (2) Click the <OK> button.
- (3) You will see the following message box. Select the method of synchronization and click the <Start> button.




(4) The project on the PC and on the Controller synchronized.


| Item             | Description                                                           |  |
|------------------|-----------------------------------------------------------------------|--|
| Synchronization  | Select the method of synchronization.                                 |  |
| Method           | When the [Send files only from PC to Controller] is selected, the     |  |
|                  | file on the PC is copied to the Controller.                           |  |
|                  | When the [Send files only from Controller to PC] is selected, the     |  |
|                  | file on the Controller is copied to the PC.                           |  |
| PC Files         | List of files in the project on the PC.                               |  |
| Transfer         | Indicates the direction of file transfer.                             |  |
|                  | > : PC to Controller.                                                 |  |
|                  | < : Controller to PC.                                                 |  |
|                  | None: It cannot be synchronized because the files are the same.       |  |
|                  | Select: It is indicated in pink. The direction of file transfer needs |  |
|                  | to be selected by user because the file was changed after             |  |
|                  | the last project build on PC.                                         |  |
| Controller Files | List of files in the project on the Controller.                       |  |

| Item   | Description                                                          |
|--------|----------------------------------------------------------------------|
| Status | Indicates the status of the file.                                    |
|        | Pending: Waits for method to be selected.                            |
|        | Same : The files are the same.                                       |
| Start  | Starts the synchronization.                                          |
| Close  | Closes [Synchronize Project] dialog.                                 |
|        | When <close> button clicked without project synchronization,</close> |
|        | error 10015 "Project could not be synchronized." is displayed.       |
|        | The synchronization will not be done and connection to the           |
|        | Controller will disconnected.                                        |

# When "Send files only from PC to Controller" is selected for Synchronization Method:



# When "Send files only from Controller to PC" is selected for Synchronization Method:



# 5.11 [Run] Menu

The EPSON RC+ 7.0 [Run] menu includes commands for running and debugging programs.

## 5.11.1 [Run Window] Command (Run Menu)

#### **Shortcuts**

Toolbar:

\*\*\*

Key: F5

Opens the [Run] window to run a program.

Before opening the [Run] window, all files will be saved automatically if there are any unsaved files and then the project will be built. If there are any errors during build, the Run window will not be opened.

(If the *Auto File Save* preference is off in [Setup]-[Preferences]-[Workspace], you will be prompted to save all files if there are any unsaved files.)

After the [Run] window opens, you must click the <Start> button to initialize program execution.

For more information, see 7.5.1 The Run Window.

## 5.11.2 [Operator Window] Command (Run Menu)

#### **Shortcuts**

Keys:

Shift + F5

Opens the [Operator] window.

Before opening the [Operator] window, all files will be saved automatically if there are any unsaved files and then the project will be built. If there are any errors during build, the [Operator] window will not be opened.

(If the *Auto File Save* preference is off in [Setup]-[Preferences]-[Workspace], you will be prompted to save all files if there are any unsaved files.)

If the project is ready to run (last build was successful), then the [Operator] window will be opened.

For more information, see 7.6 Operator Window.

## 5.11.3 [Step Into] Command (Run Menu)

## **Shortcuts**

Toolbar:

\*≣

Key: F11

Execute the current source line. If the current line is a function, the next step will be the first line in the function.

## 5.11.4 [Step Over] Command (Run Menu)

## **Shortcuts**

Toolbar:

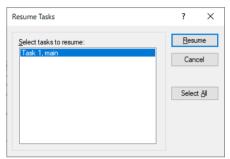
Key: F10

Execute the current source line. If the current line is a function, the entire function will be executed.

## 5.11.5 [Walk] Command (Run Menu)

#### **Shortcuts**

Key: F12


Execute lines until after the next motion command or output command, depending on the *Walk stops for output commands* preference on the [Setup]-[System Configuration]-[Controller]-[General] page.

## 5.11.6 [Resume] Command (Run Menu)

#### **Shortcuts**

Toolbar: ↓ Key: F7

Opens the [Resume Tasks] dialog box. Use this command to resume one or more halted tasks. This command is available only when one or more tasks are in halt mode.



ItemDescriptionSelect tasks to resumeA list of all currently halted tasks. Click on one or more tasks to resume.ResumeClick to resume.Select AllClick to select all of the tasks in the list.CancelCancel the operation and close the dialog.

# 5.11.7 [Stop] Command (Run Menu)

#### **Shortcuts**

Toolbar:



Stops all tasks. This command is disabled when no tasks are running.

# 5.11.8 [Toggle Breakpoint] Command (Run Menu)

#### **Shortcuts**

Toolbar:



Key: F9

Sets the selected line as a breakpoint or returns it to normal. When a line is a breakpoint, a breakpoint icon is displayed in the program window left margin.

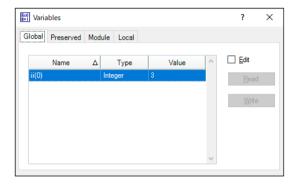
You can set breakpoints while tasks are running.

If a line cannot be a breakpoint (such as a blank line), then the breakpoint icon will not appear for that line.

## 5.11.9 [Clear All Breakpoints] Command (Run Menu)

#### **Shortcuts**

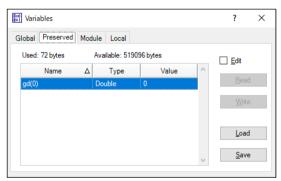
Keys: Ctrl + Shift + F9


Clears all breakpoints.

## 5.11.10 [Display Variables] Command (Run Menu)

#### **Shortcuts**

Key: F4


Displays a dialog box that shows the values for all variables in robot controller memory.



## To change a variable value

- 1. Check the [Edit] checkbox.
- 2. Type the new value in the [Value] column. As you type in new values, the text color changes to red, indicating that the value is new and as not been written.
- 3. Click the <Write> button to save the changes. Click <Read> or uncheck [Edit] to cancel changes and restore the previous values.

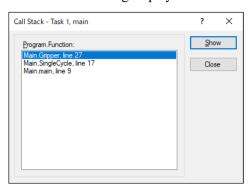
When an array is displayed, the first element is shown. You can change which element to view by typing in the desired array subscript and then clicking the <Read> button.



The Preserved page displays the Global Preserve variables. The numbers of used and available bytes for preserved variables are also displayed.

You can save the values of Global Preserve variables in the controller to a file on the PC by clicking the <Save> button. The default file name is "GlobalPreserves.dat".

A "GlobalPreserves.dat" file is also saved by using Backup Controller from the Tools Menu.


You can load the global preserve variables that are stored in the file on the PC by clicking <Load> button.

For module variables, you must select the desired program.

Local variables are not displayed unless one or more tasks have reached a breakpoint or have been halted from the Task Manager. You can view local variables for each function in the call stack for each halted task.

## 5.11.11 [Call Stack] Command (Run Menu)

The Call Stack dialog displays the function call stack for one task.



The Call Stack command is available when a program window is clicked which contains a function that is currently halted.

The most recent function is at the top of the list, and parent functions are listed afterwards in descending order. The last function is the task function.

Each row in the list shows a program, function, and line number.

You can view the code for any of the function calls in the list by selecting a function, then clicking <Show>. The program window for the function you selected is then displayed and the line of the function call is marked by a yellow arrow in the editor left margin.

# 5.12 [Tools] Menu

EPSON RC+ 7.0 has several GUI tools to support the system development. All tools can be accessed from the [Tools] menu. Many also have tool bar buttons and hot keys.

The Tools Menu includes the following selections:

- Robot Manager

Motor control, Jog & Teach, change robot parameters.

- Command Window

Execute SPEL<sup>+</sup> commands directly.

- I/O Monitor

Monitor and change I/O status.

- Task Manager

Monitor and control task status.

- Macros

Opens the Macro Window.

- I/O Label Editor

Edit I/O labels.

- User Error Editor

Edit user errors.

- Controller

Do maintenance on the controller, such as backup, restore, and export status.

## 5.12.1 [Robot Manager] Command (Tools Menu)

#### **Shortcuts**

Toolbar:



Key: F6

This command opens the [Robot Manager] window. This window contains several tabs that are used to control the robot motors and power, jog the robot and teach points, and view/edit several parameters for the robot.

You can configure how the Robot Manager window can be viewed in the development environment from the [Setup]-[Preferences]-[Robot Manager]-[General] page.

MDI window The Robot Manager is displayed as a child window along

with the other child windows inside the EPSON RC+ 7.0

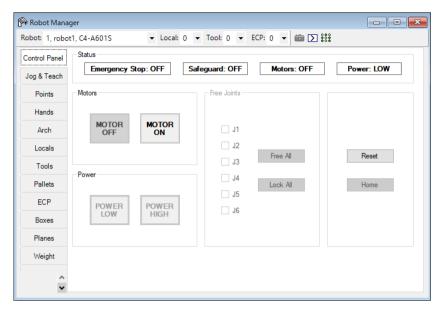
development environment main window.

**Dialog** The Robot Manager is displayed as a modal dialog which is

displayed in the foreground over the development

environment main window.




If the screen resolution is less than 1024 x 768, the Robot Manager will always be displayed in dialog mode so it can fit on the screen.

When you switch to the [Robot Manager] window, the robot's speed setting will be set to the speed (high, low) on the Jog & Teach window.

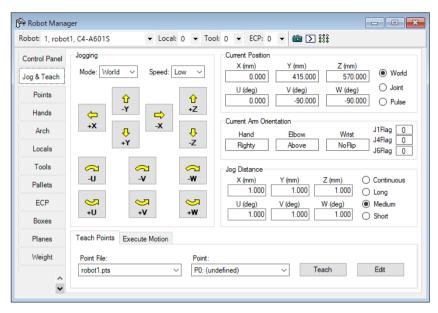
Motion command after the above operation will be executed at this speed. Set the speed again by the commands such as Motor, Speed, and Accel.

## [Tools]-[Robot Manager]-[Control Panel] Page

The Control Panel page contains buttons for basic robot operations, such as turning motors on/off and homing the robot. It also shows status for Emergency Stop, Safeguard, Motors, and Power.



## Status Indicators


| Indicator             | Description                                                |
|-----------------------|------------------------------------------------------------|
| <b>Emergency Stop</b> | Indicates if Emergency Stop has occurred.                  |
|                       | To clear the Emergency Stop status, click <reset>.</reset> |
| Safeguard             | Indicates whether the Safeguard input is on or off.        |
| Motors                | Indicates whether the robot motors are on or off.          |
| Power                 | Indicates whether the robot motor power is high or low.    |

| Controls            | Description                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------|
| Robot               | Select a robot.                                                                                                |
| MOTOR OFF           | Turns off all robot motors of the selected robot.                                                              |
| MOTOR ON            | Turns on all robot motors of the selected robot.                                                               |
| <b>POWER LOW</b>    | Puts the robot servo system in low power mode.                                                                 |
| <b>POWER HIGH</b>   | Puts the robot servo system in high power mode.                                                                |
| J1 to J4 checkboxes | You can free one or more joints using the checkboxes.<br>Not available for 6-axis robots (including N series). |
| Free All            | Click this button to free all joints from the servo control.                                                   |
| Lock All            | Click this button to lock all joints under the servo control.                                                  |
| Reset               | Resets the robot servo system and Emergency Stop condition.                                                    |
| Home                | Moves the robot to the position specified by the HomeSet command.                                              |

## [Tools]-[Robot Manager]-[Jog and Teach] Page

The [Jog & Teach] page is primarily used for jogging the robot to a desired position and teaching a point using the current coordinates and orientation.

You can jog the robot in World, Tool, Local, Joint, or ECP modes. You can also execute motion commands.



#### Jog Controls

The [Robot Manager]-[Jog & Teach] page contains several controls, described below.

#### [Robot]

Select a robot.

### [Jogging] Group

This group contains controls for setting jog mode, speed, and jog buttons.

#### Mode

This dropdown list contains the following choices jog mode.

| World | Jogs the robot along the X, Y, Z axes in the current local, tool, arm, and ECP. |
|-------|---------------------------------------------------------------------------------|
|       | For robots with 4 DOF (Cartesian coordinate or SCARA), you can also jog         |
|       | U (roll). For robots with 6 DOF (vertical 6-axis (including N series)), you     |
|       | can jog U (Z axis rotation of the base coordinate system), V (Y axis rotation   |
|       | of the base coordinate system), and W (X axis rotation of the base coordinate   |
|       | system). This is the default setting.                                           |

| Tool . | Jogs the robot in | the coordinate system d | lefined by the current tool. |
|--------|-------------------|-------------------------|------------------------------|
|        |                   |                         |                              |

**Local** Jogs the robot in the coordinate system defined by the current local.

Joint Jogs each joint of the robot. A separate set of jog buttons will appear when using joint mode when using non-Cartesian robots.

**ECP** Jogs the robot along the axes of the coordinate system defined by the current external control point. Coordinates are World coordinates.

#### Speed

The speed for jogging and motion commands can be changed by selecting Low or High. When you start RC+ and the [Jog & Teach] panel is displayed, the speed is set to Low. Jogging is always in low power mode. The speeds and accelerations associated with the jog speed settings are shown below.

#### SCARA robot RS series

| Speed | Jog Method                    | Speed                    | Accel                    | Decel                    |
|-------|-------------------------------|--------------------------|--------------------------|--------------------------|
|       | Continuous World/Tool/ECP XYZ | 10 mm/sec                | 100 mm/sec <sup>2</sup>  | 200 mm/sec <sup>2</sup>  |
|       | Continuous World/Tool/ECP UVW | 2 deg/sec                | 20 deg/ sec <sup>2</sup> | 40 deg/ sec <sup>2</sup> |
| Low   | Continuous Joint              | *                        | 10 deg/sec <sup>2</sup>  | 20 deg/sec <sup>2</sup>  |
|       | Step                          | 1/5 of default PTP speed | Default PTP acceleration | Default PTP deceleration |
|       | Continuous World/Tool/ECP XYZ | 50 mm/sec                | 100 mm/sec <sup>2</sup>  | 200 mm/sec <sup>2</sup>  |
| High  | Continuous World/Tool/ECP UVW | 10 deg/sec               | 20 deg/ sec <sup>2</sup> | 40 deg/ sec <sup>2</sup> |
|       | Continuous Joint              | *                        | 10 deg/sec <sup>2</sup>  | 20 deg/sec <sup>2</sup>  |
|       | Step                          | Default PTP speed        | Default PTP acceleration | Default PTP deceleration |

<sup>\*</sup> Speed of Continuous Joint depends on the robot model

#### Vertical 6-axis robot, N series

| Speed | Jog Method                    | Speed                    | Accel                    | Decel                    |
|-------|-------------------------------|--------------------------|--------------------------|--------------------------|
|       | Continuous World/Tool/ECP XYZ | 10 mm/sec                | 200 mm/sec <sup>2</sup>  | 400 mm/sec <sup>2</sup>  |
|       | Continuous World/Tool/ECP UVW | 2 deg/sec                | 20 deg/sec <sup>2</sup>  | 40 deg/sec <sup>2</sup>  |
| Low   | Continuous Joint              | *                        | 20 deg/sec <sup>2</sup>  | 40 deg/sec <sup>2</sup>  |
|       | Step                          | 1/5 of default PTP speed | Default PTP acceleration | Default PTP deceleration |
|       | Continuous World/Tool/ECP XYZ | *                        | 200 mm/sec <sup>2</sup>  | 400 mm/sec <sup>2</sup>  |
|       | Continuous World/Tool/ECP UVW | 15 deg/sec               | 20 deg/sec <sup>2</sup>  | 40 deg/sec <sup>2</sup>  |
| High  | Continuous Joint              | *                        | 20 deg/sec <sup>2</sup>  | 40 deg/sec <sup>2</sup>  |
|       | Step                          | Default PTP speed        | Default PTP acceleration | Default PTP deceleration |

<sup>\*</sup> Speed of Continuous Joint and High speed Continuous XYZ depends on the robot model.

## Jog Buttons

Use the jog buttons to jog the robot throughout the work envelope. They can be controlled only by the mouse.

The robot jogs one step at a time as you click the button in either "Long", "Medium", or "Short" mode of the Jog Distance. The robot jogs continuously by holding the button down.

To jog continuously without stepping, set the Jog Distance to Continuous. See *How to jog robot* for details

You can change the orientation of the jog buttons to align your PC monitor with the robot from [Setup]-[Preferences]-[Robot Manager]-[Jogging].

The jog buttons are displayed differently depending on the Jog mode. For World, Local, Tool, and ECP jogging, the X, Y, Z, U, V, W buttons appear (V and W are only for 6-axis robots (including N series)). For Joint jogging, the joint buttons labeled J1 - J6 appear.

The X, Y, and Z buttons jog the robot in the Cartesian axis.

The U buttons rotate the Tool coordinate system of the Z axis. (roll)

For 6-axis robots (including N series), the V buttons rotate the Tool coordinate system of the Y axis. (pitch).

The W buttons rotate the Tool coordinate system of the X axis. (yaw).

#### Local

This drop down list is used to select the current Local for jogging and teaching. Only Locals that have been defined are shown in the list. When you teach a point, the Local point attribute defaults to the current local number.

#### Tool

This drop down list is used to select the current Tool for jogging and teaching. Only Tools that have been defined are shown in the list.

#### Arm

This drop down list is used to select the current Arm for jogging and teaching. Only Arms that have been defined are shown in the list. Arms are not used with 6-axis robots (including N series).

#### **ECP**

This drop down list is used to select the current ECP for jogging. Only ECPs that have been defined are shown in the list. ECPs are only allowed if the External Control Point option has been activated.

#### **Current Position Group**

This group displays the current position of the robot. There are three ways to display position. World displays the current position and tool orientation in the selected local coordinate system, Joint displays the current joint values, and Pulse displays the current encoder pulse count for each joint.

#### **Current Arm Orientation Group**

This group displays the current arm orientation.

6-axis robot : Hand orientation, Elbow orientation, wrist orientation,

J1Flag value, J4Flag value, J6Flag value

N : Hand orientation, Elbow orientation, wrist orientation,

J4Flag value, J6Flag value

RS series : Hand orientation, J1Flag value, J2Flag value

Others : Hand orientation

#### Jog Distance Group

This group contains text boxes that are used to specify the distance that each axis moves when its corresponding jog button is pressed. There are radio buttons for selecting Continuous, Long, Medium, and Short jog distances. When "Continuous" is selected, the robot is jogged in continuous mode and the jog distance text boxes are grayed out. When "Long", "Medium", or "Short" are selected, the robot is jogged in step mode for the distance specified in the jog distance text box for the axis being jogged.

To change a jog distance, first select the distance to be changed, then type in the new value.

| Distance | Set Value *        | Default Value |
|----------|--------------------|---------------|
| Short    | 0 to 10            | 0.1           |
| Medium   | 0 to 30            | 1             |
| Long     | More than 0 to 180 | 10            |

<sup>\*</sup> If you enter a too large value, an error message appears when you attempt to jog.

When the jog mode is changed, the jog distance units change appropriately between millimeters (mm) and degrees (deg).



When the jog distance is longer than the default, jog distance is reset to default status by rebooting the controller.

#### [Teach Points] Tab

This tab shows the current point file name and point number.

Use the <Teach> button to register the current robot position.

Use the <Edit> button to select and view the current point in the Points tab.

See *How to teach points* for more information.

#### **Execute Motion Tab**

This tab executes motion commands.

Click <Execute> from this group to execute the motion.



When [USE LJM (Least Joint Motion)] checkbox is checked, posture of the manipulator is automatically adjusted to reduce the motion distance.

The default setting is unchecked.

The [Execute Motion] tab can be disabled from [Setup]-[Preferences]-[Robot Manager]-[Jog & Teach].

## [Hands] group

When hands are set, the [Hands] tab is displayed.



| Item                         |                                                                                                                                                                                                                                                                                 | Description                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Hand:                        | Select the hand to operate from pull-down menu. In the pull-down menu, the registered hands are displayed for the robot selected in [Robot:] on the upper left of the [Robot Manager] window.                                                                                   |                                                |
| <hand_on> button</hand_on>   | When this button is pressed, the Hand_On command is immediately executed for the hand selected above. Furthermore, when the return value of the Hand_On function is retrieved and the result is True, the LED display on the left of the button lights up.                      |                                                |
|                              | Display                                                                                                                                                                                                                                                                         | Meaning                                        |
|                              | Hand_On True True True                                                                                                                                                                                                                                                          |                                                |
|                              | O Hand_On                                                                                                                                                                                                                                                                       | The return value of Hand_On function is False  |
| <hand_off> button</hand_off> | When this button is pressed, the Hand_Off command is immediately executed for the hand selected above.  Furthermore, when the return value of the Hand_Off function is retrieved and the result is True, the LED display on the left of the button lights up.  Display  Meaning |                                                |
|                              |                                                                                                                                                                                                                                                                                 |                                                |
|                              | Hand_Off                                                                                                                                                                                                                                                                        | The return value of Hand_Off function is True  |
|                              | O Hand_Off                                                                                                                                                                                                                                                                      | The return value of Hand_Off function is False |

For details of hand settings, refer to "Hand Function Manual".

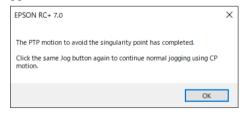
## How to jog

In the upper left hand corner of the [Jog & Teach] page, you will see a control group called Jogging that contains jog buttons. In the World, Local, Tool, and ECP jog modes, the robot is jogged in the Cartesian coordinate system (X, Y, Z). In the Joint jog mode, each robot joint can be jogged separately.

The jog speed is determined by the Speed setting. In step mode, each time you click a jog button, the robot moves along the appropriate axis by the amount specified in the [Jog Distance] control group. In continuous mode, when a jog button held down, the robot moves continuously using linear interpolated motion.



For robots other than the 6-axis robots, the jog motion in step mode is PTP (point to point) motion. It is difficult to predict exact jog motion trajectory. Therefore, be careful that the robot doesn't collide with peripheral equipment and that the robot arms don't collide with the robot itself during jogging.


For the 6-axis robots, the jog motion is CP (Continuous Path) motion. Note that when jogging near the singularity, if you try to pass through the singularity, a warning dialog below will appear.



Click the <OK> button and click the same Jog button again to jog using PTP motion and pass the singularity.

It is difficult to predict exact jog motion trajectory in the PTP motion. Therefore, be careful that the robot doesn't collide with peripheral equipment and that the robot arms don't collide with the robot itself during jogging. Also, if you attempt the other jogs or operations, it cancels the switching to PTP motion. So when jogging near the singularity again, the same warning dialog will appear.

If passing the singularity in the continuous jog motion, the following warning message will appear.



When jogging in continuous mode, if an out of range condition occurs, the robot motors will turn off and an error will be displayed. In this case you must execute a Reset and Motor On from the Control Panel page to continue the jog.

#### To jog

Select the jog mode: World, Tool, Local, Joint, or ECP.

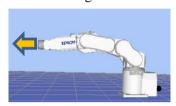
Select the jog speed: "Low" or "High".

Select "Continuous", "Long", "Medium", or "Short" jog distance. You can type in the desired jog distance when "Continuous" is not selected.

Click on one of the jog buttons with the left mouse button. If you hold the mouse button down, the robot will continue to jog.

When jogging is started, the jog button color changes from yellow to cyan. After jogging is completed, the jog button color returns to yellow.

If you click any jog button during a step jog, the robot will stop.


NOTE

You can change the orientation of the jog buttons for the robot by selecting [Preferences]-[Robot Manager]-[Jogging] from the [Setup] menu. This allows you to align the orientation of the jog buttons with the orientation of the robot motion.



As shown in the illustrations below, when the robot reaches to the limit of the motion range during Continuous Jog motion, the robot stops before the limit of the motion range Use Step Jog if you want to move the robot to the limit of the motion range. The robot motion stops when the following two conditions are satisfied.

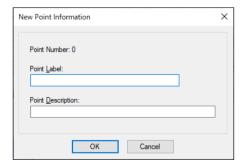
- When the robot's current position becomes "approx. 5 mm or less from the limit of the motion range".
- When the robot operates Continuous Jog motion in the direction reaching to the limit of motion range as shown in the illustrations below.





## Jogging in Teach Mode

You can jog and move the robot at slow speed with the safeguard open by using the Teach Pendant.


See the Robot Controller option: Teach Pendant TP1, TP2, or TP3 manual.

#### How to teach points

To move the robot to the target point, the point data indicating the robot position is necessary. Follow these steps to teach points from the [Robot Manager]:

- 1. Select the point file you are teaching points for from the [Point File] dropdown list box on the [Teach] page.
- 2. Select the point number you want to teach in the [Points] box.
- 3. Jog the robot to the desired position or free some or all axes to manually move the robot into position.
- 4. Click on the <Teach> button. This will save the robot's current position data. If the Prompt for New Point Data preference is active, you will be prompted for a point label and description.

Point labels can include up to 32 alphanumeric characters and underscores. Only alphabets can be used for the first letter. Characters can be upper case or lower case.



(As an alternative to clicking the <Teach> button, on the [Points] tab you can type in the coordinates of the point.)

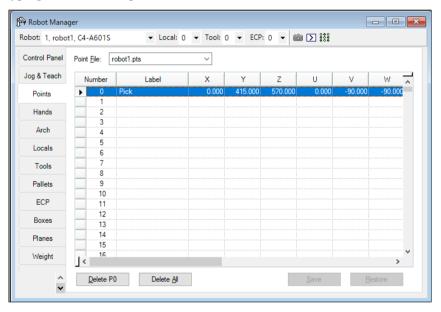
## Saving your work

## Robot Manager MDI Child

To save your work, use the [File] menu to select [Save]. You can also execute [Project]-[Save] or click the <Save all files> toolbar button.

When you want to restore the data without saving the point files, select [Restore] from the [File] menu.

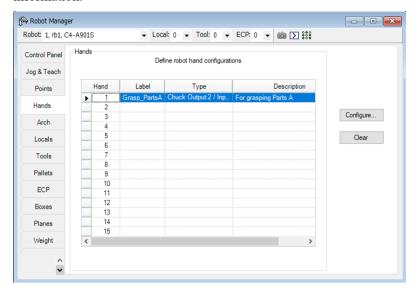
## Robot Manager Dialog


When you close the [Robot Manager], you will be prompted if you want to save your changes. Answer <Yes> to make your changes permanent or <No> to cancel saving of the changes.

### [Tools]-[Robot Manager]-[Points] Page

You can input/delete the point data. When a point file is selected, the robot controller loads the file into memory.

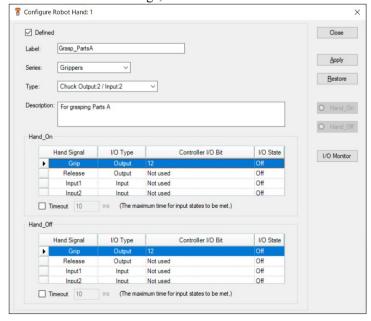
As points are taught on the [Robot Manager]-[Jog & Teach] page, the spreadsheet on the Points page is updated.


When the Robot Manager is used as an MDI child window, you can save the point data by typing Ctrl + S to the point file.



| Item               | Description                                                                         |
|--------------------|-------------------------------------------------------------------------------------|
| Robot              | Select a robot.                                                                     |
| <b>Point File</b>  | Select a point file.                                                                |
| <b>Delete Pxxx</b> | Deletes the selected point. You will be prompted to confirm the operation.          |
| <b>Delete All</b>  | Deletes all points in the file. You will be prompted to confirm the operation.      |
| Save               | Saves the current values.                                                           |
| Restore            | Reverts back to the previous values. You will be prompted to confirm the operation. |

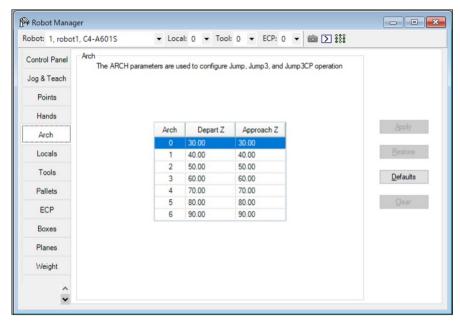
## [Tools]-[Robot Manager]-[Hands] Page


You can check a list of registered hands, register new hands, and change registration information.



| Item                               | Description                                                                                                                                                                                  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hand                               | The number of hand. Up to 15 hands can be set for each robot 1 to 4.                                                                                                                         |
| Label                              | Indicates the label name given to the hand number.                                                                                                                                           |
| Туре                               | Indicates the type of hand.                                                                                                                                                                  |
| Description                        | A description of the hand.                                                                                                                                                                   |
| <configure><br/>button</configure> | When you select a hand and press this button, the hand setting screen will be displayed. On the screen, you can register a new hand and change or delete the registration information.       |
| <clear> button</clear>             | When you select a registered hand and press this button, the hand deletion confirmation dialog will be displayed. If you select "Yes" here, the registered hand information will be deleted. |

Select one hand from hands 1 to 15 and press the <Configure...> button to display the [Configure Robot Hand:] screen.


For details of hand settings, refer to "Hand Function Manual".



## [Tools]-[Robot Manager]-[Arch] Page

This page allows you to configure the depart Z and approach Z settings in the robot's Arch table. Arch is used for the Jump, Jump3, and Jump3CP motion commands. There are seven different setting pairs in the Arch table.

For details on using Arch, see the SPEL<sup>+</sup> Language Reference: Arch Statement.



## To change Arch settings

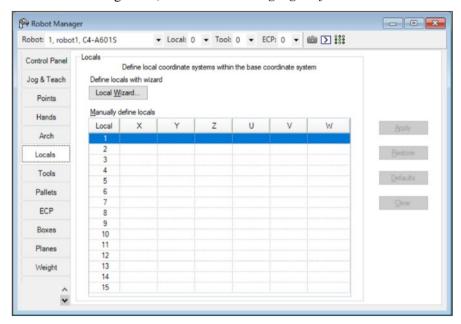
- 1. Put the cursor in the Depart Z or Approach Z cell of the row you want to change.
- 2. Type in the new value.

Press the TAB key to move to the next cell.

| Item     | Description                                                    |
|----------|----------------------------------------------------------------|
| Robot    | Select a robot.                                                |
| Apply    | Set the current values.                                        |
| Restore  | Reverts back to the previous values.                           |
| Defaults | Click the defaults button to display factory default settings. |

#### [Tools]-[Robot Manager]-[Locals] Page

This page allows you to define local coordinate systems for a robot. When the page is selected, the current values are displayed.


A grid is used to display all of the values for the locals you can define. Local "0" is the base coordinate system and cannot be changed from this page.



To change the base coordinate system, use the Base command from the command window. See the SPEL+ Language Reference for more information.

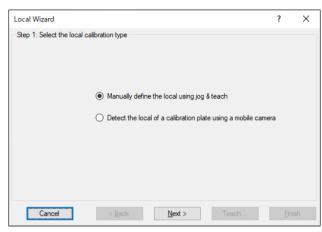
When a local is undefined, then all fields for that local will be blank. When you enter a value in any of the fields for an undefined local, then the remaining fields will be set to zero and the local will be defined when you click the <Apply> button.

For details on using Local, see the SPEL<sup>+</sup> Language Reference: Local Statement.

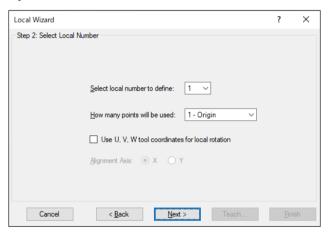


#### Navigating the grid

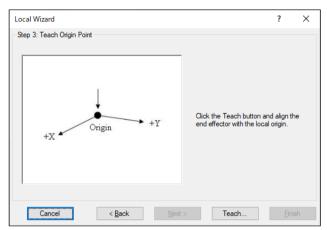
Use the TAB key to move to the next field. Use the arrow keys or the mouse to move to any field.


| Item         | Description                                                                                                                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Local Wizard | Click this button to start the Local Wizard. Follow the instructions for each step to define a local. See details in the next section. |
| X            | The X coordinate of the local origin in the base coordinate system.                                                                    |
| Y            | The Y coordinate of the local origin in the base coordinate system.                                                                    |
| Z            | The Z coordinate of the local origin in the base coordinate system.                                                                    |
| U            | Rotation angle of the local about the base Z axis (roll).                                                                              |
| V            | Rotation angle of the local about the base Y axis (pitch).                                                                             |
| W            | Rotation angle of the local about the base X axis (yaw).                                                                               |
| Apply        | Saves the current changes.                                                                                                             |
| Restore      | Reverts back to the previous values.                                                                                                   |
| Clear        | Clears all values for the selected local.                                                                                              |

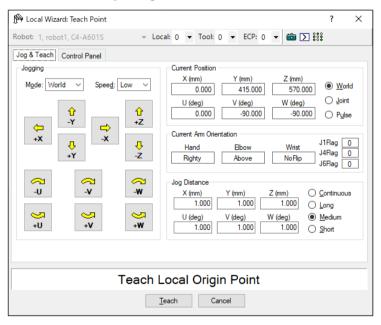
# Using the Local Wizard


A wizard is provided for defining a local coordinate system. You can define a local using a single point or three points, as described in the following sections.

## Using the Local Wizard to teach a single point local

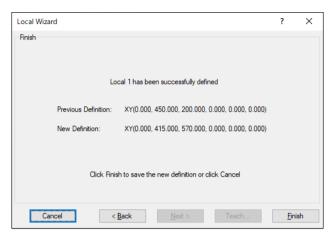

- 1. Open the [Robot Manager] and click on [Locals] to show the [Locals] page.
- 2. Click the <Local Wizard> button. You will see the dialog shown below.




3. Click the <Next> button to proceed with the Local setting using the Jog & Teach. For details of the Local setting, refer to 7. Vision Calibration in the Vision Guide 7.0 Software manual.

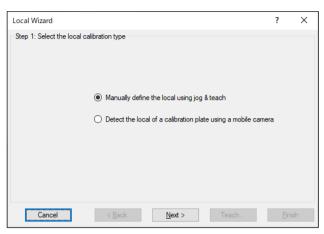


4. Select the local number you want to define. For [How many points will be used], select [1 – Origin]. Since this is a single point local, you will just teach the origin of the new coordinate system. If you want to use the U, V, or W axes for the orientation of the coordinate system, check the [Use U, V, W tool coordinates for local rotation] checkbox. If this checkbox is unchecked, the new coordinate system is offset from local 0 in X and Y, but is not rotated about any axis. Click the <Next> button.

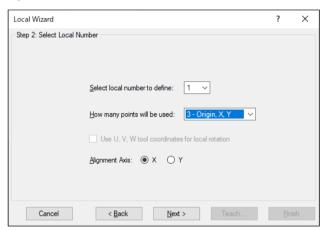



5. We will now teach the local origin point. Click the <Teach> button to open the [Local Wizard Teach Point] dialog box.

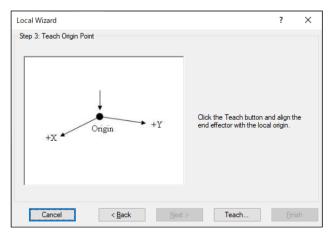



6. Jog the robot until the end effector is aligned with the local origin point. Then click the <Teach> button.

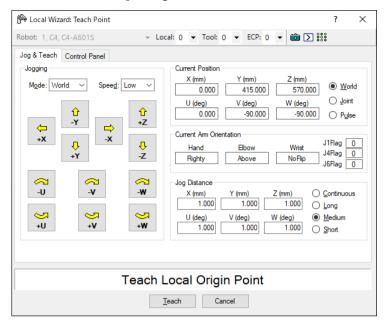
7. The new local definition is displayed as shown below. Click <Finish> to accept the new definition.



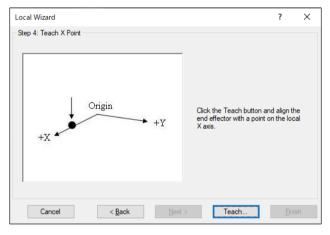

Using the Local Wizard to teach a three point local


- 1. Open the [Robot Manager] and click on [Locals] to show the [Locals] page.
- 2. Click the <Local Wizard> button. You will see the dialog shown below.

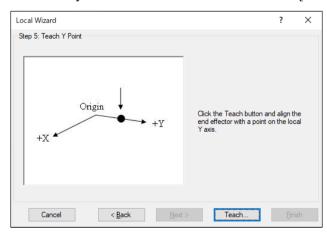



3. Click the <Next> button to proceed with the Local setting using the Jog & Teach. For details of the Local setting, refer to 7. Vision Calibration in the Vision Guide 7.0 Software manual.

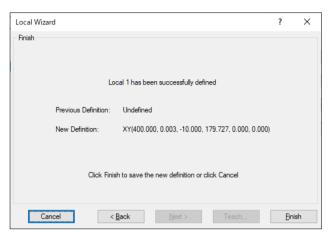



4. Select the local number you want to define. For [How many points will be used], select [3 - Origin, X, Y]. Since this is a three point local, you will teach the origin of the new coordinate system, and then teach one point anywhere along the X axis and one point anywhere along the Y axis. Select which axis will be used to align the coordinate system. For example, if you select X, then the new coordinate system X axis will be aligned to the X axis point that you will teach in a later step. The Y axis point will be used to determine tilt. Click the <Next> button.




5. We will now teach the local origin point. Click the <Teach> button to open the [Local Wizard: Teach Point] dialog box.




6. Jog the robot until the end effector is aligned with the origin point. Then click the <Teach> button. The next step will be displayed.

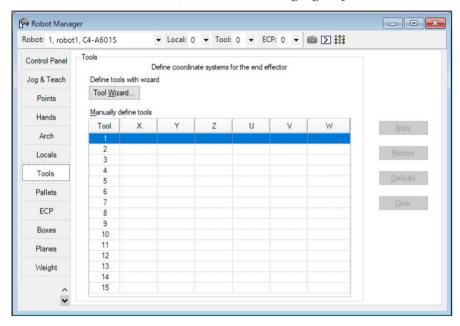


7. We will now teach a point on the local X axis. Click the <Teach> button and jog the robot until the end effector is aligned with a point anywhere along the X axis of the new coordinate system. Click the <Teach> button on the [Teach Point] dialog box to continue.



- 8. We will now teach a point on the local Y axis. Click the <Teach> button and jog the robot until the end effector is aligned with a point anywhere along the Y axis of the new coordinate system. Click the <Teach> button on the [Teach Point] dialog box to continue.
- 9. The new local definition is displayed as shown below. Click <Finish> to accept the new definition.




# [Tools]-[Robot Manager]-[Tools] Page

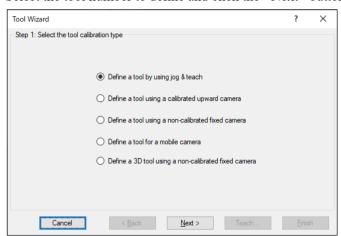
This page allows you to define tool settings for a robot. When the tab is selected, the current values are displayed.

A grid is used to display all the values for all 15 tools you can define.

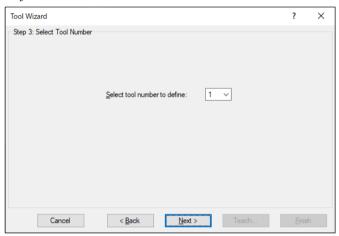
When a tool is undefined, then all fields for that tool will be blank. When you enter a value in any of the fields for an undefined tool, then the remaining fields will be set to zero and the tool will be defined when you click the <Apply> button.

For more information on tools, see the SPEL<sup>+</sup> Language Reference: TLSet Statement.

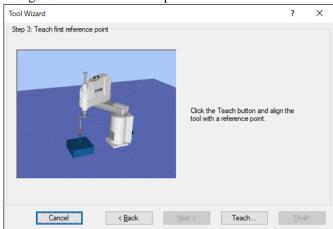


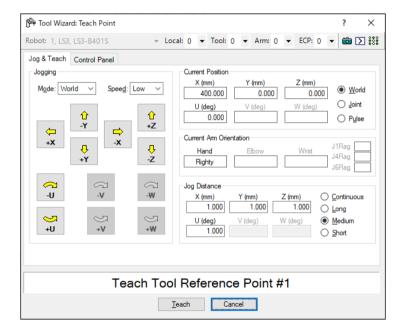

## Navigating the grid

Use the <TAB> key to move to the next field. Use the arrow keys or the mouse to move to any field.

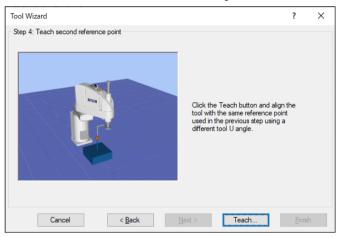

| Item         | Description                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Robot        | Select a robot.                                                                                                                            |
| Tool Wizard  | This button starts the Tool Wizard. Follow the instructions for each step of the wizard to define a tool. See details in the next section. |
| X            | The X coordinate of the tool.                                                                                                              |
| Y            | The Y coordinate of the tool.                                                                                                              |
| $\mathbf{Z}$ | Z offset of tool.                                                                                                                          |
| U            | Rotation angle of the tool about the Z axis (roll).                                                                                        |
| $\mathbf{V}$ | Rotation angle of the tool about the Y axis (pitch).                                                                                       |
| $\mathbf{W}$ | Rotation angle of the tool about the X axis (yaw).                                                                                         |
| Apply        | Sets the current values.                                                                                                                   |
| Restore      | Reverts back to the previous values                                                                                                        |
| Clear        | Clears all values for the selected tool.                                                                                                   |

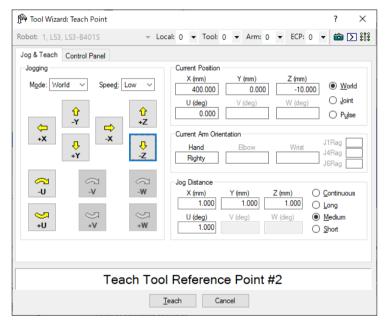
# Using the Tool Wizard for SCARA Robots


- 1. Select [Robot Manager]-[Tools] tab to show the [Tools] page.
- 2. Click the <Tool Wizard> button. You will see the dialog box shown below. Select the tool number to define and click the <Next> button.

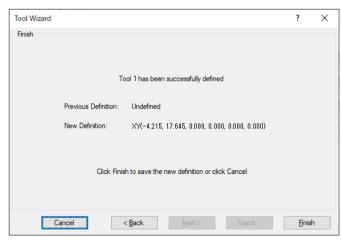



3. Click the <Next> button to proceed with the Tool setting using the Jog & Teach. For details of the Tool setting, refer to 7. Vision Calibration in the Vision Guide 7.0 Software manual.





4. Jog the robot until the tool is aligned with the reference point. Then click the <Teach> button to show the [Jog & Teach] dialog box. Jog the robot so that the tool is aligned with the reference point.






5. Click the <Teach> button to display the following dialog box. After rotating the U axis as shown below to change the angle, jog the X and Y axes until the tool is aligned with the reference point. Click the <Teach> button to show the [Jog & Teach] dialog box. Match the tool and the reference point.





6. Click the <Teach> button. The new tool definition is displayed as shown below. Click <Finish> to apply the new definition.



NOTE

The robot can be calibrated with a different posture from the wizard.

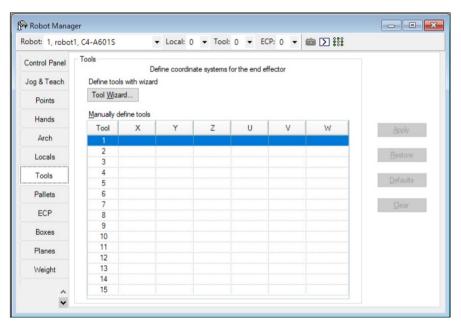
For 6-axis robots (including N series)

NOTE

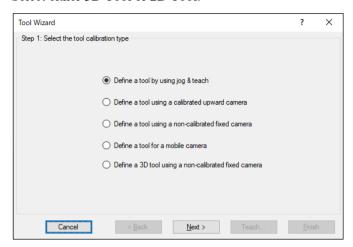
There are two calibration methods for 6-axis robots. 3D Tool moves the robot in X, Y, Z, U, V, and W directions to calibrate, while 2D Tool moves the robot in X, Y, Z, and U directions. The robot can be calibrated with 2D Tool only when the robot posture is "V=0 degree, W=0 degree, W=180 degree (-180 degree).

NOTE

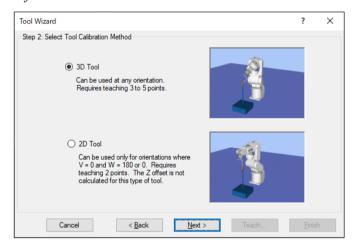



When comparing 2D Tool and 3D Tool, 2D Tool has following advantages and disadvantages. Choose the suitable method according to the intended use.

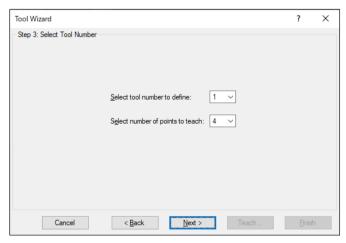
## Advantages:


- Shorter calibration time than 3D Tool
- Since V and W axes are not moved, peripherals and cables are less likely to interfere the calibration

## Disadvantages:


- Calibration accuracy may be worse than 3D Tool
- The Z-axis direction offset is not performed automatically (\*1)
- \*1: If the Z-axis direction offset is required, enter the offset value in the following dialog box after calibration.



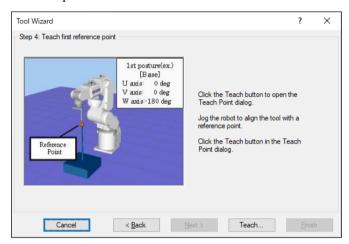

- 1. Select [Robot Manager]-[Tools] tab to show the [Tools] page.
- 2. Click the <Tool Wizard> button. You will see the dialog box shown below. Select either 3D Tool or 2D Tool.

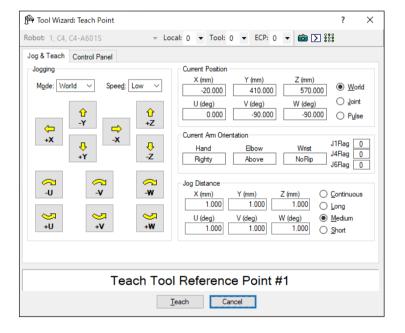


3. Click the <Next> button to proceed with the Tool setting using the Jog & Teach. For details of the Tool setting, refer to 7. Vision Calibration in the Vision Guide 7.0 Software manual.



4. If using 3D Tool, select the tool number to define and the number of points to teach, and click the <Next> button.





NOTE

The "number of points to teach" is the amount of times to teach the same point (reference point) in the robot motion range while changing only the tool direction. The number to teach should be at least three. Although it depends on the teaching accuracy of each point, more accurate tool setting can be set by increasing the number.

To increase the tool setting accuracy, set the angle of approximately 10 degrees or more for J5 pulse in order to avoid singularity near 0 degree when teaching the reference point.

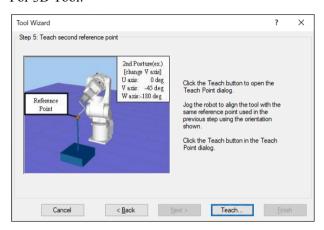
5. Jog the robot until the tool is aligned with the reference point. Then click the <Teach> button to show the [Jog & Teach] dialog box. Match the tool and the reference point.



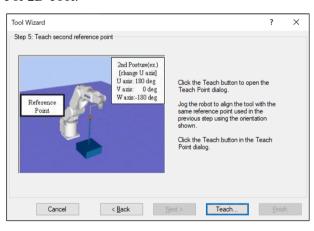


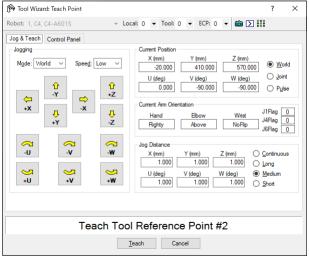
6. Click the <Teach> button to show the following dialog box.

If using 3D Tool, rotate the U, V, and W axes as shown below, and then jog the X, Y, and Z axes until the tool is aligned with the reference point. Repeat teaching until the robot can reach the reference point from other tool orientation as often as you specified in (3).

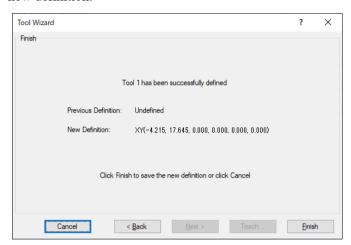

If using 2D Tool, rotate only the U axis as shown below, and then jog the X, Y, and Z axes until the tool is aligned with the reference point.

Clicking the <Teach> button displays the [Jog & Teach] dialog box for both 3D Tool and 2D Tool. Match the tool and the reference point.





When moving the U, V, and W axes, move the arm upward in order to avoid collision of the tool and the reference point.

#### For 3D Tool:




#### For 2D Tool:



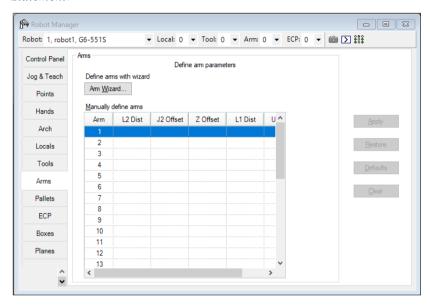


7. The new tool definition is displayed as shown below. Click <Finish> to apply the new definition.



NOTE

Although it is recommended to calibrate the robot with the same posture as the wizard, it is possible to calibrate the robot with the different robot posture from wizard. When you don't use the robot with the same posture as the wizard, change the robot posture for five degrees or more. The bigger the robot posture change, the more accurate the tool setting.


## [Tools]-[Robot Manager]-[Arms] Page

This page allows you to define Arm settings for a robot. When the tab is selected, the current Arm values are displayed. The tab is disabled if the current robot does not support the Arm command.

A grid is used to display all the values for all 15 arm configurations you can define.

When an arm is undefined, then all fields for that arm will be blank. When you enter a value in any of the fields for an undefined arm, then the remaining fields will be set to zero and the tool will be defined when you click the <Apply> button.

For more information on arm parameters, see the SPEL<sup>+</sup> Language Reference: ArmSet Statement.



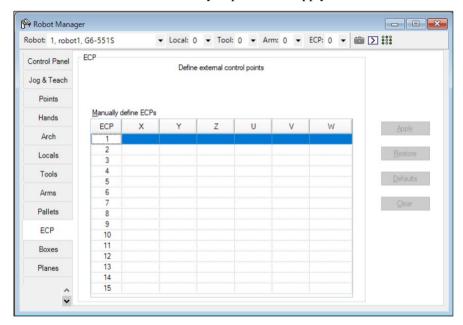
# Navigating the grid

Use the <TAB> key to move to the next field. Use the arrow keys or the mouse to move to any field.

| Item       | Description                                                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------|
| Robot      | Select a robot.                                                                                                        |
| Arm Wizard | Open the wizard for configuring the additional arm using the camera.                                                   |
|            | Define the tool by following the instructions.                                                                         |
|            | For details of the Local setting, refer to 7. Vision Calibration in the Vision Guide 7.0 Software manual.              |
| L2 Dist    | Distance between the center of joint 2 and the center of the orientation joint in millimeters.                         |
| J2 Offset  | Angle of the line from the center of joint 2 to the center of the orientation joint in degrees.                        |
| Z Offset   | The Z offset between the new orientation axis and the standard orientation axis.                                       |
| L1 Dist    | Distance between the center of the shoulder joint and the center of the elbow joint in millimeters.                    |
| U Offset   | The angle offset between the standard orientation zero position and the new orientation axis zero position in degrees. |
| Apply      | Set current values.                                                                                                    |
| Restore    | Revert to the previous values.                                                                                         |
| Clear      | Clear all values for the selected arm                                                                                  |

## [Tools]-[Robot Manager]-[ECP] Page

This page allows you to define ECP (external control point) settings for a robot. When the page is selected, the current values are displayed.




If the ECP option is not enabled in the controller, this page will not be visible.

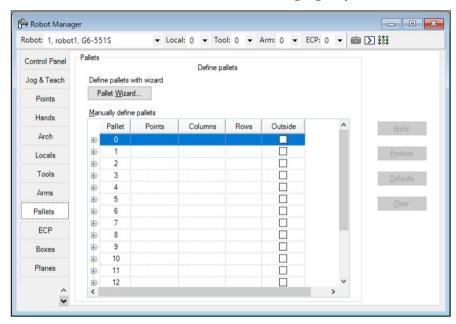
For detailed information on using external control points in your application, refer to 6.16.5 ECP Coordinate Systems (Option).

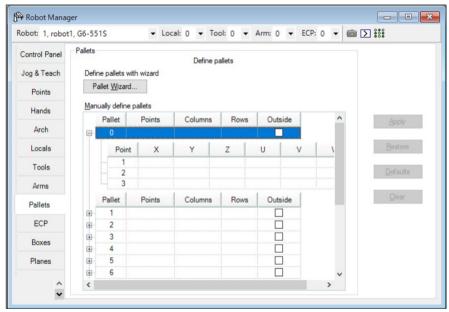
A grid is used to display all of the values for all ECPs you can define.

When an ECP is undefined, then all fields for that ECP will be blank. When you enter a value in any of the fields for an undefined ECP, then the remaining fields will be set to zero and the ECP will be defined when you press the <Apply> button.



# Navigating the grid


Use the <TAB> key to move to the next field. Use the arrow keys or the mouse to move to any field.


| Item         | Description                                         |
|--------------|-----------------------------------------------------|
| Robot        | Select a robot.                                     |
| X            | The X coordinate of the ECP.                        |
| Y            | The Y coordinate of the ECP.                        |
| Z            | The Z coordinate of the ECP.                        |
| U            | Rotation angle of the ECP about the Z axis (roll).  |
| V            | Rotation angle of the ECP about the Y axis (pitch). |
| $\mathbf{W}$ | Rotation angle of the ECP about the X axis (yaw).   |
| Apply        | Set current values.                                 |
| Restore      | Revert back to the previous values.                 |
| Clear        | Clear all values for the selected ECP.              |

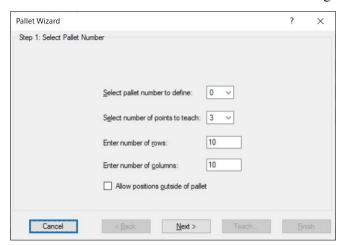
# [Tools]-[Robot Manager]-[Pallets] Page

This page allows you to define the pallet (Pallet). When the page is selected, values for the available pallet are displayed. When a Pallet is undefined, then all fields for the Pallet will be blank. The Pallet will be defined when you press the <Apply> button.

For more information on Pallet, see the SPEL+Language Reference: Pallet Statement.





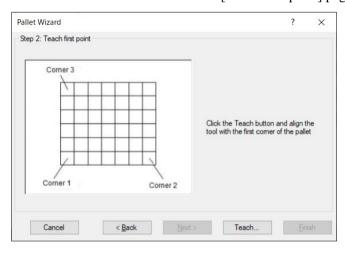

# Navigating the grid

Use the <TAB> key to move to the next field. Use the arrow keys or the mouse to move to any field.

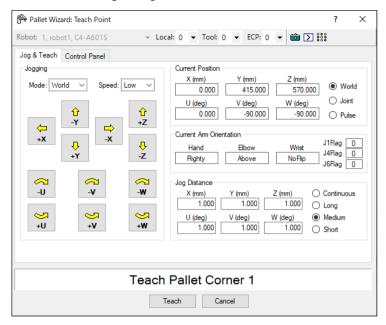
| Item         | Description                                                                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Robot        | Select a robot.                                                                                                                                                                                     |
| Points       | Specify the point variable to use for pallet definition.                                                                                                                                            |
|              | Select either 3 or 4.                                                                                                                                                                               |
| Columns      | Specify the division number of Point number 1(coordinate system data 1) and Point number 2 (coordinate system data 2) by an integer. The range is from 1 to 32767. (Division 1 × Division 2 <32767) |
| Rows         | Specify the division number of Point number 1(coordinate system data 1) and Point number 3 (coordinate system data 3) by an integer. The range is from 1 to 32767. (Division 1 × Division 3 <32767) |
| Outside      | Optional. Creates an accessible pallet outside the specified columns and rows                                                                                                                       |
| X            | Set the X coordinate in millimeters.                                                                                                                                                                |
| Y            | Set the Y coordinate in millimeters.                                                                                                                                                                |
| Z            | Set the Z coordinate in millimeters.                                                                                                                                                                |
| U            | Set the U coordinate in degrees.                                                                                                                                                                    |
| V            | Set the V coordinate in degrees.                                                                                                                                                                    |
| $\mathbf{W}$ | Set the W coordinate in degrees.                                                                                                                                                                    |
| Apply        | Set current values.                                                                                                                                                                                 |
| Restore      | Revert back to the previous values.                                                                                                                                                                 |
| Clear        | Clear all values.                                                                                                                                                                                   |

### Using the Pallet Wizard

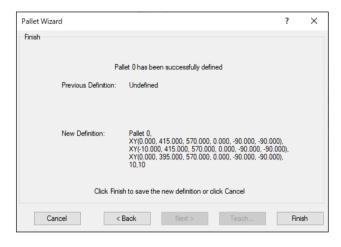
- 1. Select [Robot Manager]-[Pallets] tab to show the [Pallets] page.
- 2. Click the <Pallet Wizard> button. You will see the dialog box shown below.




3. Select the pallet number to define, the number of points to teach, the number of rows and columns, and whether to use "Outside". Then, click the <Next> button.


NOTE

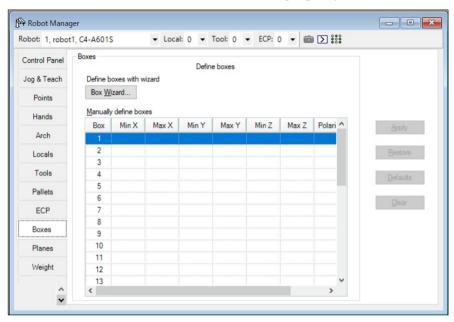
If a pallet is a well ordered rectangular shape, only 3 of the 4 corner points should be specified. However, in most situations, it is recommended to use 4 corner points to define a pallet.


4. Click the <Teach> button to show the [Teach first point] page.



5. Jog the robot to the first corner to teach the position of it. Click the <Teach> button to show the following dialog box.




- 6. Teach the second to forth corners by following the steps (4) and (5).
- 7. The new pallet definition is displayed as shown below. Click <Finish> to apply the new definition.



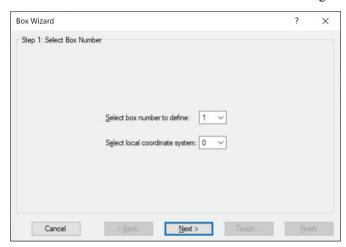
# [Tools]-[Robot Manager]-[Boxes] Page

This page allows you to define Box (approach check area) settings for a robot. When the page is selected, the current values are displayed. When a Box is undefined, then all fields for that Box will be blank. When you enter a value in any of the fields for an undefined Box, then the remaining fields will be set to zero and the Box will be defined when you press the <Apply> button.

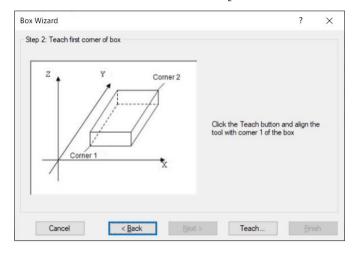
For more information on Box, see the SPEL<sup>+</sup> Language Reference: Box Statement.



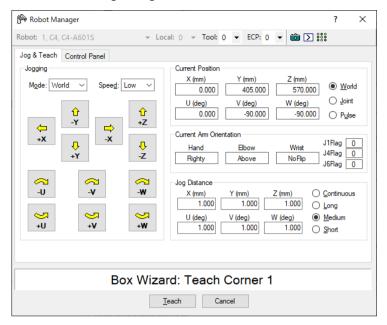
### Navigating the grid


Use the <TAB> key to move to the next field. Use the arrow keys or the mouse to move to any field.

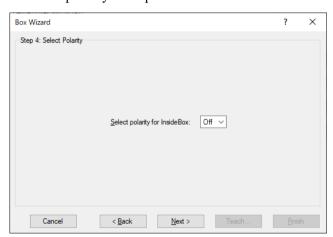
| Item     | Description                                        |
|----------|----------------------------------------------------|
| Robot    | Select a robot.                                    |
| Min X    | Type in the minimum X limit value in millimeters.  |
| Max X    | Type in the maximum X limit value in millimeters.  |
| Min Y    | Type in the minimum Y limit value in millimeters.  |
| Max Y    | Type in the maximum Y limit value in millimeters.  |
| Min Z    | Type in the minimum Z limit value in millimeters.  |
| Max Z    | Type in the maximum Z limit value in millimeters.  |
| Polarity | Sets the polarity to output I/O at approach check. |
| Apply    | Sets current values.                               |
| Restore  | Reverts back to the previous values.               |
| Clear    | Clears all values.                                 |


Setting both values to zero disables the limits.

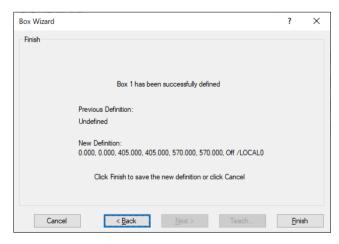
# Using the Box Wizard


- 1. Select [Robot Manager]-[Boxes] tab to show the [Boxes] page.
- 2. Click the <Box Wizard> button. You will see the dialog box shown below.




- 3. Select the Box number and local coordinate system to define and click the <Next> button.
- 4. Click the <Teach> button to show the [Teach first corner of box] page.

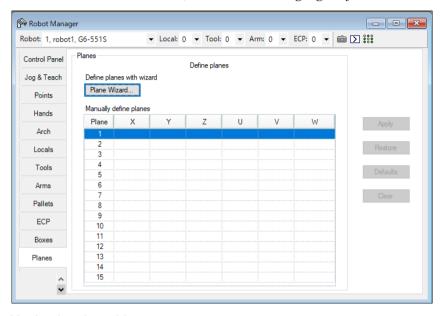



5. Jog the robot to the first corner to teach the position of it. Click the <Teach> button to show the following dialog box.



- 6. Teach the second to forth corners by following the steps (4) and (5).
- 7. Select the polarity to output the I/O




8. The new box definition is displayed as shown below. Click <Finish> to apply the new definition.

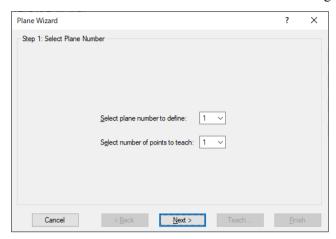


# [Tools]-[Robot Manager]-[Planes] Page

This page allows you to define Plane (approach check plane) settings for a robot. When the page is selected, the current values are displayed. When a Plane is undefined, then all fields for that Plane will be blank. When you enter a value in any of the fields for an undefined Plane, then the remaining fields will be set to zero and the Plane will be defined when you press the <Apply> button.

For more information on Plane, see the SPEL<sup>+</sup> Language Reference: Plane Statement.



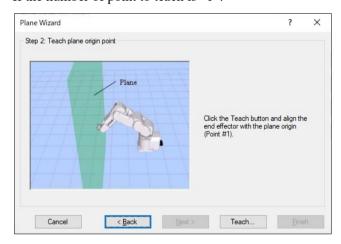

## Navigating the grid

Use the <TAB> key to move to the next field. Use the arrow keys or the mouse to move to any field.

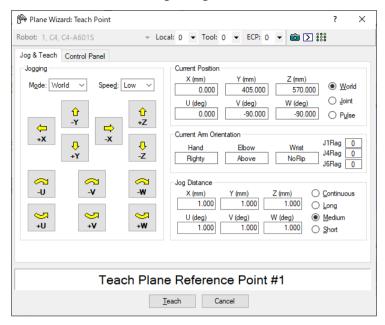
| Item         | Description                                                   |
|--------------|---------------------------------------------------------------|
| Robot        | Select a robot.                                               |
| X            | Sets the X origin of the coordinate for approach check plane. |
| Y            | Sets the Y origin of the coordinate for approach check plane. |
| $\mathbf{Z}$ | Sets the Z origin of the coordinate for approach check plane. |
| U            | Sets the U origin of the coordinate for approach check plane. |
| V            | Sets the V origin of the coordinate for approach check plane. |
| $\mathbf{W}$ | Sets the W origin of the coordinate for approach check plane. |
| Apply        | Set current values.                                           |
| Restore      | Revert back to the previous values.                           |
| Clear        | Clear all values.                                             |

### Using the Plane Wizard

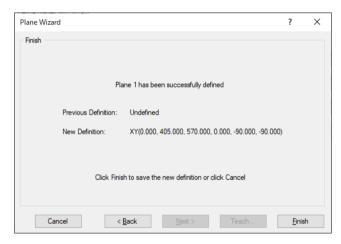
- 1. Select [Robot Manager]-[Planes] tab to show the [Planes] page.
- 2. Click the <Plane Wizard> button. You will see the dialog box shown below.




3. Select the plane number to define and the number of points to teach, and then click the <Next> button.




You can select either "1" or "3" for the number of points to teach. If you select "1", the robot posture at teaching will be reflected. If you select "3", the robot posture will not be reflected. For details, refer to the *SPEL+Language Reference: Plane Statement*.


4. Click the <Teach> button to show the [Teach plane origin point] page. If the number of point to teach is "1":



5. Jog the robot to the reference point to teach the position of it. Click the <Teach> button to show the following dialog box.

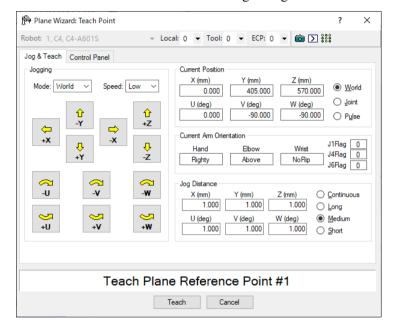


6. The new plane definition is displayed as shown below. Click <Finish> to apply the new definition.

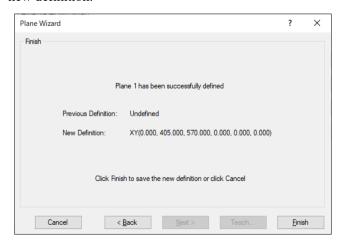


Plane Wizard ? X

Step 2: Teach plane origin point


Plane
Point #2

Click the Teach button and align the end effector with the plane origin (Point #1).


Cancel < Back Next > Teach... Enish

If the number of points to teach is "3":

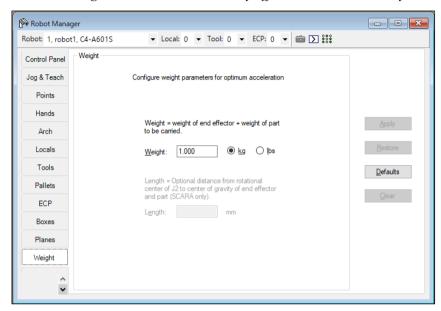
1) Jog the robot to the reference point to teach the position of it (Point #1). Click the <Teach> button to show the following dialog box.



- 2) Teach the X axis specified point (Point #2) and the Y axis specified point (Point #3) in the same way as the step 1).
- 7. The new plane definition is displayed as shown below. Click <Finish> to apply the new definition.



# [Tools]-[Robot Manager]-[Weight] Page


This page is for changing the Weight parameters for the robot.

For details on the Weight parameters, see the SPEL<sup>+</sup> Language Reference: Weight Statement.

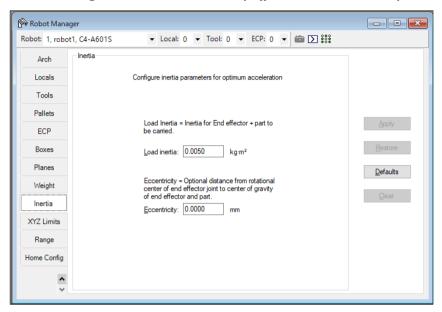
You can also set by following "Weight, Inertia, and Eccentricity/offset Measurement Utility".

The following section describes the details.

6.18.12 Weight, Inertia, and Eccentricity/offset Measurement Utility



| Item     | Description                                                          |
|----------|----------------------------------------------------------------------|
| Robot    | Select a robot.                                                      |
| Weight   | Type in the new total weight of the payload on the robot.            |
| kg/lbs   | Choose which unit the weight is represented in: kilograms or pounds. |
| Length   | Type in the new length.                                              |
| Apply    | Sets the current values.                                             |
| Restore  | Reverts back to the previous values.                                 |
| Defaults | Displays factory default settings.                                   |


# [Tools]-[Robot Manager]-[Inertia] Page

This page is for changing the Inertia parameters.

For details on the Inertia parameters, see the SPEL<sup>+</sup> Language Reference: Inertia Statement.

The following section describes the details.

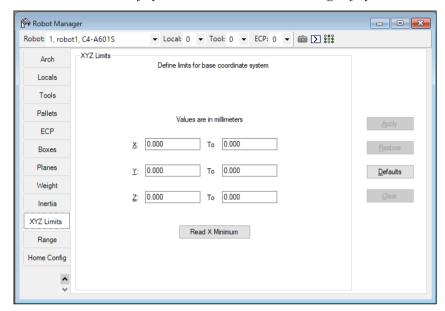
6.18.12 Weight, Inertia, and Eccentricity/offset Measurement Utility



| Item         | Description                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Robot        | Select a robot.                                                                                                                                              |
| Load inertia | Type in the new load inertia of the payload on the robot in $kg\cdot m^2.$ This includes the inertia of end effector plus the part to be carried.            |
| Eccentricity | Type in the new eccentricity value in millimeters. This is the distance from rotational center of joint 4 to the center of gravity of end effector and part. |
| Apply        | Set the current values.                                                                                                                                      |
| Restore      | Revert back to the previous values.                                                                                                                          |
| Defaults     | Press the defaults button to display factory default settings.                                                                                               |

# [Tools]-[Robot Manager]-[XYZ Limits] Page

This page allows you to configure limits for X, Y and Z motion in the robot envelope.


For details on the XYZ limits, see the SPEL<sup>+</sup> Language Reference: XYLim Statement.



When using Safety Function (the Controller with Safety Board), the Safety Limited Position (SLP) of the Safety Function can be used.

Set them using the Safety Function Manager. For more details, refer to the following manual.

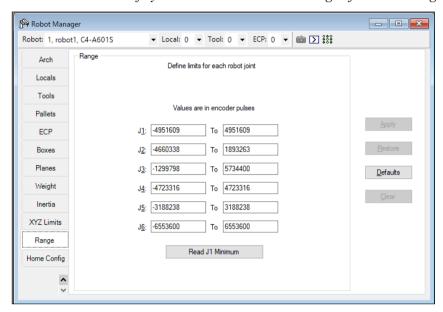
Robot Controller Safety Function Manual 4.3.4 Setting Safety Limited Position (SLP)



| Item         | Description                                                                                                                                                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Robot        | Select a robot.                                                                                                                                                                 |
| X, Y, Z      | Type in the minimum and maximum $X$ , $Y$ , and $Z$ limit values. Setting both values to zero disables the limits.                                                              |
| Read Current | Click this button to read the value from the current robot position. The button text shows the axis and minimum or maximum depending on which text field has the current focus. |
| Apply        | Set the current values.                                                                                                                                                         |
| Restore      | Revert back to previous values.                                                                                                                                                 |
| Defaults     | Set default values.                                                                                                                                                             |

# [Tools]-[Robot Manager]-[Range] Page

This page allows you to configure the robot joint software limits.

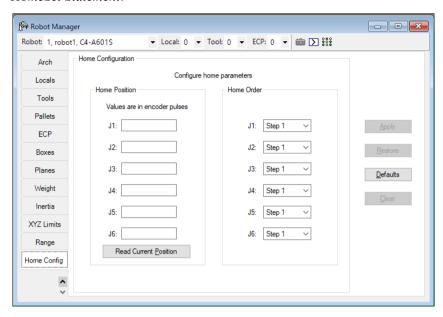

For details on configuring the motion range, see the SPEL<sup>+</sup> Language Reference: Range Statement.



When using Safety Function (the Controller with Safety Board), the Soft Axis Limiting of the Safety Function can be used.

Set them using the Safety Function Manager. For more details, refer to the following manual.

Robot Controller Safety Function Manual 4.3.5 Setting Soft Axis Limiting




| Item         | Description                                                                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Robot        | Select a robot.                                                                                                                                             |
| J1 - J6      | Type in the minimum and maximum encoder pulse values for each joint.                                                                                        |
| Read Current | Click this button to read the current joint value of the robot into the current field. The button text will change depending on which text field has focus. |
| Apply        | Save the current changes.                                                                                                                                   |
| Restore      | Revert back to the previous values.                                                                                                                         |
| Defaults     | Set the default values.                                                                                                                                     |

## [Tools]-[Robot Manager]-[Home Config] Page

Home Config allows you to configure the optional user home position.

For details on configuring the home position, see the SPEL<sup>+</sup> Language Reference: HomeSet Statement.



## Changing home position

When you select the [Home Config] tab, the current home position is read from the robot controller and displayed in the text boxes. If the home position has never been defined, then the text boxes will be blank.

To define the home position, you can enter an encoder position value for each of the four robot joints in the text boxes, or you can select the [Jog & Teach] page to jog the robot to the desired home position, then select the [Home Config] page and click the <Read Current Position> button to read the current encoder position values.

### Changing home order

The home command executes in steps. The number of steps equals the number of joints on the robot. Select the home step number for each joint using the dropdown list for each joint. More than one joint can be homed in the same step.

## Testing home

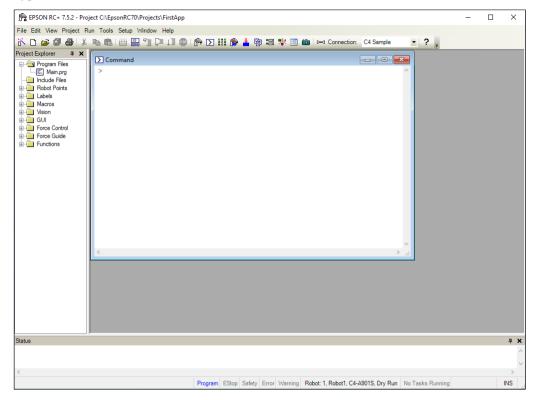
After making changes to the home position and home order, you can click the [Robot Manager]–[Control Panel] tab and click the <Home> button.

| Item         | Description                                                                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Robot        | Select a robot.                                                                                                                                                                |
| Read Current | Click this button to read the current position encoder pulse value into the currently selected text field. The button text will change according which text field is selected. |
| Defaults     | Set the value of the [Home order] group box to the default value.                                                                                                              |
| Apply        | Save the current changes.                                                                                                                                                      |
| Restore      | Revert back to the previous values.                                                                                                                                            |

# 5.12.2 [Command Window] Command (Tools Menu)

You can execute SPEL<sup>+</sup> commands from the robot controller and view the results.

# To open the Command window


Select Command Window from the Tools Menu

Or

Click on the button on the toolbar.

Or

## Type Ctrl+M



### To execute SPEL+ commands from the Command window

- 1. Type in the desired command after the prompt (>). Commands can be entered in upper or lower case.
- 2. Press <Enter> to execute the command. The cursor can be anywhere on the line when you press <Enter>.
- 3. Wait for the prompt to return before typing in a new command.

When an error occurs, an error number will be displayed along with an error message.

You can use the arrow keys or the mouse to move the cursor to any line in the window that starts with a prompt (>) character and execute it by pressing <Enter>.

# Command Window Keys

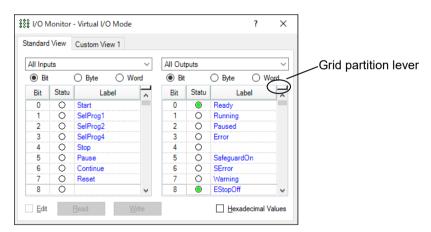
| Key       | Action                                                                 |
|-----------|------------------------------------------------------------------------|
| Ctrl+A    | Select entire window.                                                  |
| Ctrl+C    | Stop the program and initialize robot controller. If a robot motion    |
|           | command is in progress, the prompt will return when the command has    |
|           | been completed.                                                        |
| Ctrl+V    | Execute Paste command. Paste from Clipboard to current selection.      |
| Ctrl+W    | Re-display last command line after the prompt.                         |
| Ctrl+X    | Execute Cut command. Cut current selection and put in Clipboard.       |
| Ctrl+Z    | Undo last change.                                                      |
| Ctrl+Home | Go to the top of the window.                                           |
| Ctrl+End  | Go to last prompt at end of the window.                                |
| ?         | Translates to "PRINT" when used as the first character of a command.   |
|           | This can be used to display variables or any statement that requires a |
|           | PRINT command.                                                         |

# 5.12.3 [I/O Monitor] Command (Tools Menu)

The I/O Monitor window lets you monitor all controller hardware inputs and outputs and also memory I/O. There are up to four views available: one standard view and three custom views.

On the standard view, there are two grids. For each grid you can specify which type and size of I/O to monitor.

For each custom view, you can specify a list of any combination of input, output, or memory. By default, there is one custom view available. To use the other two custom views, right click on a tab and check the views you want to be visible. See the section *Custom I/O Views* later in this chapter.


Labels that have been defined using the [I/O Label Editor] are displayed next to each bit, byte, or word.

After the [I/O Monitor] window has been opened, the input and output status for the current view is constantly updated.

The I/O monitor will always be displayed on top of other child windows, such as program windows and point windows.

If a description has been entered for an I/O port (bit, byte, or word) in the I/O Label Editor, then a tool tip will be displayed when the mouse pointer is over the row containing the port.

You can turn outputs on and off by double clicking on the output LED images in the Status column.



#### To open the I/O Monitor

Select I/O Monitor from the Tools Menu.

Or

Click on the state tool bar button.

Or

Type Ctrl + I.

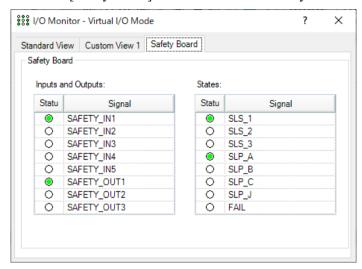
#### Using the I/O Monitor

Select the [Standard View] tab.

Scroll through the grids to locate the desired inputs or outputs to monitor.

You can split each grid into two scroll regions by selecting the split bar in the upper right corner of the grid and dragging it down. Each scroll region can be individually scrolled.

To turn an output off or on, double click on the LED image for the desired output.


When Virtual I/O is active, you can turn input bits on and off by double clicking on the input LED images in the Status column.

To view bytes and words in hexadecimal format, check the [Hexadecimal Values] checkbox.

You can resize the I/O monitor in the vertical direction to show more data. Move your mouse pointer to the lower right corner of the window to activate a size handle, then click down and drag the window down or up to the desired size.

#### Using Monitor of the Safety Board

Select the [Safety Board] tab. I/O status of the safety board will be shown.



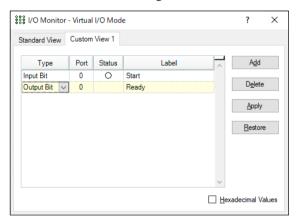
NOTE

To show the monitor of the safety board, connect EPSON RC+ to the Controller installed the safety board.

For the setting of safety functions, refer to the following manual.

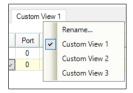
Robot Controller Safety Function Manual

NOTE Following cannot be operated with I/O monitor of the safety board.




- -Output on/off
- -Displaying custom view
- -Renaming the tab name

|               | Signal                                                                 | State                                                                                   | Notes                                                                            |
|---------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Inputs<br>and | SAFETY_IN1,<br>SAFETY_IN2,<br>SAFETY_IN3,<br>SAFETY_IN4,<br>SAFETY_IN5 | Signal level for safety input is<br>High: turning LED on<br>Low: turning LED off        | Safety input signal is negative logic (Active Low).                              |
| Outputs       | SAFETY_OUT1,<br>SAFETY_OUT2,<br>SAFETY_OUT3                            | Signal level for safety output is High: turning LED on Low: turning LED off             | Safety output signal is negative logic (Active Low).                             |
|               | SLS_1, SLS_2,<br>SLS_3                                                 | Safety Limited Speed is Enabled: turning LED on Disabled: turning LED off               | For the violation of<br>the limited speed,<br>refer to the system<br>history.    |
| State         | SLP_A, SLP_B,<br>SLP_C                                                 | Safety Limited Position is<br>Enabled: turning LED on<br>Disabled: turning LED off      | For the violation of<br>the limited position,<br>refer to the system<br>history. |
|               | SLP_J                                                                  | Soft Axis Limiting is Enabled: turning LED on Disabled: turning LED off                 | Soft Axis Limiting is always enabled.                                            |
|               | FAIL                                                                   | Fault detection for safety board<br>Abnormal: turning LED on<br>Normal: turning LED off | For the information on the fault, refer to the system history.                   |


#### Custom I/O Views

You can configure up to three custom I/O views. In each view, you can add any combination of I/O. You can also change the name of each view and hide each view.



#### To change a view

1. Click on a custom view tab. If none are currently shown, right click on the [Standard View] tab and select one of the three custom views to show it.



- 2. Click the <Add> button to add a new row to the list.
- 3. Select the <Type> by clicking in the [Type] column, then click the arrow to view a list of I/O types and select one.
- 4. In the [Port] column, select the port (bit, byte, or word, depending on I/O type).

5. Add more rows as needed by repeating steps 2 - 4.

<Apply>: Save the changes

<Delete>: Delete a row

<Restore>: Cancel changes.

#### To rename a view

- 1. Click on a custom view tab. If none are currently shown, right click on the [Standard View] tab and select one of the three custom views to show it.
- 2. Right click on the view tab and select [Rename].
- 3. Enter the new name for the view.

#### 5.12.4 Task Manager Command (Tools Menu)

The Task Manager window allows you to Halt (suspend), Resume (continue), and Quit (abort) tasks.

#### To open the Task Manager

Select Task Manager from the Tools Menu.

Or

Type Ctrl + T.

Or

Click on the button on the toolbar.

#### Operation

The Task Manager is used for suspending, resuming, stepping, and stopping tasks.

When Task Manager is started, you will see a grid containing status information for 32 tasks standard tasks and 11 trap tasks. Also, you will see the status information of 16 background tasks if the background task is enabled. There are 8 items shown for each task. To view all of the columns, use the scroll bar or resize the window.

Task Number of task from 1 to 32 and 11 trap tasks.

Name Name of the function that was started as a task.

Status Current task status: Run, Wait, Halt, Pause, Aborted, Finished.

**Type** Task types

Normal This task is a normal task

NoPause This task does not pause with Pause statement or when

Pause input or Safety Door open occur.

NoEmgAbort This task continuously processes during the Emergency

Stop or error occurrence.

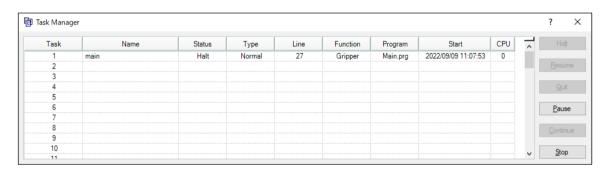
Current task line number.Function Current task function name.Program Current task program name.

**Start** The date and time that the task was started.

CPU CPU load factor of each task. This function assists problem detection of the

user created tasks.

In the following Example 1, the function repeats until the standard input I/O bit port 1 turns ON.


Since Sw() is the command in which the tasks are not switched, this task occupies the process. It may affect other user tasks or the whole system of the Controller. In order to specify such tasks, use the CPU load factor display.

#### Restrictions

Displayed values do not guarantee the accuracy. Due to limitations of measuring method, some differences are included. The load factor of the properly created program is minimal. Also, in a program like Example 2, commands are executed by other system tasks. Therefore, the load factor is displayed as "0".

```
Example 1)
   Function main
   Do
        Do
        If Sw(1) = On Then Exit Do
        Loop
        Go P(0)
        Loop
   Fend

Example 2)
   Function main
   Do
        Print "TEST"
   Loop
Fend
```



| Item     | Description                                                                                                                                                                                                                                                                                                                                                                                   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Halt     | Suspends the selected task. The halted task can be resumed by the < <b>Resume&gt;</b> button. <b>Halt</b> can only be executed when a task is running (status is Run). When <b>Halt</b> is executed, the < <b>Resume&gt;</b> button will be enabled. If a motion command associated with <b>Halt</b> is executed, the motion will be completed before the task reaches the <b>Halt</b> state. |  |
|          | The task also temporarily stops when the task is NoPause type or NoEmgAbort type.                                                                                                                                                                                                                                                                                                             |  |
| Resume   | After one or more tasks are suspended with the <halt> button, clicking <resume> make the halted tasks continue where they left off. First, a confirmation dialog is displayed.</resume></halt>                                                                                                                                                                                                |  |
| Quit     | This button stops the selected task permanently. You cannot resume a task once you have executed Quit. To restart the task, you must start it from within a program or from the Run window. The task also stops when the task is NoPause type or NoEmgAbort type.                                                                                                                             |  |
| Pause    | This button pauses tasks that can be paused. After pause, you must use either <continue> or <stop>.  The task does not pause when the task is NoPause type or NoEmgAbort type.</stop></continue>                                                                                                                                                                                              |  |
| Continue | This button continues all tasks that were paused with the <pause> button.</pause>                                                                                                                                                                                                                                                                                                             |  |
| Stop     | This button stops all tasks.                                                                                                                                                                                                                                                                                                                                                                  |  |

#### To Halt, Step, Walk, and Resume a task

The <Halt> button will become active after you select a running task.

Click the <Halt> button to stop the task you selected for a moment.

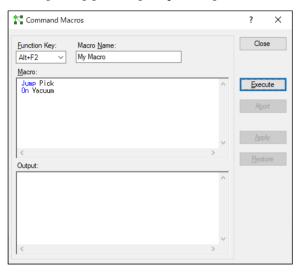
After a task has been halted, the source code will be displayed and the next step will be indicated. You can click on the <Resume> button to resume execution. (You can also execute [Step Into], [Step Over], or [Walk] from the [Run] Menu.)

#### To Pause and Continue tasks

Pause allows you to "suspend" all tasks that can be suspended.

Click on the <Pause> button to pause available tasks. The robot will decelerate to a stop immediately.

After executing Pause, click on <Continue> to resume all suspended tasks.


#### To view source code at the current execution line

Select a task row. Then right click and select [Go To Line]. The program editor will be opened at the current execution line

### 5.12.5 Macros Command (Tools Menu)

You can create SPEL+ command macros using the Macro Editor. Macros consist of one or more SPEL+ statements that can be executed from the command window. A macro statement may use global variables, I/O labels, and point labels. You can assign a macro to each of the Alt function keys except for Alt+F4, which is a Windows shortcut to close the application.

1. Select [Tools]-[Macros] to open the [Command Macros] dialog box.



- 2. Type the macro statements in the [Macro] text box.
- 3. Click the <Apply> button to save changes.
- 4. Click <Execute> to run the macro.
- 5. Click <Close> to close the dialog. You will be prompted to save the macros you have created or changed.

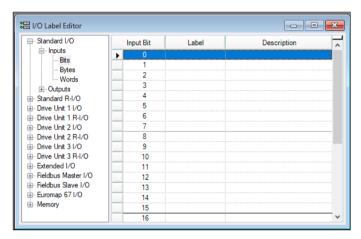
To open a macro and execute it, type <Alt> + function key. Then click <Execute> to run it. Macros never execute by pressing the function key. The separate execute step is provided for safety, since macros can move the robot and control I/O.

Macros can be executed while tasks are running. If invalid commands are executed while tasks are running, an error will occur.

#### 5.12.6 [I/O Label Editor] Command (Tools Menu)

The I/O label editor lets you define meaningful names for inputs, outputs, and memory I/O for each project. The labels can be used in your programs, from the Command window, or in macros. They are also displayed in the I/O Monitor window.

#### To open the I/O Label Editor


Select I/O Label Editor from the Tools Menu.

Or

Type Ctrl + L.

Or

Click on the \bigoin button on the toolbar.



#### The I/O Label Spreadsheet

When you select [I/O Label Editor] from the [Tools] menu, a window opens that contains a tree and a spreadsheet editor.

The tree on the left side of the window shows the various types of I/O for the controller. For each type of I/O you can view and edit labels for bits, bytes (8 bits), and words (16 bits).

The first column of the spreadsheet shows the bit, byte, or word number, depending on which type of I/O you are viewing.

The second column contains the label for each bit, byte, or word in column 1. You can type in up to 32 characters for a label. Label characters can be alphanumeric or underscore.

The third column contains the description associated with the label.

If you add a description to an I/O point, then the description will be displayed as a tool tip on the I/O Monitor.



- The I/O Label Editor shows all available I/O types on your controller.
- For the Editor version, the I/O Label Editor shows the all I/O types.
   For example, you can edit Fieldbus I/O labels, but you may not have a Fieldbus board installed in the controller.



■ When you specified the string (SPEL+ commands and so on) that has other roles in EPSON RC+ 7.0 as a label, it may have unexpected consequences. Specify a unique label name so that it does not duplicate with those strings.

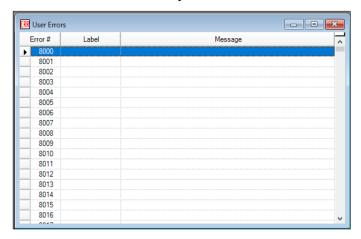
#### To add or edit a label

Select the type of I/O you want to label in the tree. After you select the I/O type, the spreadsheet will be refreshed to display the labels for that type. The number of rows in the spreadsheet equals the number of bits, bytes, or words available for the type you have selected.

Use the mouse to scroll through the spreadsheet and put the cursor in the [Label] field next to the bit, bytes, or words number that you want to add a label to. Type in the label, which can be up to 32 alphanumeric characters without any spaces. Optionally, you can type a description for the label in the [Description] field.

After adding or editing labels, save the changes by executing [Save] from the [File] menu or by clicking on the < Save all files > toolbar button. If any duplicate labels are detected, an error message will be displayed and the save operation will be aborted. You must correct the duplication before you can save the labels successfully.

#### To cut and paste labels and descriptions


You can cut and paste labels and descriptions by selecting with the mouse, then executing [Copy], [Cut], and [Paste] from the [Edit] menu.

You can also cut and paste entire rows using the following steps:

- 1. Select one or more rows by using the row selectors on the left and execute either the [Cut] or [Copy] command from the [Edit] menu. When selecting multiple rows, hold down the shift or control key while selecting rows with the mouse.
- 2. Select the row where you want to start the paste by clicking the row selector on the left of the row.
- 3. Execute the [Paste] command from the [Edit] menu.

### 5.12.7 User Error Editor Command (Tools Menu)

The User Error Editor allows you to define user errors.



User error numbers can be from 8000 to 8999.

Labels can be up to 16 characters in length.

It is recommended that you use the ER\_ prefix for each error label and use all caps for the label. This makes it easy to see error labels in your code.

Some user error examples:

| Error # | Label Message                             |
|---------|-------------------------------------------|
| 8000    | ER_VACUUM Vacuum error has occurred.      |
| 8001    | ER_INDEXOT Indexer overtime has occurred. |

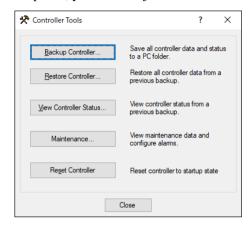
In your program code, use the Error statement to generate a user error. For example:

```
On Vacuum
Wait Sw(VacOn), 1
If Tw = 1 Then
    Error ER_VACUUM
EndIf
```

The user error information is stored in the current project directory in a file called UserErrors.dat.

You can use the [Import] command from the [File] menu to import user errors from other projects.

After adding new error definitions, save the changes by executing Save from the [File] menu or by clicking on the <Save all files> toolbar button. If any duplicate labels are detected, an error message will be displayed and the save operation will be aborted. You must correct the duplication before you can save the labels successfully.


#### 5.12.8 [Controller] Command (Tools Menu)

Select Controller from the [Tools] menu to open the [Controller Tools] dialog box.

From the [Controller Tools] dialog box, you can save and restore the complete controller configuration and the project using the [Backup Controller] and [Restore Controller] commands. You can also save and view controller status, and reset the controller.

Before servicing the system, you should execute [Backup Controller] and store the system configuration on an external media such as a USB memory key.

If required, you can use [Restore Controller] to restore previously stored data.

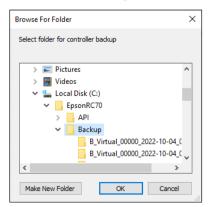


#### **Backup Controller**

Use Backup Controller to save controller configuration data on your PC.

The current status is saved in a folder containing several files. The controller configuration settings, task status, I/O status, robot status, etc. are saved in these files. This is useful for users to send a snapshot of the controller status to the supplier of your region or to Epson technical support, should the need arise.




Backup Controller is the same as Backup Controller Function and Controller Status Storage Function that saves the state to the USB memory connected to the controller. For details, refer to Controller Manual. For details, refer to Controller Manual.

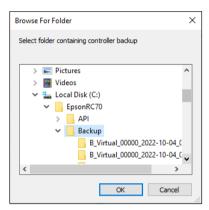
Each is saved in the following folder.

EPSON RC + : B\_Controller type\_Serial number\_Date and time Controller : BU Controller type Serial number Date and time

You can configure the controller whether to save the project files in the status folder or not. See [Setup]-[System Configuration]-[Controller]-[Preferences].

- 1. Select [Tools]-[Controller].
- 2. Click on the <Backup Controller> button to open the [Browse For Folder] dialog box.




- 3. Select the disk drive and parent folder where you want to save the information. You can create a new parent folder by clicking the <Make New Folder> button.
- 4. Click <OK>. A new folder containing the backup files will be created in the selected folder named "B" followed by the controller type, the controller serial number, and the date / time.

#### Restore Controller

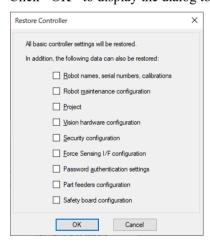
Use Restore Controller to load controller settings from previously saved backup data. You cannot restore the controller data while tasks are running. If you attempt to do so, an error message will be displayed.

To restore controller configuration:

- 1. Select [Tools]-[Controller].
- 2. Click on the <Restore Controller> button to open the [Browse For Folder] dialog box.



3. Select the drive and folder where the information is stored.






You can also select a folder containing export controller status information.

BU Controller type Serial number Date and time

4. Click <OK> to display the dialog to select the restore data.



#### Robot names, serial numbers, calibrations checkbox

This checkbox allows you to restore the robot name, robot serial number, Hofs data, and CalPls data. Make sure that the correct Hofs data is restored. If the wrong Hofs data is restored, the robot may move to wrong positions.

The default setting is unchecked.

#### Robot maintenance configuration checkbox

This checkbox allows you to restore the parts consumption data.

For details, refer to the following manual.

Robot controller RC700 series Maintenance Manual 6 Alarm

Robot controller RC700-D Manual Regular Inspection 3 Alarm

Robot controller RC700-E Manual 5.3 Alarm Function

When using RC700-D, please contact the supplier of your region.

This is not checked by the default setting.

Check this checkbox when restoring a backup data which is retrieved while [Setup]-[System Configuration]-[Controller]-[Preferences]-[Enable robot maintenance data] is enabled. If not checked, the maintenance data will not be reflected.

#### Project checkbox

This checkbox allows you to restore the files related to projects.

The default setting is unchecked.

When the project is restored, all the values of Global Preserve variables are restored. For details about Global Preserve variable backup, refer to 5.12.10 [Display Variables] Command (Run Menu).

#### Vision hardware configuration checkbox

This checkbox allows you to restore the vision hardware configuration.

For details, refer to the EPSON RC+ 7.0 option: Vision Guide 7.0.

This is not checked by the default setting.

#### Security configuration checkbox

This checkbox allows you to restore the security configuration.

For details, refer to 15. Security.

This is not checked by the default setting.

#### Force Sensing I/F configuration checkbox

This checkbox allows you to restore the Force Sensing I/F configuration.

For details, refer to *EPSON RC+ 7.0 option Force Guide 7.0*.

This is not checked by the default setting.

#### Password authentication settings checkbox

This checkbox allows you to restore the connection password that was stored in the controller.

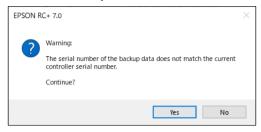
#### Part feeders configuration

Allows you to restore the setting of part feeding communication.

For details, refer to "EPSON RC+ 7.0 Option Part Feeding 7.0 Introduction & Software". It is not checked at default setting.

#### Safety Board Settings

Allows you to restore the setting of the safety function.


Refer to the following manual.

Robot Controller Safety Function Manual 4.6.3 Restoring Saved (Backed-up) Settings By default, the checkbox is not selected.

5. Click the <OK> button to restore the system information.

NOTE

Restore the system configuration saved using Backup Controller only for the same system. When different system information is restored, the following warning message appears.



Click the <No> button to cancel restoration of data except for special situations such as controller replacement.

NOTE

When restoring the backup which includes the data of the robot configured to the Drive Unit, be sure to restore the data while the Drive Unit is connected and turned on.



When restoring the backup including the unsupported robot information to the target controller, an error occurs.



If the file "IOLabels.dat" which saves I/O labels exceed 400 kB, a parser communication error will occur.

Adjust the number of characters for I/O labels not to exceed 400 kB.

NOTE NOTE

You cannot restore the backup including PG to the virtual controller.

You cannot restore the data that is backed up by the vi

You cannot restore the data that is backed up by the virtual controller to T series and VT series manipulators.

NOTE

You can select [Safety board configuration] when all of the following conditions are met.

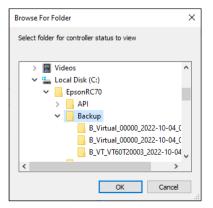
- The Controller with Safety Board
- Backup Controller has the safety board information

NOTE

For the Controller with the safety board installed, selecting one or more of the items below will start Safety Function Manager after restarting the Controller.

- Robot names, serial numbers, calibrations
- Safety board configuration

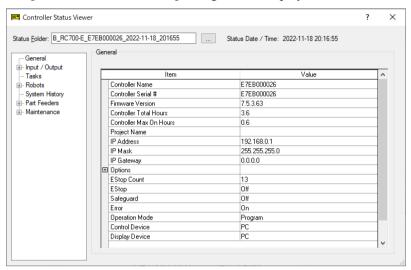
For details, refer to the following manual:


Robot Controller Safety Function Manual

#### View Controller Status

Click the <View Controller Status> button to view the status data stored from a previous status export (see the Export Controller Status section above).

To view controller status:


- 1. Select [Tools]-[Controller].
- 2. Click on the <View Controller Status> button to open the [Browse For Folder] dialog.



3. Select the drive and folder where the information is stored.

RC+ : B\_Controller type\_Serial number\_Date and time Controller : BU Controller type Serial number Date and time

- 4. Click <OK> to view the selected controller status.
- 5. The [Controller Status Viewer] dialog will be displayed.



- 6. Select items to view from the tree on the left side of the dialog.
- 7. To view another controller status, click the ellipses button next to the Status Folder name and select a new status folder.

#### Reset Controller

Use the <Reset Controller> button to reset the SPEL controller.

#### Maintenance

It shows the parts consumption data for the Controller or Manipulator parts.

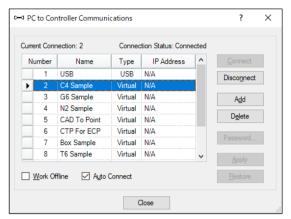
For details, refer to Robot Controller Manual: Alarm.

#### 5.12.9 [Vision] Command (Tools Menu)

For instructions, refer to the following manual.

Vision Guide 7.0 Hardware & Setup 2. Software Configuration

## 5.13 [Setup] Menu


The [Setup] menu contains the following commands:

- PC to Controller Communications
- System Configuration
- Preferences
- Options

#### 5.13.1 [PC to Controller Communications] Command (Setup Menu)

0-0

To configure communications with the Controller, select [PC to Controller Communications] from the [Setup] menu. The [PC to Controller Communications] dialog will be displayed as shown below:



#### **Description** Item

Connect Connect the selected communication.

Disconnect the communication. Disconnect

Add communication information of Ethernet or a virtual controller. Add

Clicking this button opens the dialog to specify the communication type.



Program total execution time

In the virtual controller, the total execution time of programs is limited to one hour.

If total execution is over one hour, a warning message appears.

You can execute the program again after the warning is displayed, and the total execution timer will be reset.

**Delete** Deletes selected communication information. Connection #1 "USB"

cannot be deleted.

Sets authentication passwords for the Ethernet connecting Controller and **Password** 

PC connection destination.

Apply Saves changes.

Restore Restores to previous settings.

Work Offline You can build a project without connecting to the controller in Offline

mode. Some functions such as Robot Manager are not available in this

mode.

**Auto Connect** If the connection is enabled, connects to the controller automatically.

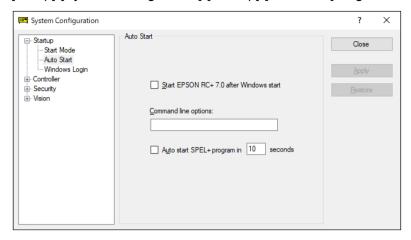
Close Closes the dialog.

#### 5.13.2 [System Configuration] Command (Setup Menu)


The [System Configuration] command opens a dialog that contains several pages that are used to configure the system for the EPSON RC+ 7.0 environment.

To open the [System Configuration] dialog, select [Setup]-[System Configuration]

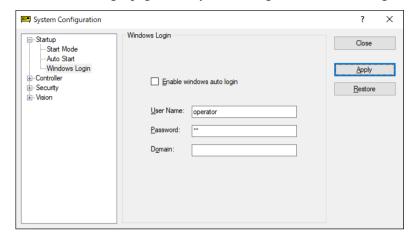
[Setup]-[System Configuration]-[Startup]


## [Setup]-[System Configuration]-[Startup]-[Start Mode] Page

From the Start Mode page, you can choose whether EPSON RC+ 7.0 starts in Auto mode or Program mode.



| Item     | Description                                                                                                           |  |
|----------|-----------------------------------------------------------------------------------------------------------------------|--|
| Auto     | Select Auto to start EPSON RC+ 7.0 in Auto mode. Refer to 4. <i>Operation</i> for details.                            |  |
| Program  | Select Program to start EPSON RC+ 7.0 in Program mode. Refer to 4. <i>Operation</i> for details.                      |  |
| Password | Click this button to change the password required to enter Program mode from Operator mode when EPSON RC+ 7.0 starts. |  |
| Apply    | Saves the current changes.                                                                                            |  |
| Restore  | Reverts back to previous settings.                                                                                    |  |
| Close    | Closes the System Configuration dialog.                                                                               |  |


## [Setup]-[System Configuration]-[Startup]-[Auto Start] Page



| Item                                   | Description                                                                                                                                                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start EPSON RC+ after<br>Windows start | Check this box if you want EPSON RC+ 7.0 to automatically start after Windows starts.                                                                                         |
| Command line options                   | Enter the command line options used when EPSON RC+ 7.0 is automatically started. This is active only when the Start EPSON RC+ 7.0 with Windows start checkbox is not checked. |
| Auto start SPEL+<br>program            | Check this box if you want to execute the main program after a delay.                                                                                                         |
|                                        | This is active only when starting in Operator mode and the control device is "Self".                                                                                          |
| Apply                                  | Saves the current changes.                                                                                                                                                    |
| Restore                                | Reverts back to previous settings.                                                                                                                                            |
| Close                                  | Closes the System Configuration dialog.                                                                                                                                       |

## [Setup]-[System Configuration]-[Startup]-[Windows Login] Page

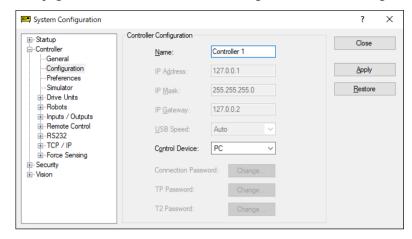
The Windows Login page allows you to configure the automatic login when Windows starts.



| Item                      | Description                                                                                                                           |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Enable windows auto login | Check this box if you want to automatically login to Windows when it starts. You must supply a valid user name, password, and domain. |
| User Name                 | Enter the name of a valid Windows user on the system.                                                                                 |
| Password                  | Enter the login password for the user.                                                                                                |
| Domain                    | Optional. If the PC is the member of a domain, enter the name here.                                                                   |
| Apply                     | Saves the current changes.                                                                                                            |
| Restore                   | Reverts back to previous settings.                                                                                                    |
| Close                     | Closes the System Configuration dialog.                                                                                               |

## [Setup]-[System Configuration]-[Controller]

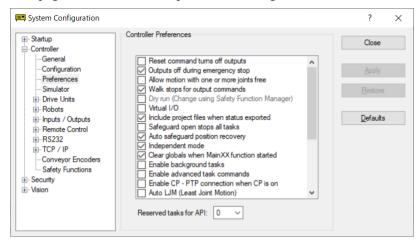
### [Setup]-[System Configuration]-[Controller]-[General] Page


This page allows the user to view general information about the controller.



| Item                | Description                                                   |
|---------------------|---------------------------------------------------------------|
| Serial #            | Displays the serial number of the current controller.         |
| MAC Address         | Displays the MAC Address of the controller.                   |
| Firmware Version    | Displays the firmware version used in the current controller. |
| Date / Time         | Displays the current date and time in the controller.         |
| <b>Project Name</b> | Displays the name of the project in the controller.           |
| Close               | Closes the Setup Controller dialog.                           |

## [Setup]-[System Configuration]-[Controller]-[Configuration] Page


This page allows the user to view and change the controller configuration settings.



| Item                       | Description                                                                                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                       | Use this text box to change the controller name. You may use any name up to 16 characters long using alphanumeric characters and underscore.                |
| IP Address                 | Use this text box to set current IP address of the LAN-1 port. The IP Address must be on the same subnet as the PC.                                         |
| IP Mask                    | Use this text box to set the IP mask of the LAN-1 port.<br>Note that the IP Mask must match the IP mask used for your network.                              |
| IP Gateway                 | Use this text box to set the IP gateway of the LAN-1 port. This is only required if you will be accessing the controller from outside of the local network. |
| <b>Control Device</b>      | Allows you to select the Control Device.                                                                                                                    |
| <b>Connection Password</b> | Allows you to change authentication passwords for the Ethernet connecting Controller and PC connection destination.                                         |
| TP Password                | Allows you to change the TP password.                                                                                                                       |
| T2 Password                | Allows you to change the TP2 password.                                                                                                                      |
| Apply                      | Saves the current changes. If necessary, the controller will be reset to use the new settings.                                                              |
| Restore                    | Reverts back to previous settings.                                                                                                                          |
| Close                      | Closes the Setup Controller dialog.                                                                                                                         |
|                            |                                                                                                                                                             |

#### [Setup]-[System Configuration]-[Controller]-[Preferences] Page

This page contains controller preference settings.



#### RESET command turns off outputs

When this preference is turned on, all outputs other than remote control outputs will be turned off when a Reset instruction is executed. The default setting is off.



The outputs of the standard I/O, expansion I/O, and Fieldbus I/O are included in the "outputs" mentioned in the above preferences [RESET command turns off outputs] and [Outputs off during Emergency Stop]. Memory I/O is not affected by these preferences. Therefore, memory I/O bits are not turned off by the RESET command execution or during Emergency Stop.



Regardless of whether it is checked or not, the output set for the hand will not be turned off even if the Reset command is executed. This is to prevent the workpiece from being unintentionally released by executing the Reset command. For the hand function, refer to the "Hand Function Manual".

#### Outputs off during Emergency Stop

When this preference is turned on, all outputs other than remote control outputs will be turned off when emergency stop occurs. Also, no outputs can be turned on until the emergency stop condition is cleared. The default setting is on.

Uncheck this preference to execute I/O On/Off using the NoEmgAbort task or background task after Emergency Stop. If it remains checked, the execution order of turn off by this preference and turn on using the task are not guaranteed.



You should design your system to always remove all power to output devices when emergency stop occurs. Even if the controller turns off outputs, the I/O hardware could malfunction.



Regardless of whether it is checked or not, the output set for the hand will not be turned off even if emergency stop is performed. This is to prevent the workpiece from being unintentionally released by performing emergency stop. For the hand function, refer to the "Hand Function Manual".

#### Allow motion with one or more joints free

When this preference is turned on, motion commands can be executed after SFree has been used to free one or more joints. The default setting is off.

#### Walk stops for output commands

When checked, the Walk command from the Run Menu will execute lines until after the next motion or output statement (whichever comes first). When unchecked, the Walk command will execute lines until after the next motion statement and will not stop for output statements. The default setting is on.

#### Dry run

This preference allows you to run programs without a robot connected to the controller. All program statements will work. Motion statements will execute approximately the same amount of time as when connected to a robot.



When using safety function (the Controller with Safety Board), the setting can be changed at this window.

Use the safety function manager and change it. For details, refer to the following manual.

Robot Controller Safety Function Manual 4.4 Making Dry Run Settings

#### Virtual I/O

This preference allows you to run programs using virtual I/O. When Virtual I/O is enabled, I/O commands do not affect the hardware I/O. There are also several commands available for turning on inputs from within a program. The default setting is off.



Remote function is also available when virtual I/O is enabled.

#### Include project files when status exported

This preference allows you to configure whether project files are included or not when the controller status is exported. Refer to 5.12.8 [Controller] Command (Tools Menu). The default setting is on.

#### Safeguard open stops all tasks

Check this option to cause all normal tasks and NoPause task to stop when the safeguard is open. Only NoEmgAbort task and background tasks will continue.

This option can be used in applications where pause / continue are not required.

The default setting is off.

#### Auto safeguard position recovery

This preference allows you to move a robot back to the position where it was at the safeguard opened when continuing the program execution.

Auto recover ON Automatically turns ON a motor and moves a robot in low power

status to the position where it was when the safeguard opened.

Continues the usual cycle. (Default)

Auto recover OFF In the Run Window and Operator Window, when an operator clicks

the Continue button, a dialog with a Recover button will be shown. The operator needs to hold down the Recover button until the motor is ON and the robot's return is finished. Otherwise the robot will

stop before reaching final position.

After verifying that the robot's return is finished, the operator clicks

the Continue button to continue the usual cycle.



The peak current is generated in each manipulator when the motor is turned ON. If multiple manipulators are connected using a Drive Unit or a PG Unit, the motor on timing at recovery is changed intentionally for each manipulator to avoid generating the peak current simultaneously. In this case, each manipulator requires approx. 1.5 seconds to turn on the motor.

#### Independent Mode

This preference allows you to use the controller without interfacing with the Windows (Independent mode).

Use this option when you want to use the controller through the external device using Remote I/O. This option is checked by default.

#### Initialize global variables when Main XX function started

This preference allows you to initialize the global variables as the main function becomes active.

Turn off this preference when you sue the global variables from the background task.

Otherwise, the variables will be initialized by the controller and the variable-access conflict from tasks will occur. This is turned on by default.

#### Enable background tasks

This preference allows you to execute background tasks. This is turned off by default.

#### Enable advanced task commands

This preference allows you to execute StartMain, Cont, Recover, Reset Error commands. This is turned off by default.



Before you execute StartMain, Cont, Recover, Reset Error commands, you should understand each command's specification and verify that the system has the appropriate condition to execute these commands.

Improper use, such as executing commands continuously in a loop, can reduce the security of system.

#### Enable CP - PTP connection when CP is ON

This preference allows you to overlap the trajectories of CP motion and PTP motion during CP ON.



Over-speed error or Over-acceleration-speed error may occur according to the motion acceleration / deceleration speed setting. If the error occurs, adjust the acceleration / deceleration speed setting or uncheck this checkbox.

#### Auto LJM (Least Joint Motion)

This preference allows you to enable Auto LJM at the controller start up. To disable Auto LJM temporarily, use AutoLJM Off command.



If Auto LJM is enabled at all times, this function automatically adjusts the posture of the robot to reduce the motion distance, even when you intended to move the joint widely. Therefore, it is recommended to disable Auto LJM at the controller start up and operate the robot as you desired using AutoLJM On command or LJM function.

#### Disable LJM in Teach Mode

This preference allows you to invalidate LJM in the TEACH mode. The LJM function becomes invalid regardless of the command of AutoLJM. The default setting is unchecked.

#### Disable Point flag check

This preference allows you to continue operation even when point flags, one was specified as a target point and the other one after the motion completion, do not match in a CP motion.

However, if the flags do not match at the transferring point while CP On is used, the robot will stop at the point and the motion will not become a path motion.

#### Motor off when Enable switch off in Teach Mode

This preference is read-only. It shows whether motors will be turned off when the Enable switch is off during Teach Mode.

#### Enable robot maintenance data

This preference allows you to enable the parts consumption management for the Controller and robot parts.

The default setting is unchecked.



Initial status (at shipment) of controller firmware Ver.7.2.0.x or later is enabled.

#### Motor power low when ForcePowerLow signal OFF

This preference allows you to specify whether or not to invert the logic of the ForcePowerLow signal input value.

When this checkbox is selected, the ForcePowerLow signal will work as the forced low power function which operates the robot in the low power mode when remote I/O input signal is Low.

When this checkbox is unchecked, the ForcePowerLow signal will work as the forced low power function which operates the robot in the low power mode when the remote I/O input signal is High.

The default setting is unchecked.

For details of the ForcePowerLow signal, refer to 12.1.6 Remote Inputs.

#### ForcePowerLow signal change pauses all tasks

This preference allows you to specify whether to stop or temporarily stop the tasks when the input of the ForcePowerLow (forced low power) signal is changed.

When this checkbox is selected, all tasks and commands will be temporarily stopped when the remote I/O input signal is changed. The program execution can be continued.

When this checkbox is unchecked, all tasks and commands will be stopped when the remote I/O input signal is changed. The program needs to be restarted.

The default setting is unchecked.

For details of the ForcePowerLow signal, refer to 12.1.6 Remote Inputs.

#### Disable Test (T2)

This preference is read-only. It shows whether the execution of Test (T2) of TP3 is prohibited.

#### Disable connection password

This preference allows you to disable the PC (Ethernet) authentication for PC (Ethernet) connections.

By default, the checkbox is not selected.

#### Disable connection from EPSON RC+ Express Edition

When this checkbox is checked, the connection from Epson RC+ Express Edition is restricted. Security features do not apply to Epson RC + Express Edition. Check this checkbox if you want to limit unintended connections.

By default, it is unchecked.

#### Applying XYLim to motion trajectory and pulse motion

When this checkbox is checked, XYLim is applied to not only the motion commands of

target coordinate, but also motion trajectory from starting point of motion to target coordinate. Moreover, XYim is applied to pulse motion.

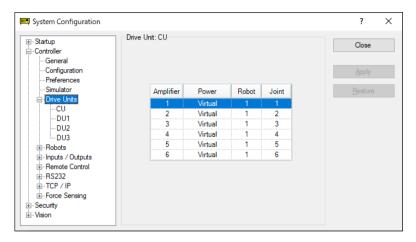


■ When this checkbox is not checked, robot may pass outside of XYIim area. Be careful.

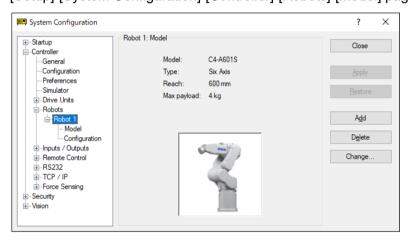
#### Reserved tasks for API

This setting is used to execute more than one Spel class methods of the RC+ API.

You can set up to 16 tasks. The default is 0.




The RC+ API tasks use some of the normal tasks. Therefore, if this setting is used, the number of normal tasks available for the Spel+ programs will be as follows:


(Normal tasks) = 32 - (RC + API tasks)

#### [Setup]-[System Configuration]-[Controller]-[Drive Units]

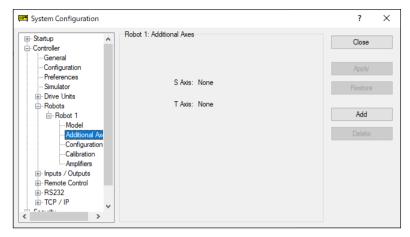
This page displays the status of the Drive Unit. It shows Output, Robot, and Axis settings of each Drive Unit.



# [Setup]-[System Configuration]-[Controller]-[Robots] [Setup]-[System Configuration]-[Controller]-[Robots]-[Model] page

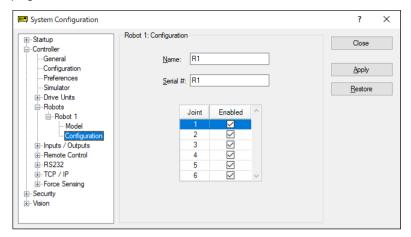


| Item        | Description                                                                          |
|-------------|--------------------------------------------------------------------------------------|
| Model       | Displays the robot model.                                                            |
| Type        | Displays the robot type.                                                             |
| Reach       | Displays the robot length (J1 $\pm$ J2 for SCARA robots) or reach for 6-axis robots. |
| Max payload | Displays maximum payload of the robot.                                               |
| Add         | Adds a robot.                                                                        |
| Remove      | Deletes a robot.                                                                     |
| Close       | Closes the System Configuration dialog.                                              |
|             |                                                                                      |



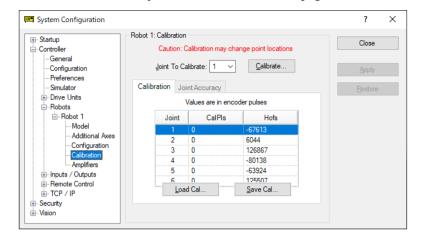

When using safety function (the Controller with Safety Board), do not change the robot model of the time of shipment. It cannot be complied with Safety Function.




For the Controller with Safety Board, assign a robot using the safety function to Robot 1.

[Setup]-[System Configuration]-[Controller]-[Robots]-[Robot\*\*]-[Additional Axes] For details of the additional ST axis, refer to 10.2 Configuration of Additional Axes.




| Item    | Description                                      |
|---------|--------------------------------------------------|
| S Axis  | Displays the configuration of additional S axis. |
| T Axis  | Displays the configuration of additional T axis. |
| Apply   | Saves the current changes.                       |
| Restore | Reverts back to previous settings.               |
| Add     | Adds an additional axis.                         |
| Remove  | Deletes an additional axis.                      |
| Close   | Closes the dialog.                               |

## [Setup]-[System Configuration]-[Controller]-[Robots]-[Robot\*\*]-[Configuration] page

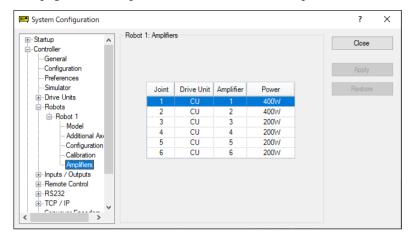


| Name Enter a Name for the robot.                                                                 |   |
|--------------------------------------------------------------------------------------------------|---|
| Serial # Enter the Serial number of the robot.                                                   |   |
| <b>Joint, Enabled</b> These checkboxes determine if the respective joint is enabled of disabled. | r |
| Apply Saves the current changes.                                                                 |   |
| <b>Restore</b> Reverts back to previous settings.                                                |   |
| Closes the Setup Controller dialog.                                                              |   |

[Setup]-[System Configuration]-[Controller]-[Robots]-[Robot\*\*]-[Calibration] Page You can calibrate each joint of the robot from this page.



| Item               | Description                                                                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Joint to Calibrate | Select the joint that you want to Calibrate.                                                                                                   |
| Calibrate          | Starts the Calibration Wizard dialog that walks you through the calibration process.                                                           |
| Calpls             | These are the Calpls settings for each joint. Normally, the calibration wizard will calculate these values.                                    |
| Hofs               | These are the Hofs settings for each joint. Normally, the calibration wizard will calculate these values.                                      |
| Load Cal           | Use this button to load data from a previously save calibration file. After the data is loaded, the grid will be refreshed to show the values. |
| Save Cal           | Use this button to save the calibration data to a calibration file.                                                                            |
| Apply              | Saves the current changes.                                                                                                                     |
| Restore            | Reverts back to previous settings.                                                                                                             |
| Close              | Closes the Setup Controller dialog.                                                                                                            |



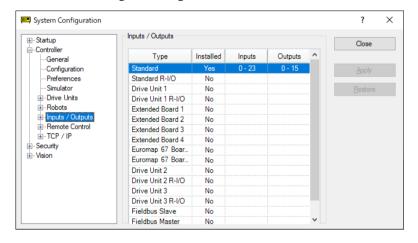

When using safety function (the Controller with Safety Board), changing Hofs requires start the Safety Function Manager to update the Hofs setting on the safety board. For details, refer to the following manual.

Robot Controller Safety Function Manual 4.2.2.1 Checking Settings When Starting up Safety Function Manager

### [Setup]-[System Configuration]-[Controller]-[Robots]-[Robot\*\*]-[Amplifiers] Page

This page shows the power values for the motor amplifiers installed in the controller.




 Item
 Description

 Robot Amplifiers
 This shows the power for each robot amplifier currently in the controller along with the associated drive unit and amplifier number.

 Close
 Closes the System Configuration dialog.

#### [Setup]-[System Configuration]-[Controller]-[Inputs / Outputs] Page

This page shows the I/O hardware installed in the controller. There are no settings to configure.

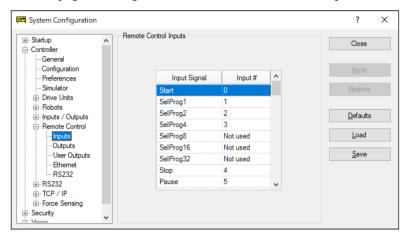


[Setup]-[System Configuration]-[Controller]-[Inputs / Outputs]-[Fieldbus Master]

For details of Fieldbus master, refer to the following manual:

Robot Controller option: Fieldbus I/O

[Setup]-[System Configuration]-[Controller]-[Inputs / Outputs]-[Fieldbus Slave]

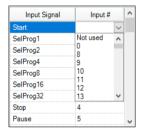

For details of Fieldbus slave, refer to the following manual:

Robot Controller option: Fieldbus I/O

## [Setup]-[System Configuration]-[Controller]-[Remote Control] For details of Remote function, refer to 12. Remote Control.

#### [Setup]-[System Configuration]-[Controller]-[Remote Control]-[Inputs] Page

Use this page to configure the controller remote control inputs.




#### Item Description

Input #

Select an input bit to use for the corresponding input signal. Select "Not used" to disable the remote input.

For example, if "Start" is assigned to I/O input bit 0, select "Not used" to use this as a normal I/O input.



**Apply** Saves the current changes.

**Restore** Reverts back to previous settings.

**Defaults** Click this button to set the default remote inputs. First, a dialog box will be displayed asking you which type of inputs to use for defaults: Standard, Extended I/O, Fieldbus master, or Fieldbus slave I/O. You can also select

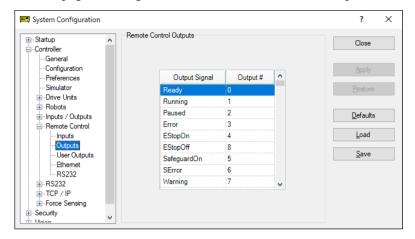
Clear All to set all remote inputs to Not used.

**Load** Reads the assigned remote inputs and outputs from a file on the PC and

save it in the controller.

**Save** Saves the assigned remote inputs and outputs shown in the dialog to a file

on the PC.


**Close** Closes the Setup Controller dialog.



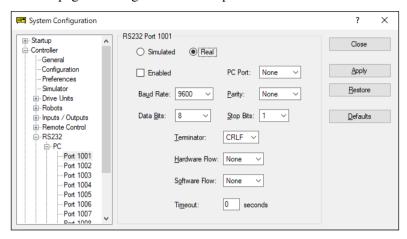
Both the remote inputs and outputs are loaded or saved together when using <Load> or <Save>.

## [Setup]-[System Configuration]-[Controller]-[Remote Control]-[Outputs] Page

Use this page to configure the controller remote control outputs.



| Item     | Description                                                                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output # | Select an output bit to use for the corresponding output signal. Select "Not used" to disable the remote output.  For example, if "Ready" is assigned to I/O output bit 0, select "Not used" to use this as a normal I/O output.                                                                     |
| Apply    | Saves the current changes.                                                                                                                                                                                                                                                                           |
| Restore  | Reverts back to previous settings.                                                                                                                                                                                                                                                                   |
| Defaults | Click this button to set the default remote outputs. First, a dialog box will be displayed asking you which type of outputs to use for defaults: Standard, Extended I/O, Fieldbus master, or Fieldbus slave I/O. You can also select <clear all=""> to set all remote outputs to "Not used".</clear> |
| Load     | Reads the assigned remote inputs and outputs from a file on the PC and save it in the controller.                                                                                                                                                                                                    |
| Save     | Saves the assigned remote inputs and outputs shown in the dialog to a file on the PC.                                                                                                                                                                                                                |
| Close    | Closes the Setup Controller dialog.                                                                                                                                                                                                                                                                  |

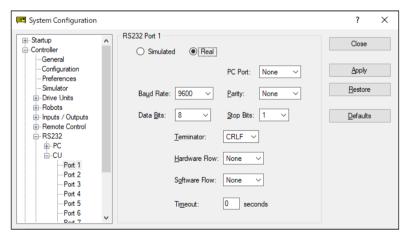



Both the remote inputs and outputs are loaded or saved together when using <Load> or <Save>.

#### [Setup]-[System Configuration]-[Controller]-[RS232]

#### [Setup]-[System Configuration]-[Controller]-[RS232]-[PC] Page

Use this page to configure the RS232 ports on PC.

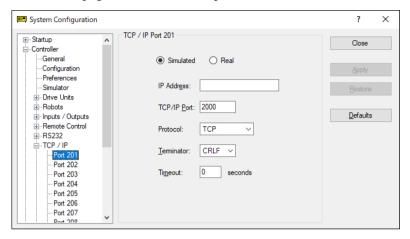



#### To configure an RS-232 port

- 1. Select [System Configuration] from the [Setup] menu and select the page for the RS232C port you want to configure.
- 2. Select the [PC port] and change the settings as desired.
- 3. Set the [Enabled] checkbox.
- 4. Click <Apply> to save the new settings and click <Close>.

### [Setup]-[System Configuration]-[Controller]-[RS232]-[CU] Page

There is one page for each PS232C port. If there are no RS232C ports installed in the special slot, then no selections are visible in the tree.




#### To configure an RS-232 port

- 1. Select [System Configuration] from the [Setup] menu and select the page for the RS232 port you want to configure.
- 2. Change the settings as desired.
- 3. Click <Apply> to save the new settings.
- 4. Click <Close> to close the dialog box.

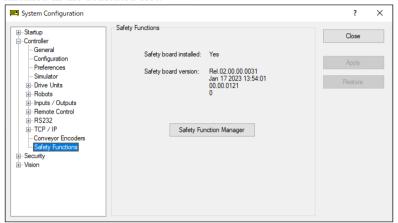
#### [Setup]-[System Configuration]-[Controller]-[TCP/IP] Pages

There is one page for each TCP / IP port in the controller.



#### To configure a TCP/IP port

- 1. Select [System Configuration] from the [Setup] menu and select the page for the TCP/IP port you want to configure.
- 2. Enter the IP address for the controller or PC that you want this controller to communicate with.
- 3. Enter the TCP/IP port number. This must be the same port number that is used on the host device. It must be different from any of the other TCP/IP port numbers used for the other TCP/IP ports.
- 4. Change the other settings as desired.
- 5. Click <Apply> to save the new settings and click <Close>.


#### [Setup]-[System Configuration]-[Controller]-[Conveyor Encoders]

For details, refer to 16. Conveyor Tracking.

#### [Setup]-[System Configuration]-[Controller]-[Safety Functions]

Displays information of safety board when using safety function (the Controller with Safety Board).

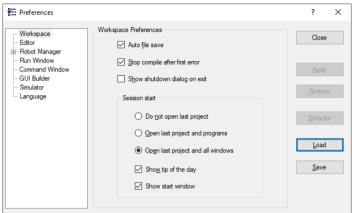
Also, it is possible to start the safety function manager and change the parameter. It won't be displayed if the Controller is not with the safety board, or the safety board is not installed in the dedicated slot.



ItemDescriptionSafety board installedDisplays weather the safety board is installed or not.Safety board versionDisplays the version of the safety board.Safety FunctionStarts the safety function manager. For the instructions, refer to the following manual.Robot Controller Safety Function Manual 4. Setting Safety Functions (Setting Software: Safety Function Manager)

#### [Setup]-[System Configuration]-[Vision]

For instructions, refer to the following manual.


Vision Guide 7.0 Hardware & Setup 2. Software Configuration

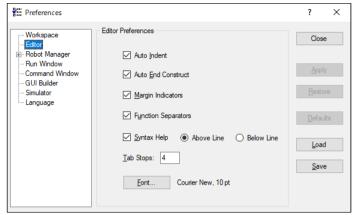
# 5.13.3 [Preferences] Command (Setup Menu)

The Preferences command opens a dialog that contains several pages that are used to configure user preferences for the EPSON RC+ 7.0 environment. To open the [Preferences] dialog box, select [Setup]-[Preferences].

# [Setup]-[Preferences]-[Workspace] Page

From this page, you can configure your workspace preferences.



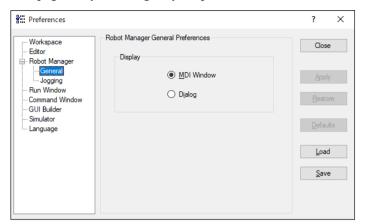

| Item                                | Description                                                                                                                                                                                                                                                                                             |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto file save                      | Checking this box will cause EPSON RC+ 7.0 to automatically save any open files before executing a command that requires the file to be saved. For example, if a file needs to be saved before executing a project build, the file will automatically be saved before running the build. Default is On. |
| Stop compile after first error      | Stops compile after first error occurs. This makes it easier to see<br>the first error in the status pane and allows you to fix one error at<br>a time. Default is On.                                                                                                                                  |
| Display the shutdown dialog on exit | Displays the shutdown dialog when closing the EPSON RC+7.0. For details, refer to 5.7.11 Exit Command (File Menu). Default is Off.                                                                                                                                                                      |
| Do not open last projec             | et If this radio button is selected, the last project will not be opened when EPSON RC+ 7.0 is started.                                                                                                                                                                                                 |
| Open last project and program file  | If this radio button is selected, the last project will be opened and<br>any program windows that were previously opened will be<br>opened.                                                                                                                                                             |
| Open last project and all windows   | If this radio button is selected, the last project will be opened and all windows will be restored to their previous locations. This is the default setting.                                                                                                                                            |
| Show tip of the day                 | If this checkbox is on, the Tip of the Day dialog will be displayed when EPSON RC+ 7.0 is started.                                                                                                                                                                                                      |
| Show start window                   | If this checkbox is on, Start Window will be displayed when EPSON RC+ 7.0 is started.                                                                                                                                                                                                                   |
| Apply                               | Saves the current changes.                                                                                                                                                                                                                                                                              |
| Restore                             | Reverts back to previous settings.                                                                                                                                                                                                                                                                      |
| Default                             | Sets the default values.                                                                                                                                                                                                                                                                                |
| Load                                | Reads the preferences previously saved on the PC.                                                                                                                                                                                                                                                       |
| Save                                | Saves the preferences to a file on the PC.                                                                                                                                                                                                                                                              |

Closes the Preferences dialog.

Close

# [Setup]-[Preferences]-[Editor] Page

This page is used to configure your preferences for the program editor windows.

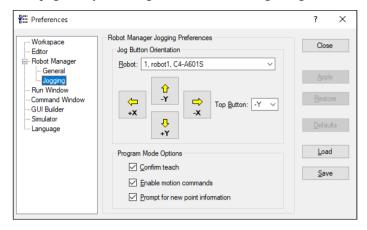



| Auto Indent  Check this box if you want new lines to follow the indentation the previous line. Also, lines will automatically be indented a Do, If, Else, For, Select, and Case statements. Default is on.  Auto End Construct  Check this box if you want EPSON RC+ 7.0 to add the construct statement for a loop construct. For example, if you e a For statement, then a Next statement will be act automatically. Default is on.  Margin Indicators  Check this box to display a margin on the left side. This may be a construct. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| construct statement for a loop construct. For example, if you ear For statement, then a Next statement will be acautomatically. Default is on.                                                                                                                                                                                                                                                                                                                                                                                         |
| Margin Indicators Check this box to display a margin on the left side. This ma                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| is used to indicate lines with breakpoints, current step line, cur execution line. Default is on.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Function Separators</b> Check this box to display a line after each Fend statem Default is on.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Syntax Help  Check this box to enable the Syntax Help keyword list and Syntax Help window. The Syntax Help keyword list appears with typing a keyword. The Syntax Help window displays syntax a keyword after it has been typed. Default is on.                                                                                                                                                                                                                                                                                        |
| <b>Above Line</b> Select this button to display the syntax help window above the input line.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Below Line</b> Select this button to display the syntax help window below the input line.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Tab Stops</b> Type in the number of columns to move for the TAB key. Det is 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Font Click on the Font button to open the fonts dialog. Choose the you desire for the editor. The monitor window also uses the editor. The current font name and size is displayed next to <font> button.</font>                                                                                                                                                                                                                                                                                                                       |
| Apply Applies the current settings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Restore</b> Reverts back to the previous settings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Defaults</b> Sets default value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Load</b> Reads the preferences previously saved on the PC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Save Saves the preferences to a file on the PC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Close Closes the Preferences dialog.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### [Setup]-[Preferences]-[Robot Manager]

#### [Setup]-[Preferences]-[Robot Manager]-[General] Page

This page lets you configure your preferences for the Robot Manager.




| Item     | Description                                                                           |  |
|----------|---------------------------------------------------------------------------------------|--|
| Display  | Choose if you want the Robot Manager to be displayed as an MDI Window or as a Dialog. |  |
| Apply    | Applies the current settings.                                                         |  |
| Restore  | Reverts back to the previous settings.                                                |  |
| Defaults | Sets default values.                                                                  |  |
| Load     | Reads the preferences previously saved on the PC.                                     |  |
| Save     | Saves the preferences to a file on the PC.                                            |  |
| Close    | Closes the Preferences dialog                                                         |  |

The Robot Manager can be displayed as an MDI child window (default) or as a dialog. When displayed as an MDI child, the Robot Manager is displayed in the MDI document area and can remain open while you work with other windows and dialogs. When displayed as a dialog, you can only work with the Robot Manager controls until you close the dialog. When using screen resolutions less than  $1024 \times 768$ , only the Dialog mode is allowed.

#### [Setup]-[Preferences]-[Robot Manager]-[Jogging] Page

This page lets you configure the Robot Manager Jog and Teach page.



#### **Setting Jog Button Orientation**

| Item  | Description     |
|-------|-----------------|
| Robot | Select a robot. |

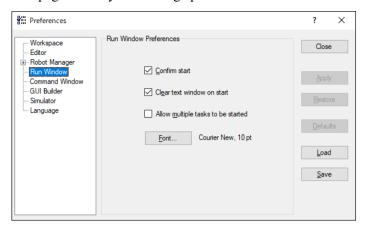
The jog button orientations are useful for "aligning" your PC monitor with the robot's Cartesian coordinate system. Align the buttons so that the robot moves in the direction of the arrows.

You can change the orientation of the jogging buttons and arrow keys for the X and Y axes by selecting the desired top button from the **Top Button** dropdown list.

You can also click on one of the buttons to change it to the top button position.



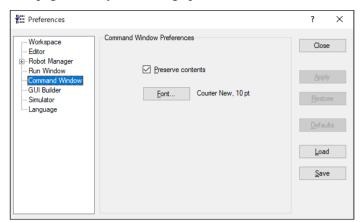



These options affect the Robot Manager Jog & Teach page when used from program mode.

These settings do not affect the Robot Manager when used for operators in auto mode, such as for the Operator Window or from RC+ API. To configure the Robot Manager for operators, see [Project]-[Properties]-[Operator Settings]-[Robot Manager].

| Item                             | Description                                                                                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Confirm teach                    | Check this box if you want a confirmation prompt each time you press the <teach> button on the Robot Manager Jog &amp; Teach page.</teach> |
| Enable motion commands           | Check this box if you want to execute motion commands (Go, Jump, etc.) from the Robot Manager Jog & Teach page.                            |
| Prompt for new point information | Check this box if you want to be prompted for point label and description when a new point is taught using the Teach button.               |
| Apply                            | Applies the current settings.                                                                                                              |
| Restore                          | Reverts back to the previous settings.                                                                                                     |
| Defaults                         | Sets default values.                                                                                                                       |
| Load                             | Reads the preferences previously saved on the PC.                                                                                          |
| Save                             | Saves the preferences to a file on the PC.                                                                                                 |
| Close                            | Closes the Preferences dialog.                                                                                                             |

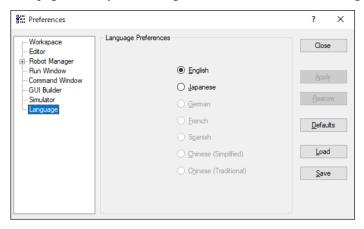
# [Setup]-[Preferences]-[Run Window] Page


This page allows you to change preferences for the Run Window.



| Item                               | Description                                                                                                                                                                              |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confirm Start                      | This checkbox allows you to select if you want to see a confirmation message box before a program is started.                                                                            |
| Clear text window on start         | Checking this will cause the Run Window text pane to be cleared each time the <start> button is clicked.</start>                                                                         |
| Allow multiple tasks to be started | Checking this allows you to start a task from the Run window while other tasks are running. The <start> button will not be disabled after starting a task.</start>                       |
| Font                               | Click on the <font> button to open the fonts dialog. Choose the font you desire for the Run window. The current font name and size is displayed next to the <font> button.</font></font> |
| Apply                              | Applies the current settings.                                                                                                                                                            |
| Restore                            | Reverts back to the previous settings.                                                                                                                                                   |
| Defaults                           | Sets default values.                                                                                                                                                                     |
| Load                               | Reads the preferences previously saved on the PC.                                                                                                                                        |
| Save                               | Saves the preferences to a file on the PC.                                                                                                                                               |
| Close                              | Closes the Preferences dialog.                                                                                                                                                           |

# [Setup]-[Preferences]-[Command Window] Page


This page allows you to change preferences for the Command Window.



| Item              | Description                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------|
| Preserve contents | Checking this option will cause the command window to preserve its contents between sessions. |
| Font              | Click on the Font button to change the font for the Command window.                           |
| Apply             | Saves the current changes.                                                                    |
| Restore           | Reverts back to the previous values.                                                          |
| Defaults          | Set default values.                                                                           |
| Load              | Reads the preferences previously saved on the PC.                                             |
| Save              | Saves the preferences to a file on the PC.                                                    |
| Close             | Closes the Preferences dialog.                                                                |

#### [Setup]-[Preferences]-[Language] Page

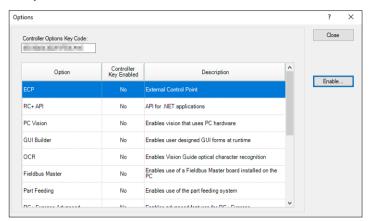
This page allows you to change the EPSON RC+ 7.0 GUI language.



When EPSON RC+ 7.0 is installed on a Windows system using a Western language, then the English, German, French, and Spanish selections are available.

When it is installed on a Windows system using Japanese, then English and Japanese are available.

When it is installed on a Windows system using Chinese, then English, Chinese (Simplified), and Chinese (Traditional) are available.


Select the desired language and click the <Apply> button to change languages.

| Item     | Description                                                                                     |  |
|----------|-------------------------------------------------------------------------------------------------|--|
| Language | This set of option buttons allows you to choose which language to us for the EPSON RC+ 7.0 GUI. |  |
| Apply    | Saves the current changes.                                                                      |  |
| Restore  | Reverts back to the previous values.                                                            |  |
| Defaults | Set the default language.                                                                       |  |
| Load     | Reads the preferences previously saved on the PC.                                               |  |
| Save     | Saves the preferences to a file on the PC.                                                      |  |
| Close    | Closes the Preferences dialog.                                                                  |  |

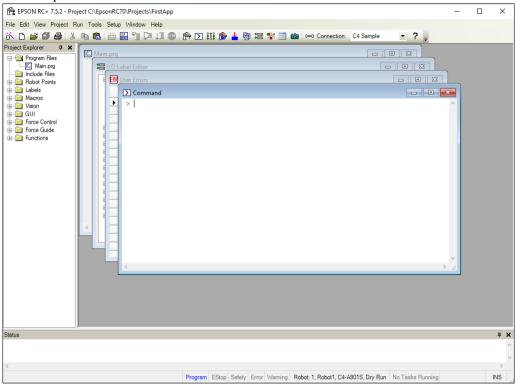
# 5.13.4 [Options] Command (Setup Menu)

This dialog allows you to view and enable options in the controller.

EPSON RC+ 7.0 uses a key that is stored in the Spel controller board to enable options on the system.

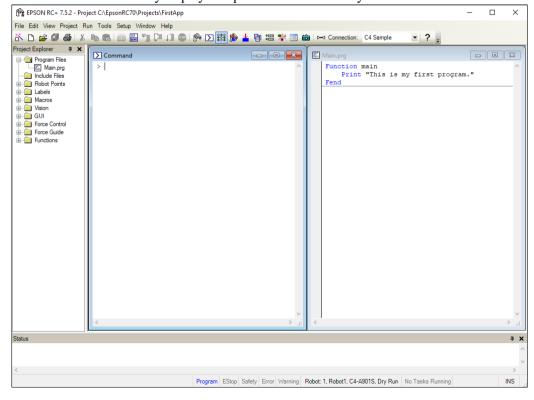


If an option is not enabled, you can purchase it from the supplier of your region. When you call to purchase, you must give the **Options Key Code** to the operator. You will then be given a code to enable the option for the current software options key.


After receiving the code, click the <OK> button and enter the code. The option you purchased should now be enabled.

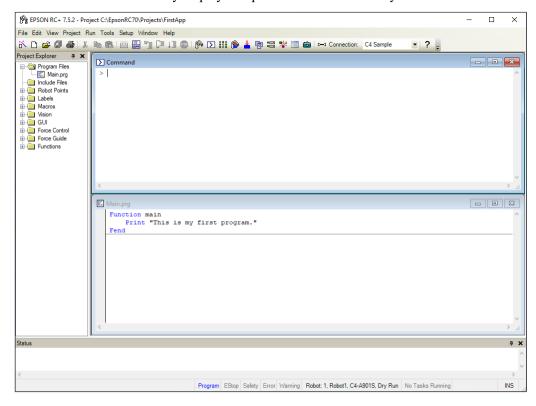
# 5.14 [Window] Menu

The [Window] menu contains selections for managing the currently open EPSON RC+ 7.0 child windows.


### 5.14.1 [Cascade] Command (Window Menu)

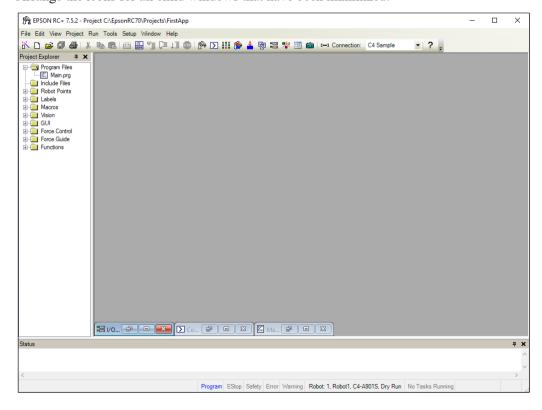
Use Cascade to show all of the currently open files in windows of the same size, stacked one on top of another.




# 5.14.2 [Tile Vertical] Command (Window Menu)

Use Tile Vertical to evenly display all open windows vertically.




# 5.14.3 [Tile Horizontal] Command (Window Menu)

Use Tile Horizontal to evenly display all open windows horizontally.



# 5.14.4 [Arrange Icons] Command (Window Menu)

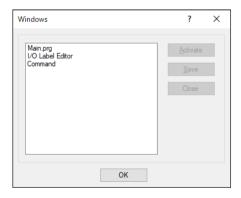
Arrange the icons for all child windows that have been minimized.



# 5.14.5 [Close All] Command (Window Menu)

This command closes all EPSON RC+ 7.0 child windows.

### 5.14.6 1, 2, 3 Command (Window Menu)


A listing of currently open document windows is displayed at the bottom of the [Window] menu.

When you choose an open window from the listing, you make that document active. A check mark appears in front of the document name of the currently active window.



### 5.14.7 [Windows] Command (Window Menu)

This command displays a dialog that contains a list of all currently open EPSON RC+ 7.0 windows.



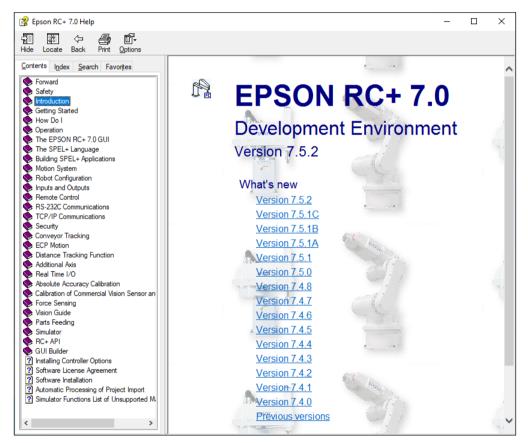
| Item     | Description                                 |
|----------|---------------------------------------------|
| Activate | Brings the selected window into focus.      |
| Save     | Saves the contents of the selected windows. |
| Close    | Closes the selected windows.                |
| OK       | Closes the dialog.                          |

# 5.15 [Help] Menu

The [Help] menu contains selections for accessing the help system and manuals along with version information.

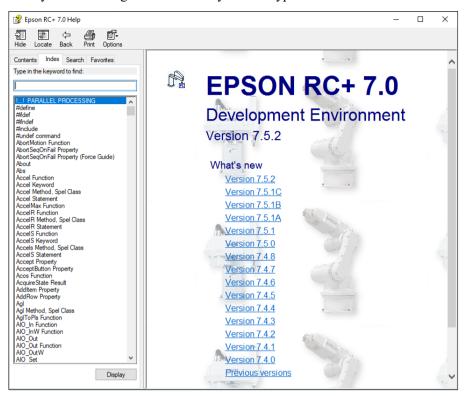
# 5.15.1 [How Do I] Command (Help Menu)

Select [How Do I] to view topics that contain information for performing common tasks in EPSON RC+ 7.0.


#### **Shortcuts**

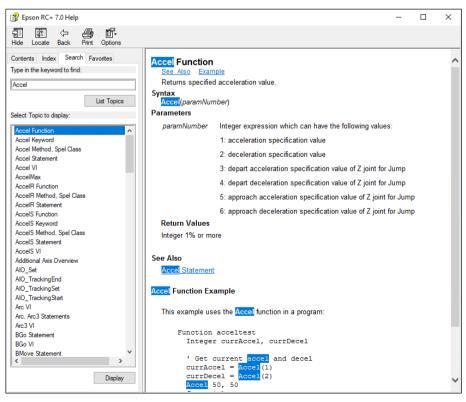
Keys: Ctrl + F1

### 5.15.2 [Contents] Command (Help Menu)


This command opens the Contents view for the EPSON RC+ 7.0 online help system.

From the Contents view, you can navigate through all of the topics in the help system. Double-click on a book icon to open or close the subtopic list contained within the book folder.




# 5.15.3 [Index] Command (Help Menu)

This command opens the Index view for the EPSON RC+ 7.0 online help system. From the Index view, as you begin typing in a keyword, the alphabetical topic list will show the keywords starting with the letters you have typed.



# 5.15.4 [Search] Command (Help Menu)

This command opens the Search view for the EPSON RC+ 7.0 online help system. From the Search view, you can type in one or more keywords and click List Topics to show a list of all topics containing one or more of the keywords. The keywords are highlighted in the topics as shown below.



# 5.15.5 [Manuals] Submenu (Help Menu)

The Help Menu Manuals submenu contains selections for each of the manuals in PDF format. These include manuals for EPSON RC+ 7.0, SPEL<sup>+</sup> Language Reference, Controller, Robot, and the Options.

### 5.15.6 [About EPSON RC+ 7.0] Command (Help Menu)

The About command displays a dialog box showing the current version of the EPSON RC+ 7.0 software, along with copyright and license information. When calling technical support about EPSON RC+ 7.0, you should report the version you are using from this dialog.



# 6. The SPEL+ Language

This chapter contains information about the SPEL<sup>+</sup> Language.

#### Contents

- Overview
- Program structure
- Commands and statements
- Function and variable names
- Date types
- Operators
- Working with variables
- Working with strings
- Multi-statements
- Labels
- Comments
- Error handling
- Multi-tasking
- Robot coordinate systems
- Robot arm orientations
- Robot motion commands
- Working with robot points
- Input and output control
- Using Traps

# 6.1 Overview

SPEL<sup>+</sup> is a BASIC-like programming language that runs in the controller. It supports multitasking, motion control, I/O control.

Programs are written in ASCII text and then compiled into executable object files. Several language instructions can also be executed in immediate mode from the Command window.

# 6.2 Program Structure

# 6.2.1 What is a SPEL+ program?

A SPEL+ program is a collection of functions, variables, and macros. You can put one or more statement in each line of a program (Multi-Statement). Every program file has a ".prg" extension and is stored in the project directory.

Each project must include at least one program and define the function called "main". "Function main" is the default definition. If "Function main" is not found, an error occurs.

In addition, you can define other 63 main functions in the same project. Each program has own start function: main1, main2...main63. Each of the main functions can be started from the [Operator window], the remote console, or RC+ API.

A function definition begins with the Function statement and ends with the Fend statement.

The following program file contains two function definitions. Function Main calls function "Func1".

```
MAIN.PRG
Function Main
Call Func1
...
Fend
Function Func1
Jump pickpnt
...
Fend
```

#### 6.2.2 Calling functions

You can execute a user function by using the Call statement. The function can reside in any program file in the current project. You can also omit the Call statement if you don't need the return value. When Call is omitted, then parentheses for the arguments must not be supplied. To get a return value, use the function in the right hand side of an expression.

Here are some examples:

```
Call MyFunc(1, 2)
MyFunc 1, 2
Print MyFunc(1, 2)
```

# 6.3 Commands and Statements

Commands and statements consist of a SPEL<sup>+</sup> instruction followed by the parameters for that instruction.

A command is executed immediately. You can execute commands from the Command window or from the Macros dialog box.

Statements can be used only in programs.

Statements can include more than one SPEL<sup>+</sup> instruction. When you put several statements in a line of a program (Multi-Statement), use a semi-colon (;) to separate instructions.

The maximum length for a line is 512 characters.

# 6.4 Function and Variable Names (Naming restriction)

The function name can include up to 64 characters. The variable name can include up to 32 alphanumeric, Japanese, or underscore characters. Characters can be upper case or lower case.

The following names are valid:

```
Function main
Real real_var
Integer IntVar
```

Function and variable names cannot begin with an underscore.

SPEL<sup>+</sup> keywords cannot be used as function or variable names.

String variables must have an additional dollar sign ('\$') suffix, as shown in the example below:

```
Function Test
String modname$
Print "Enter model name:"
Line Input modname$
Print "model is ", modname$
Fend
```

#### Restrictions for naming in SPEL+ language

- Characters can be alphanumeric, Japanese, or underscore character.
- Use alphabets for the first letter.
- Characters can be upper case or lower case.
- No keywords can be used.
- Maximum limits of names are as follows. (For one –byte character)

| Name             | Max. limit |
|------------------|------------|
| Point label      | 32         |
| I/O label        | 32         |
| User error label | 16         |
| Function name    | 64         |
| Variable name    | 32         |
| Line label       | 32         |

# 6.5 Data Types

You can declare different types of data in your program. All variables must be declared. The following table shows the different data types for the SPEL<sup>+</sup> language.

| Data Type | Size      | Range                                                   |
|-----------|-----------|---------------------------------------------------------|
| Boolean   | 2 byte    | True or False                                           |
| Byte      | 2 byte    | -128 to +127                                            |
| Double    | 8 bytes   | -1.79E+308 to 1.79E+308 Number of significant figure is |
|           |           | 14                                                      |
| Int32     | 4 bytes   | -2147483648 to +2147483647                              |
| Int64     | 8 bytes   | -9223372036854775808 to +9223372036854775807            |
| Integer   | 2 bytes   | -32768 to +32767                                        |
| Long      | 4 bytes   | -2147483648 to +2147483647                              |
| Real      | 4 bytes   | -3.40E+38 to 3.40E+38 Number of significant figure is 6 |
| Short     | 2 bytes   | -32768 to +32767                                        |
| String    | 256 bytes | All ASCII characters Up to 255 characters               |
| UByte     | 2 bytes   | 0 to +255                                               |
| UInt32    | 4 bytes   | 0 to 4294967295                                         |
| UInt64    | 8 bytes   | 0 to 18446744073709551615                               |
| UShort    | 2 bytes   | 0 to 65535                                              |

# 6.6 Operators

The following table shows the operators for the SPEL<sup>+</sup> language.

| Keyword or Symbol | Example                             | Description                                                                                    |
|-------------------|-------------------------------------|------------------------------------------------------------------------------------------------|
| +                 | A+B                                 | Addition                                                                                       |
| _                 | A-B                                 | Subtraction                                                                                    |
| *                 | A*B                                 | Multiplication                                                                                 |
| /                 | A/B                                 | Division                                                                                       |
| **                | A**B                                | Exponentiation                                                                                 |
| =                 | A=B                                 | Equal                                                                                          |
| >                 | A>B                                 | Greater than                                                                                   |
| <                 | A <b< td=""><td>Less than</td></b<> | Less than                                                                                      |
| >=                | A>=B                                | Greater than or equal                                                                          |
| <=                | A<=B                                | Less or than equal                                                                             |
| <>                | A⇔B                                 | Not equal                                                                                      |
| And               | A And B                             | Performs logical and bitwise AND operation.                                                    |
| Mod               | A Mod B                             | Returns the remainder obtained by dividing a numeric expression by another numeric expression. |
| Not               | Not A                               | Performs logical or bitwise negation of the operand.                                           |
| Or                | A Or B                              | Performs the bitwise Or operation on the values of the operands.                               |
| Xor               | A Xor B                             | Performs the bitwise Xor operation on the values of the operand.                               |

# 6.7 Working with Variables

#### 6.7.1 Variable scopes

There are three different scopes for variables in SPEL<sup>+</sup>:

- Local
- Module
- Global

#### 6.7.2 Local variables

Local variables are available to all statements in the same function. Functions using local variable names cannot refer to the same local variables in other functions. This is why they are called locals, because they are local to the function they are being used in.

To declare local variables in a function, use one of the variable declaration instructions at the beginning of the function after the Function statement:

Boolean, Byte, UByte, Integer, Short, UShort, Long, Int32, UInt32, Int64, UInt64, Real, Double, String

For example, the following function declares several local variables:

```
Function test
   Integer intVar1, intVar2
   Real realVar
   String dataStr$
   Integer array(10)
   ....
Fend
```

#### 6.7.3 Module variables

Module variables are available to all functions in the same program file.

To declare module variables in a program, use one of the variable declaration instructions at the beginning of the program before any Function statements:

Boolean, Byte, UByte, Integer, Short, UShort, Long, Int32, UInt32, Int64, UInt64, Real, Double, String



In order to indicate that a variable is module level, precede the name with "m\_", as shown in the example below. With this, you can improve the program readability.

For example, the following function declares several module level variables:

```
' Module level vars, used by all functions in this file
Integer m_IntVar1, m_IntVar2
Real m_RealVar
String m_DataStr$
Integer m_Array(10)
Function main
    m_IntVar1 = 25
    Call test
Fend

Function test
    Print m_IntVar1
Fend
```

#### 6.7.4 Global variables

Global variables can be shared between all functions in a project. The Global instruction is used to declare a global variable.

To declare global variables in a program, use the Global instruction with the desired variable type (Boolean, Byte, UByte, Integer, Short, UShort, Long, Int32, UInt32, Int64, UInt64, Real, Double, String) at the beginning of the program before any Function statements:



In order to indicate that variables are global, precede the name with "g\_", as shown in the example below. With this, you can improve the program readability.

#### Program: MAIN.PRG

```
Global Integer g_TotalCycles
Function main
   Call LoadPart
   :::
Fend
```

#### Program: LOADPART.PRG

```
Function LoadPart
   Jump pick
   On gripper
   Wait .1
   Jump place
   Off gripper
   Wait .1
   g_TotalCycles = g_TotalCycles + 1
Fend
```

For more information, see Data Types.

#### 6.7.5 Global Preserve variables

You can preserve global variable values by using the optional Preserve parameter when you declare global variables.

Preserved variables are stored in the controller's SRAM.

If the data type of a preserved variable or the number of dimensions is changed, the variable values will be cleared.



Be careful about the backup battery power, because you will lose the data of global preserve variables stored in SRAM if the battery is weak.

### 6.7.6 Arrays

You can declare local, module, and global variables with up to three dimensions as arrays for all data types.

To declare an array, use this syntax:

```
dataType name ( ubound1 [ , ubound2 [ , ubound3] ] )
```

SPEL<sup>+</sup> arrays are zero based. The first element is referenced with a value of zero.

The total available number of array elements for local variables is 200 for strings and 2000 for all other types.

The total available number of array elements for global preserve variables is 400 for strings and 4000 for all other types.

The total available number of array elements for global and module variables is 10,000 for strings and 100,000 for all other types.

To calculate the total elements used in an array, use the following formula. (If a dimension is not used, substitute 0 for the ubound values.)

```
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)
```

Array declaration examples:

' Global string array

```
Global String gData$(10)
Function main
' Arrays local to this function
Integer intArray(10)
Real coords(20, 10)
```

Use Redim to change the bounds of an array at run time.

```
Integer a(10)
Redim a(20)
```

To preserve values when using Redim, add the Preserve optional argument.

```
Integer a(10)
Redim Preserve a(20)
```

Use UBound to get the maximum element number.

```
Integer i, a(10)
For i = 1 to UBound(a)
  a(i) = i
Next i
```

#### 6.7.7 Initial values

All variables are initialized when first used except for Global Preserve variables. Strings are set to empty, and all other variables are set to zero.

#### 6.7.8 Clearing arrays

Execute Redim (without Preserve) to clear all of the elements of array variables.

# 6.8 Working with Strings

A string in SPEL $^+$  is a set of ASCII characters (Code &h01  $\sim$  &hff) with a maximum length of 255.

You must declare strings in your programs with the String instruction.

All string variable names must end with a dollar sign (\$) suffix.

The following table shows the string commands available in SPEL<sup>+</sup>.

| Keyword  | Description                                                                    |
|----------|--------------------------------------------------------------------------------|
| Asc      | Returns the decimal ASCII value of the first character in a string.            |
| Chr\$    | Converts an ASCII value into a one character string.                           |
| FmtStr   | Formats a numerical or date/time expression.                                   |
| FmtStr\$ | Formats a numerical or date/time expression.                                   |
| Hex\$    | Returns a string containing the hexadecimal value of a number.                 |
| InStr    | Returns the position of a substring within a string.                           |
| LCase\$  | Returns the specified string in lower case characters.                         |
| Left\$   | Returns a substring beginning with the first character of a string.            |
| Len      | Returns the length (number of characters) of a string.                         |
| LTrim\$  | Returns the specified string with left spaces removed.                         |
| Mid\$    | Returns a substring of a string.                                               |
| ParseStr | Parses a string into an array of tokens.                                       |
| Right\$  | Returns a substring from the end of a string.                                  |
| RTrim\$  | Returns the specified string with right spaces removed.                        |
| Space\$  | Returns a string containing a specified number of space (ASCII 32) characters. |
| Str\$    | Converts a number to a string.                                                 |
| String   | Declare a string variable in a program.                                        |
| Tab\$    | Returns a tab string.                                                          |
| UCase\$  | Returns the specified string in upper case characters.                         |
| Val      | Converts a string to a number.                                                 |

# 6.9 Working with Files

SPEL<sup>+</sup> has several commands for handling files.

| Keyword      | Description                                                                            |
|--------------|----------------------------------------------------------------------------------------|
| AOpen        | Opens a file for append.                                                               |
| BOpen        | Opens a file for binary access.                                                        |
| Close        | Closes a file.                                                                         |
| FileExists   | Checks if a file exists.                                                               |
| FolderExists | Check if a folder exists.                                                              |
| FreeFile     | Returns an unused file handle.                                                         |
| Input        | Inputs one or more variables from a file                                               |
| Kill         | Deletes a file.                                                                        |
| Line Input   | Inputs line from a file.                                                               |
| Read         | Reads a specified number of bytes into a string variable.                              |
| ReadBin      | Reads binary data.                                                                     |
| ROpen        | Opens a file for reading.                                                              |
| Seek         | Sets the current file pointer.                                                         |
| Flush        | Writes data buffer to disk.                                                            |
| WOpen        | Opens a file for writing.                                                              |
| Write        | Writes out a variable at the current file pointer without appending a line terminator. |
| WriteBin     | Writes binary data.                                                                    |

Before using a file you must open it with one of the following commands: AOpen, Bopen, ROpen, and WOpen. And specify a file number in the Open statement. File number can be  $30 \sim 63$ .

Here is an example to save a text file and read it.

```
String data$(10)
Function SaveData()
  Integer fNum, i
  fNum = FreeFile
 WOpen "c:\mydata\data.txt" As #fNum
  ' Store the count
  Print #fNum, UBound(data$)
  For i = 0 To UBound(data$)
    Print #fNum, data$(i)
 Next i
 Close #fNum
Fend
Function LoadData()
  Integer fNum, i
  fNum = FreeFile
  ROpen "c:\mydata\data.txt" As #fNum
  Input #fNum, i
 Redim data$(i)
  For i = 0 To UBound(data$)
    Input #fNum, data$(i)
 Next i
  Close #fNum
Fend
```

# 6.10 Multi-statements

A program statement can contain several statements separated by semi-colons. The total length of a multi-statement program line cannot exceed 255 characters.

#### For example:

```
Function Test
Pass P1; Pass P2; Go P3 ' Multi-statement
Fend
```

It is not recommended to use multi-statements. Multi-statements can make your code more difficult to read and debug.

# 6.11 Labels

A program line is an alphanumeric name followed by a colon (":") that marks a location in a program for a GoTo or GoSub statement. The name may be up to 32 characters long and can include alphanumeric characters and the underscore ("\_") character if it is not the first character. You cannot use any SPEL<sup>+</sup> keywords as labels.

#### For example:

```
Function Main

Do

Jump P1

Jump P2

If Sw(1) Then GoTo MainAbort

Loop

MainAbort: 'Program label

Print "Program aborted"

Fend
```

#### 6.12 Comments

Use comments to add notes to your programs. An apostrophe character (') starts a comment.

#### Example:

```
Function Main

' ***** Main Demo Program *****

Xqt conveyor 'Start up the task for conveyor

Do

Print "Press ENTER to run demo cycle"

Print "Press CTRL+C to quit"

Input dumy

Call demo 'Execute the demo function

Loop 'Return to start of main loop
```

# 6.13 Error Handling

When an error occurs in a SPEL<sup>+</sup> function, you can cause execution to be transferred to an error handling routine for processing the error. The routine must be inside a function definition.

The table on the next page shows the program instructions that are used for error handling.

| Item     | Purpose                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| OnErr    | Use the OnErr statement to define the location of the error handling routine.                                                              |
| Err      | Use Err to retrieve the number for the current error status. Use this in the error handling routine to determine which error has occurred. |
| Error    | Generate a user defined error which can be caught by an error handler.                                                                     |
| Era      | Use Era to retrieve the axis number for which the error occurred. This is normally used in the error handling routine.                     |
| Erl      | Use Erl to retrieve the line number in which the error occurred. This is normally used in the error handling routine.                      |
| Ert      | Use Ert to retrieve the task number in which the error occurred. This is normally used in the error handling routine.                      |
| ErrMsg\$ | Use ErrMsg\$ to retrieve the error message associated with a specified error number.                                                       |
| Errb     | Use Errb to retrieve the robot number in which the error occurred. This is normally used in the error handling routine.                    |

#### **User Errors**

You can define your own error messages by using the User Error Editor which is available from the Tools Menu. For details refer to 5.12.7 User Error Editor Command (Tools Menu).

#### Example

The following example shows a simple error handling routine. When an error occurs, program execution goes to the ErrHandler label, where the error handler starts. The error number is displayed and the operator is asked to continue or not. If the operator enters "N" then the program executes the Quit All statement to end the program.

```
Function Main
  String cont$
  Integer i
  OnErr Goto Errhandler
  For i = 1 To 10
    Jump P(i)
  Next i
  Exit Function
' *** Error handler ***
Errhandler:
  enum = Err
  Print "Error #", enum, " occurred"
  Print "Continue (Y or N)?"
  Line Input cont$
  Select cont$
    Case "y", "Y"
       EResume Next
    Default
       Quit All
    Send
  Fend
```

# 6.14 Multi-tasking

For some applications, you may want to control other equipment besides the robot, such as conveyors, pick and place units, etc. By using multi-tasking, you can control this other equipment with their own tasks.

SPEL<sup>+</sup> supports up to 32 normal tasks and 16 background tasks (48 tasks in total) running simultaneously. A task is a function that has been started by the system or by the Xqt statement.

Use the Xqt statement to start another task from within a function. You can optionally specify a task number from 1 to 32 in the Xqt statement.

A task started from a background task is started as a background task. You can execute up to 16 background tasks simultaneously.

The table below shows the program instructions that are used for multitasking.

| Statement | Purpose                                                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| Xqt       | Starts a function as a task.                                                                                                     |
| Halt      | Temporarily suspends execution of a task.                                                                                        |
| Resume    | Resumes a task that has been halted.                                                                                             |
| Quit      | Stops a task.                                                                                                                    |
| Signal    | Sends a signal to one or more tasks that are waiting for the signal using WaitSig.                                               |
| SyncLock  | Locks a resource for use by the current task and blocks other tasks from using the resource until <b>SyncUnlock</b> is executed. |
| WaitSig   | Waits for a signal from another task.                                                                                            |
| Pause     | Pause all tasks.                                                                                                                 |

One example for starting another task is to run a conveyor system for the robot work cell.

#### Program: MAINTASK.PRG

```
Function Main

Xqt Conveyor 'Start the conveyor task

Do

...

Loop

Fend
```

#### Program: CONVTASK.PRG

```
Function Conveyor
  Do
     Select True
     Case Sw(10) = On
        Off convCtrl
     Case Sw(11) = On
        On convCtrl
     Send
    Loop
Fend
```

# 6.15 Using Multiple Robots

You can control more than one robot in the same project. Use the Robot statement to switch the current robot for the current task. For most applications, you should use a separate task for each robot.

Each robot has its own set of point files. You can configure which point files to use in the Project Editor. The default point file you configure for each robot is automatically loaded into memory when the main task is started.

The following program is an example where two robots run simultaneously, each with its own task.

```
Function main
  Xqt Robot1
  Xqt Robot2
Fend
Function Robot1
  Robot 1
  Speed 50
  Do
    Jump pick
    On gripper1
    Wait .1
    Jump place
    Off gripper1
    Wait .1
  Loop
Fend
Function Robot2
  Robot 2
  Speed 50
  Do
    Jump pick
    On gripper2
    Wait .1
    Jump place
    Off gripper2
    Wait .1
  Loop
Fend
```

# 6.16 Coordinate Systems

#### 6.16.1 Overview

This section describes the coordinate systems for different types of robots supported in  $SPEL^+$ . Right-handed rule is used for all coordinate systems.

The following coordinate systems are used in SPEL<sup>+</sup>:

Robot Coordinate System This is the native coordinate system of the robot.

This is also known as the default base coordinate system

or world coordinate system.

Local Coordinate System This is a user defined coordinate system located

somewhere within the working envelop.

Tool Coordinate System This is the coordinate system of the tool mounted on the

robot end-effector. This is also known as the end effector

coordinate system.

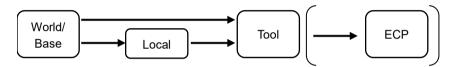
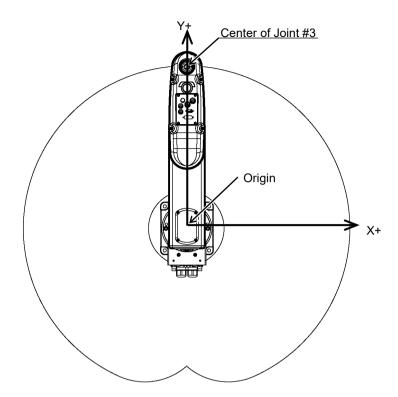
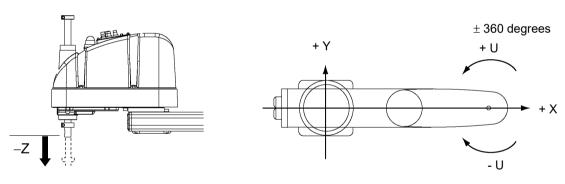




Figure: Transform order of the position/orientation from origin to tool.


# 6.16.2 Robot Coordinate Systems

Robot Coordinate System of SCARA Robot



Robot coordinate system Z axis

Robot coordinate system U axis



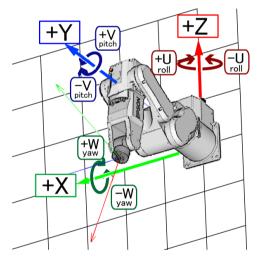
### Robot Coordinate Systems of 6-Axis Robot

Table Top Mounting

+Z

+V

-W
yaw


-W
yaw

+Y

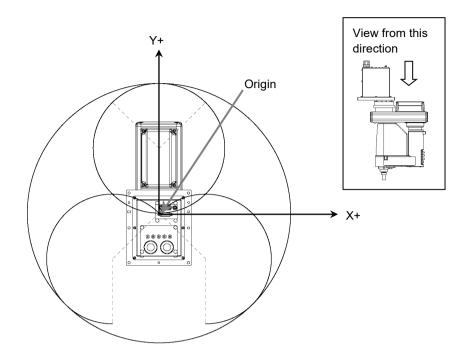
-V
pitch



Side (Wall) Mounting

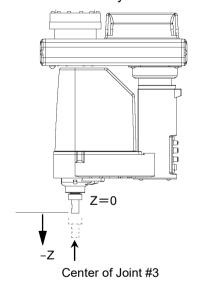


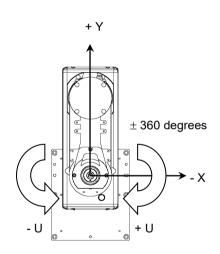
In the robot coordinate system, +Z axis is defined in the opposite direction of gravity. X and Y axes are defined in horizontal plane as shown in the figures above.

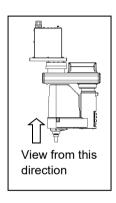

The position and orientation are designated by the position data (X,Y,Z) and the orientation data (U,V,W).

Roll-Pitch-Yaw angles are used for the orientation data.

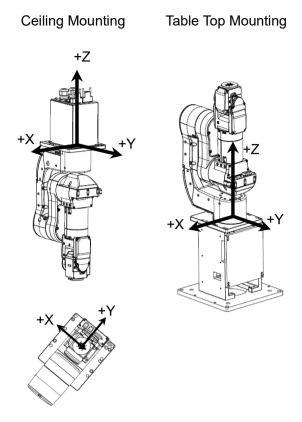
U corresponds to roll (Z-axis rotation), V corresponds to pitch (Y-axis rotation), and W corresponds to yaw (X-axis rotation).


The orientation is designated by rotating the coordinate axis of U, V, and W, in that order (movable axis expression).


# Robot Coordinate System of Ceiling Mounting SCARA Robot (RS series)

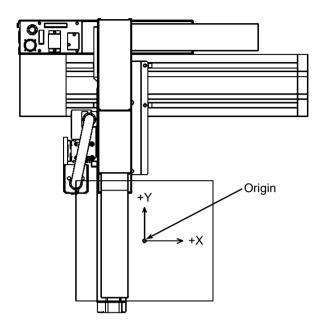



# Robot coordinate system Z axis

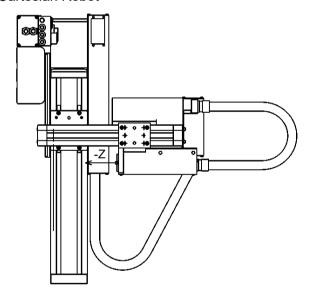

Robot coordinate system U axis








# Robot Coordinate Systems of N Series Robot




# Robot Coordinate Systems for Cartesian Robot


X axis / Y axis in Robot Coordinate System of Cartesian Robot



Z axis in Robot Coordinate System of Cartesian Robot



U axis in Robot Coordinate System of Cartesian Robot



U

### 6.16.3 Local Coordinate Systems

This is a user defined coordinate system.

With SPEL<sup>+</sup>, up to 15 relative positional relationships from the robot coordinate system can be defined as local coordinate systems.

Point data is assigned with a local number from 1 to 15 as the local coordinate system, and the numbers can be used for point data attributes.

For example, program change can be minimized by using the local coordinate system, even when the robot orientation and position are changed.

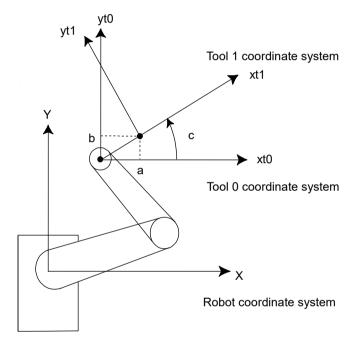
To define a local coordinate system, use the Local statement or Robot Manager of the EPSON RC+.

The local coordinate system "0" matches the robot coordinate system (Base). Therefore, when "0" is used for the local number in the point editor or simulator, it is same as specifying the robot coordinate system.

# 6.16.4 Tool Coordinate Systems

This is the coordinate system of the tool mounted on the Joint #6 flange.

Point data is defined by the position and orientation of the tool coordinate system with respect to a robot coordinate system or a local coordinate system. The position is specified by the position data (X, Y, Z) and the orientation is specified by the orientation data (U, V, W) that correspond with roll, pitch, and yaw.


You can also define and use your own tool coordinate systems. To define the tool coordinate systems, use Tlset or Robot Manager of the EPSON RC+.

The default TOOL 0 coordinate systems are defined as follows according to the robot type.

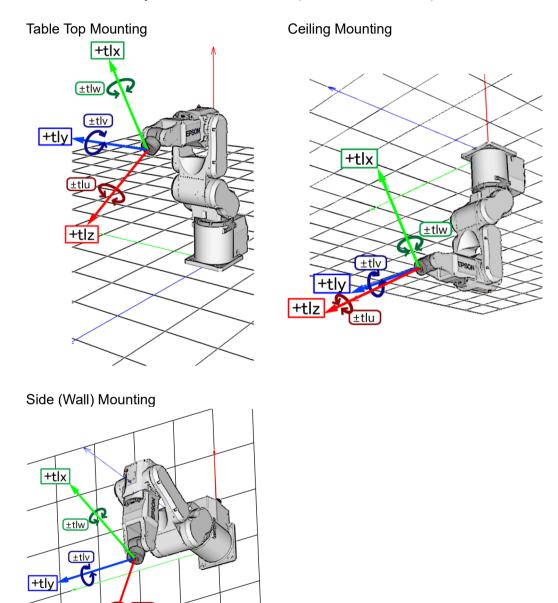
## SCARA Tool 0 coordinate system

The origin of tool 0 for SCARA robots is the center of the forth joint (rotation joint). When the fourth joint is adjusted to the position of 0 degrees, the tool 0 coordinate system axes are parallel to the robot coordinate system axes (see the figure below.)

The tool 0 coordinate system rotates as the fourth joint rotates.



# 6-axis Tool 0 coordinate system


Table and ceiling mounting robots:

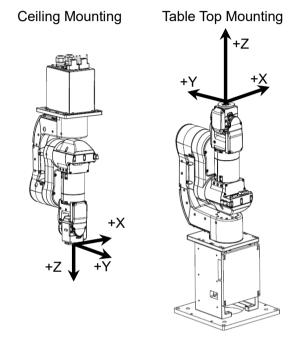
The origin of tool 0 is the center of the flange on the sixth joint. When all joint angles are 0 degree, the vertically upward direction is the tool X axis, the tool Y is the same direction of X axis in the base coordinate system, and the tool Z axis is perpendicular to the sixth joint flange. (See the figure below).

The tool 0 coordinate system moves as the 6-axis robot changes its orientation.

## Wall mounting robots:

The tool 0 coordinate system is defined as below. (tl: abbreviation of Tool)




# N series Tool 0 coordinate system

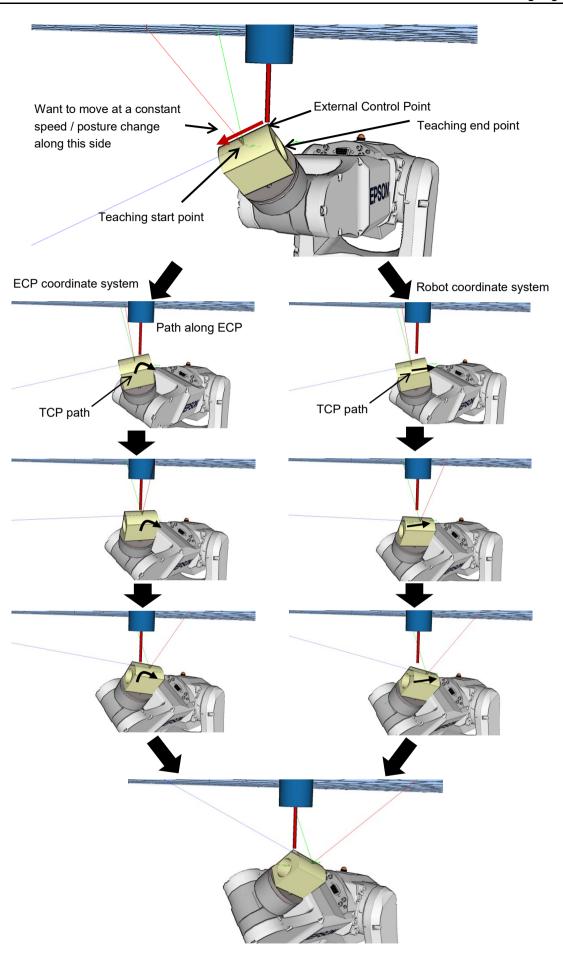
## Ceiling mounting robots:

When all joint angles are 0 degree, the tool 0 coordinate system has the X axis in -X axis direction, Y axis in the Y axis direction, and the Z axis in the -Z axis direction on the robot coordinate system. (See the figure below)

## Table top mounting:

When all joint angles are 0 degree, the tool 0 coordinate system has the X axis in –X axis direction, Y axis in the Y axis direction, and the Z axis in the Z axis direction on the robot coordinate system. (See the figure below)




# 6.16.5 ECP Coordinate Systems (Option)

Specify a coordinate system whose origin point is on the tip of the outside fixed tool (hereafter referred to as the external control point or ECP) to move the robot arm holding a part in the trajectory made on the external control point along with the part's edges.

The following figures give a concrete example.

An ordinal Move statement controls the moving speed and orientation change of the tool center point (TCP). In the case of Move statement with the ECP argument, the part's edge is controlled to take a straight and constant-speed trajectory instead of TCP. In the following example of no ECP, TCP takes a straight trajectory but the part's edge is distant from ECP.

If there is no orientation change, the trajectory is the same as normal operation of Move command.



The following commands are available for optional ECP:

- Move command
- Arc3 command
- Curve and CVMove commands
- ECP jog motion in Robot Manager

Use the ECPSet statement for defining an ECP coordinate system. A maximum of 15 ECP coordinate systems can be defined.

For details, refer to 17. ECP Motion.

# 6.17 Robot Arm Orientations

When developing a robot program, it is necessary to specify the point data taught for a particular arm orientation. If you fail to do so, the position can deviate slightly depending on the arm orientation, which in turn can cause the arm to follow an unexpected path, resulting in interference with peripheral equipment. This can be dangerous! To prevent this from happening, the orientation that the arm will be in when moved to the given point should be specified ahead of time in the point data. Such information can also be changed from the program.

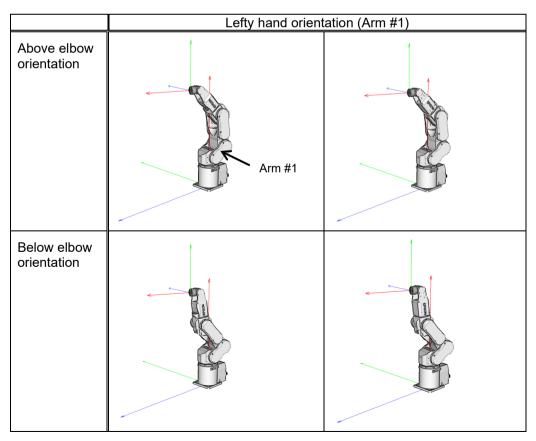
#### 6.17.1 SCARA robot arm orientations

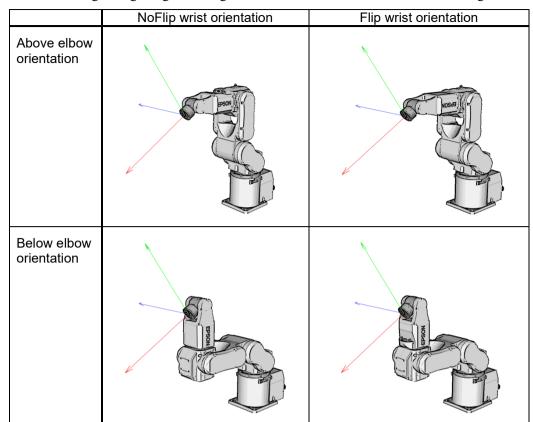
With two types of arm orientation, a SCARA robot can move to nearly any position and orientation within a given work envelope. Examples are shown in the figures on the next page.





Lefty arm orientation


Righty arm orientation


Examples of moving to the same point using Lefty and Righty arm orientations

# 6.17.2 6-axis robot arm orientations

The 6-axis robot can be operated in different arm orientations within a given work envelope as shown below:

|                         | Righty hand orien        | ntation (Arm #1)       |
|-------------------------|--------------------------|------------------------|
|                         | NoFlip wrist orientation | Flip wrist orientation |
| Above elbow orientation | Arm #1                   |                        |
| Below elbow orientation |                          |                        |





The following enlarged figures of right hand orientation are to assist understanding.

To specify orientation for the 6-axis robot, add a forward slash (/) followed by L (for Lefty hand orientation) or R (Righty hand orientation), A (Above elbow orientation) or B (Below elbow orientation), and NF (NoFlip wrist orientation) or F (Flip wrist orientation).

There are eight available orientations as shown below, however, the 6-axis robot cannot be operated in all of the orientations depending on point.

#### **Available Orientation**

| 1 | /R /A /NF | 5 | /R /A /F |
|---|-----------|---|----------|
| 2 | /L /A /NF | 6 | /L /A /F |
| 3 | /R /B /NF | 7 | /R /B /F |
| 4 | /L /B /NF | 8 | /L /B /F |

At some points in the work envelope, the 6-axis robot can have the same position and orientation even if the fourth joint or the sixth joint is rotated 360 degrees. To distinguish these points, the J4Flag and J6Flag point attributes are provided.

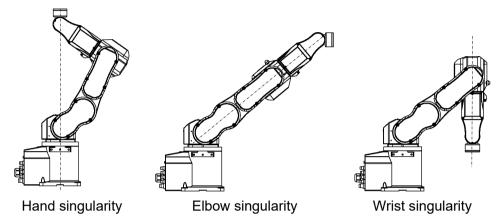
To specify the J4Flag, add a forward slash (/) followed by J4F0 (-180 < the forth joint angle <= 180) or J4F1 (the forth joint angle <= -180 or 180 < the forth joint angle).

To specify the J6Flag, add a forward slash (/) followed by J6F0 (-180 < the sixth joint angle <= 180), J6F1 (-360 < the sixth joint angle <= -180 or 180 < the sixth joint angle <= 360), or J6Fn (-180\*(n+1) < the sixth joint angle <= -180\*n or 180\*n < the sixth joint angle <= 180\*(n+1)).

#### **Singularity**

The orientation in the boundary where the arm orientation switches to the other.

Hand singularity: The boundary where Righty hand orientation and Lefty hand


orientation switch

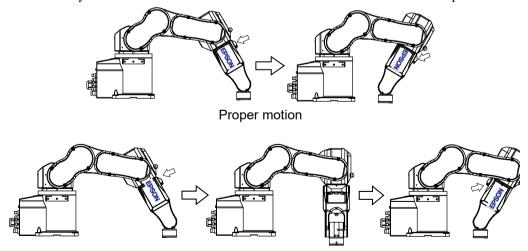
Elbow singularity: The boundary where Above elbow orientation and Below elbow

orientation switch

Wrist singularity: The boundary where NoFlip wrist orientation and Flip wrist

orientation switch




For the 6-axis robot, Hand / Wrist singularities exist also inside the motion range. When jogging near the singularity, follow the directions below.

# PTP motion near the singularity

When jogging a robot from point P1 near the singularity to a point calculated by point operations such as P1+X(10), the robot may move to unintended direction because the arm orientation is not properly specified.

For example, when jogging from a point where the wrist is NoFlip to another point calculated by point operations, if the wrist keeps the NoFlip orientation while jogging, Joints #4 and #6 may rotate widely (by approx. 180 degrees).

In this case, switch to the Flip wrist orientation to jog smoothly through the wrist singularity. This phenomenon occurs not only with the point operations but also when creating points automatically with Pallet command or the result values that run from vision sequence.



Unintended motion (Joints #4 and #6 rotate 180 degrees)

However in the cases, it is difficult for users to specify the proper arm orientations by a program. For this LJM function is a useful command. LJM function switches the arm orientations to enable the least motion of the joints. For the details of LJM function, refer to SPEL+ Language Reference manual.

Also, AutoLJM command can automatically apply LJM function to the motion commands which are included in a particular section of the program without using LJM function. For details of AutoLJM command, refer to the SPEL+ Language Reference.

In addition, you can set AutoLJM function to be enabled at the controller start up by setting preferences of the controller. However, if Auto LJM is enabled in preferences, this function automatically adjusts the posture of the manipulator to reduce the motion distance, even when you intend to move the joint widely. Therefore, it is recommended to build a program using AutoLJM command or LJM function to operate the manipulator as you desired.

If you specify all points by teaching, the arm orientations are also recorded. Therefore, the manipulator moves to the taught position without using LJM function or AutoLJM. Instead, the manipulator may move differently from the taught position by the use of LJM and AutoLJM.

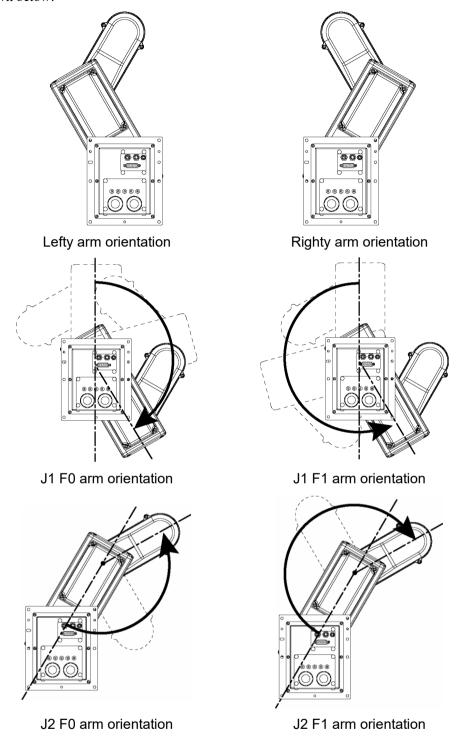
#### LJM function for CP motion command

LJM function and AutoLJM command described above are also available for CP motion commands. However, since CP motion commands give priority to operate based on specified trajectories, the manipulator sometimes reach to the point with a different posture from the specified one. At this time, if CP motion command is used with CP On, an error from 4274 to 4278 will occur according to the mismatched point flag. To avoid the error, operate the manipulator with CP Off, or match the point flag of a target point and the one after motion completion. If operated with CP Off, the error does not occur and the manipulator can continue operation from the point where the mismatch happened.

Also, you can set the controller's preference so that the mismatches of flags are not considered as an error at the controller startup. However, path motions which use CP On will be disabled.

#### CP motion near the singularity (singularity avoiding function in CP motion)

When executing Move or CP motion near the singularity, the joint speed may increase rapidly. The overspeed error will occur and the joints will move widely and interfere with peripherals. In particular, the position of Joint #1 near the hand singularity and Joints #2 - #6 near the wrist singularity change greatly.


EPSON RC+ 7.0 has a singularity avoiding function to prevent acceleration errors during the execution of CP motion commands that pass the wrist singularity described above. With this function, the manipulator takes a detour to avoid an acceleration error by passing a different trajectory and returns to the original trajectory after passing the singularity. For details of the singularity avoiding function, refer to *AvoidSingularity* in the *SPEL+Language Reference*.

Singularity avoiding function is enabled as default. If you want to avoid the error by reducing the motion speed in order to maintain the trajectory accuracy, you can disable the function temporarily by setting "0" to AvoidSingularity.

If you cannot avoid errors even if you use the singularity avoiding function, use PTP motion to enable the least motion of the joints or arrange the manipulator installation position and hand offset volume to prevent the CP motion near the singularity.

# 6.17.3 RS series arm orientations

The RS series can be operated in various arm orientations within a given work envelope as shown below:



To specify the arm orientation of the RS series, add a forward slash (/) followed by:

- L (for Lefty hand orientation) or R (Righty hand orientation)
- J1F0 or J1F1
- J2F0 or J2F1.

For the RS series robots, some points in the work envelope can have the same position and orientation even if J1 or J2 is rotated 360 degrees.

To distinguish these points, the J1Flag and J2Flag point attributes are provided.

To specify the J1Flag, add a forward slash (/) followed by:

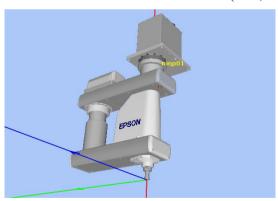
- J1F0 (-90 < the first joint angle  $\leq 270$ ), or
- J1F1 (-270 < the first joint angle <= -90 or 270 < the first joint angle <= 450)

To specify the J2Flag, add a forward slash (/) followed by:

- J2F0 (-180 < the second joint angle <= 180), or
- J2F1 (-360 < the second joint angle <= -180 or 180 < the second joint angle <= 360)

There are eight available orientations as shown below.

Note that some combinations are not available depending on the point.


#### **Available Orientation**

| 1 | /R /J1F0 /J2F0 | 5 | /R /J1F0 / J2F1 |
|---|----------------|---|-----------------|
| 2 | /L /J1F0 /J2F0 | 6 | /L /J1F0 / J2F1 |
| 3 | /R /J1F1 /J2F0 | 7 | /R /J1F1 / J2F1 |
| 4 | /L /J1F1 /J2F0 | 8 | /L /J1F1 / J2F1 |

#### Singularity

The orientation in the boundary where the arm orientation switches to the other.

Hand singularity: The boundary where Righty hand orientation and Lefty hand orientation switch (X=0, Y=0)



Hand singularity

When jogging near the singularity, follow the directions below.

#### PTP motion near the singularity

When jogging a robot from point P1 near the singularity to a point calculated by point operations such as P1+X(10), the robot may move to unintended direction because the arm orientation is not properly specified.

For example, when jogging from a point where the hand is Righty to another point calculated by point operations, if the hand keeps the Righty orientation while jogging, Joints #1 may rotate widely (by approx. 180 degrees). In this case, switch to the Lefty hand orientation to jog smoothly through the wrist singularity.

This phenomenon occurs not only with the point operations but also when creating points automatically with Pallet command or the result values that run from vision sequence.

However in the cases, it is difficult for users to specify the proper arm orientations by a program. For this LJM function is a useful command. LJM function switches the arm orientations to enable the least motion of the joints. For the details of LJM function, refer to SPEL+ Language Reference manual.

Also, AutoLJM command can automatically apply LJM function to the motion commands which are included in a particular section of the program without using LJM function. For details of AutoLJM command, refer to the SPEL+ Language Reference.

In addition, you can set AutoLJM function to be enabled at the controller start up by setting preferences of the controller. However, if Auto LJM is enabled in preferences, this function automatically adjusts the posture of the manipulator to reduce the motion distance, even when you intend to move the joint widely. Therefore, it is recommended to build a program using AutoLJM command or LJM function to operate the manipulator as you desired.

If you specify all points by teaching, the arm orientations are also recorded. Therefore, the manipulator moves to the taught position without using LJM function or AutoLJM. Instead, the manipulator may move differently from the taught position by the use of LJM and AutoLJM.

## CP motion near the singularity (singularity avoiding function in CP motion)

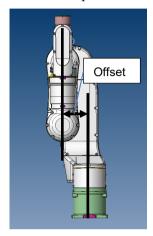
When executing Move or CP motion near the singularity, the joint speed may increase rapidly. The overspeed error will occur and the joints will move widely and interfere with peripherals. In particular, the position of Joint #1 near the hand singularity changes greatly.

EPSON RC+ 7.0 has a singularity avoiding function to prevent acceleration errors during the execution of CP motion commands that pass the hand singularity described above. With this function, the manipulator takes a detour to avoid an acceleration error by passing a different trajectory and returns to the original trajectory after passing the singularity. For details of the singularity avoiding function, refer to *AvoidSingularity* in the *SPEL+Language Reference*.

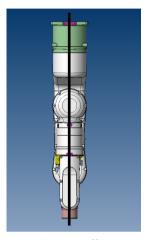
Singularity avoiding function is enabled as default. If you want to avoid the error by reducing the motion speed in order to maintain the trajectory accuracy, you can disable the function temporarily by setting "0" to AvoidSingularity.

If you cannot avoid errors even if you use the singularity avoiding function, use PTP motion to enable the least motion of the joints or arrange the manipulator installation position and hand offset volume to prevent the CP motion near the singularity.

# 6.17.4 N series arm orientations

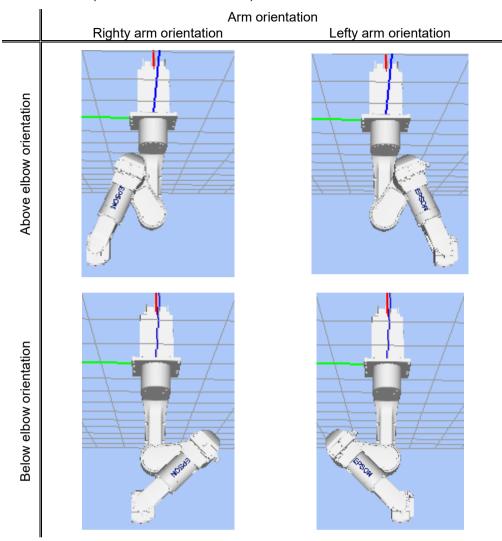

The N series can be operated in various arm orientations within a given work envelope as shown below:

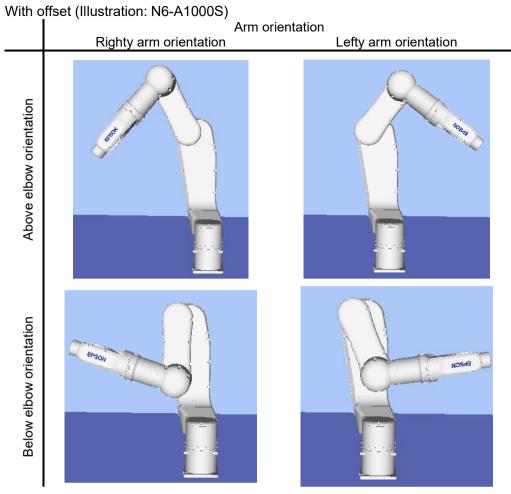
Orientation of N series is different depending on "with" and "without" offset.


Offset is a distance between Joint #2 and Joint #1.

With offset: Distance from Joint #2 and Joint #1 is not 0mm Without offset: Distance from Joint #2 and Joint #1 is 0mm

Orientation example of "with" and "without" offset is as follows:





With offset



Without offset

Without offset (Illustrations: N2-A450SR)





To specify orientation for the N series robot, add a forward slash (/) followed by L (for Lefty hand orientation) or R (Righty hand orientation), A (Above elbow orientation) or B (Below elbow orientation), and NF (NoFlip wrist orientation) or F (Flip wrist orientation).

There are eight available orientations as shown below, however, the 6-axis robot cannot be operated in all of the orientations depending on point.

#### **Available Orientation**

| 1 | /R /A /NF | 5 | /R /A /F |
|---|-----------|---|----------|
| 2 | /L /A /NF | 6 | /L /A /F |
| 3 | /R /B /NF | 7 | /R /B /F |
| 4 | /L /B /NF | 8 | /L /B /F |

At some points in the work envelope, the 6-axis robot can have the same position and orientation even if the fourth joint or the sixth joint is rotated 360 degrees. To distinguish these points, the J4Flag and J6Flag point attributes are provided.

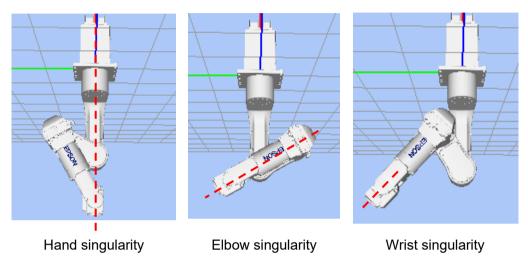
To specify the J4Flag, add a forward slash (/) followed by J4F0 (-180  $\leq$  the forth joint angle  $\leq$  180) or J4F1 (the forth joint angle  $\leq$  -180 or 180  $\leq$  the forth joint angle).

To specify the J6Flag, add a forward slash (/) followed by J6F0 (-180 < the sixth joint angle <= 180), J6F1 (-360 < the sixth joint angle <= -180 or 180 < the sixth joint angle <= 360), or J6Fn (-180\*(n+1) < the sixth joint angle <= -180\*n or 180\*n < the sixth joint angle <= 180\*(n+1)).

#### **Singularity**

The orientation in the boundary where the arm orientation switches to the other.

Hand singularity: The boundary where Righty hand orientation and Lefty hand


orientation switch

Elbow singularity: The boundary where Above elbow orientation and Below elbow

orientation switch

Wrist singularity: The boundary where NoFlip wrist orientation and Flip wrist

orientation switch



For the N series robot, Hand / Wrist singularities exist also inside the motion range like the 6-axis robot. When jogging near the singularity, pay attention to the same points as the 6-axis robot. For details, refer to 6.17.2 6-axis robot arm orientations.

The following describes the elbow singularity area which is unique for N series robot.

# Elbow singularity area

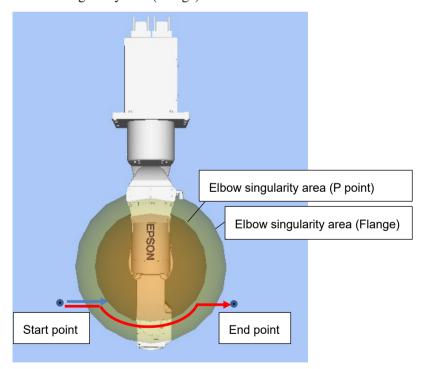
For the N series robot, the singularity exists where the P point is on the sphere shown in the figure below. The P point cannot be inside the sphere. Therefore, CP motion to pass inside the sphere is not available.



## Elbow singularity area avoidance motion

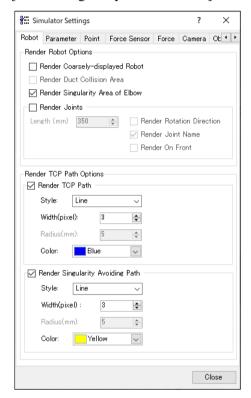
When the robot passes through the sphere as shown in the figure below, the robot behaves differently depending on the mode of singularity avoiding function (AvoidSingularity).

# Mode: SING\_AVOID


The robot moves to the end point while avoiding the elbow singularity area as indicated with a red line (P-point trajectory) in the figure below. Also, an error occurs in the following cases.

- If SpeedS setting value is too large, error 4242, 4243, 4255, or 5044 occurs. The errors can be prevented by setting SpeedS lower.
- If the motion is stopped/paused, or the safety door is opened during the singularity avoiding motion (PTP motion), error 4242, 4250, 4252, or 4256 occurs.
   Do not stop the operation or open the safety door during the singularity avoiding motion.
- If the singularity avoiding motion mode (SING\_AVOID) is selected for N series, an error 4255 or 4256 occurs.

#### Mode: Other than SING AVOID


The error 4252 occurs when the robot touches the elbow singularity area as indicated with a blue line (P-point trajectory) in the figure below.

The elbow singularity area (Flange) is an area when Joint #5 is 0°.



#### Note:

- The pass motion can be confirmed by the sample simulator program "N2 sample".
- With Jump3, Jump3CP, and JumpTLZ, the motion to pass the elbow singularity area is not available. (Shoulder and wrist singularity pass motions are possible.)
- In the singularity avoiding motion, the Joint #4 and #6 may rotate largely.
- In the singularity avoiding motion, onward and backward paths may differ.
- To display the elbow singularity area and its neighborhood on the simulator, select [Render Singularity Area of Elbow] in the [Simulator Settings] dialog box.



# 6.18 Robot Motion Commands

SPEL<sup>+</sup> includes several commands for controlling the robot from your programs.

## 6.18.1 Homing the robot

The Home command moves the robot to a user defined "park" or "idle" position. This command works for all robots. It is mainly used for absolute encoder robots that normally do not need to be mechanically homed. Use the HomeSet command to set the home position and the Hordr command to set the home order.

## 6.18.2 Point to point motion

Point to point (PTP) commands move the tool center point of the robot from its current position to a specified point. Motion of the tool center point may not be in a straight line.

To set the speed for point to point commands, use the Speed command. To set acceleration and deceleration, use the Accel command.

| Command | Description                                                                                                                                                                  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Go      | Move directly to a point using point to point motion.                                                                                                                        |  |  |  |  |  |
| Jump    | Jump to a point. First move up to the current LimZ setting, the move over the destination point, then move to the point. The Arch table settings determine the Jump profile. |  |  |  |  |  |
| Jump3   | Jump to a point in 3 dimensions. Move in a straight line with the same orientation until the recede point. The motion between the recede points is PTP motion.               |  |  |  |  |  |
| Pass    | Move near one or more points.                                                                                                                                                |  |  |  |  |  |
| TGo     | Move directly to a point in a tool coordinate system.                                                                                                                        |  |  |  |  |  |
| BGo     | Move in a PTP motion to the relative specified point in Base / Local coordinate system                                                                                       |  |  |  |  |  |

## 6.18.3 Linear motion

Linear motion commands move the tool center point of robot from its current position to a specified point in a *straight line*. Liner motion is a CP (Continuous Path) motion.

To set velocity (speed) for straight motion, use the SpeedS command. To set acceleration and deceleration, use the AccelS command.

| Command | Description                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Move    | Move in a straight line to the specified point.                                                                                                                       |
| TMove   | Move in a straight line to the specified point in a tool coordinate system.                                                                                           |
| Jump3CP | Jump to a point in 3 dimensions using CP motion. Move in a straight line until the recede point. The motion between the recede points is also a straight line motion. |
| BMove   | Move in a straight line to the relative specified point in Base / Local coordinate system                                                                             |

## 6.18.4 Curves

Curves commands move the robot in a circular arc. Curves is a CP (Continuous Path) motion.

To set velocity (speed) for Curves, use the SpeedS command. To set acceleration and deceleration, use the AccelS command.

| Command | Description                                                                     |
|---------|---------------------------------------------------------------------------------|
| Arc     | Move the robot through one point to another point using circular interpolation. |
| Arc3    | Move the robot in 3D using circular interpolation.                              |
| Curve   | Creates a file containing a path specification.                                 |
| CVMove  | Executes a path specified by Curve.                                             |

## 6.18.5 Joint motion

| Command | Description                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| JTran   | The JTran command can be used to move one joint of the robot to a position specified in degrees or millimeters, depending on the joint type. The speciand acceleration are the same as for point to point motion commands i.e. specified with Speed or Accel commands.                                                                                  |  |  |  |  |  |
| PTran   | The PTran command can be used to move one joint of the robot to an encoder pulse position. The speed and acceleration are the same as for point to point motion commands i.e., specified with Speed or Accel commands.                                                                                                                                  |  |  |  |  |  |
| Pulse   | The Pulse command can be used to move all joints of the robot to encoder pulse positions. The speed and acceleration are the same as for point to point motion commands i.e., specified with Speed or Accel commands.                                                                                                                                   |  |  |  |  |  |
| PG_Scan | The PG_Scan command can be used to rotate a pulse generator axis of a Joint-type single axis PG robot continuously in CW/CCW directions. (To rotate it continuously, you need to enable the continuous rotation parameter.) The speed and acceleration are the same as for point to point motion commands i.e., specified with Speed or Accel commands. |  |  |  |  |  |

# 6.18.6 Controlling position accuracy

Use the Fine command to adjust position accuracy for the end of a motion command. Fine specifies, for each joint, the allowable positioning error for detecting completion of any given move. The lower the Fine settings, the more accurate the final position of the joint, which can cause slower performance. Conversely, large Fine settings can speed up motion commands, but position accuracy will decrease. For many applications, the default settings can be used.

# 6.18.7 CP Motion Speed / Acceleration and Tool Orientation

When you attempt to change only the tool orientation while keeping the tool tip of the robot arm at the specified coordinate point or when the tool orientation variation is larger than the travel distance of the tool tip, moving the arm by normal CP motion commands will cause an increase in the variation of speed, acceleration and deceleration of tool orientation. In some cases, an error will occur.

To prevent these situations, add the ROT parameter to the CP motion commands. The arm will be moved based on the specified angular velocity and acceleration/deceleration of the main axis regarding the orientation variation.

The angular velocity and acceleration/deceleration of the main axis regarding the orientation variation should be specified with the SpeedR and AccelR commands in advance.

#### For example:

```
SpeedR 50 ' degree/sec
AccelR 200, 200 ' degree/sec<sup>2</sup>
Move P1 ROT
```



The tool orientation variation is normally comprised of orientation variations of more than one rotation axis.

The SpeedR and AccelR parameters specify the angular velocity and acceleration/deceleration of the main axis regarding the orientation variation. Therefore, actual angular velocity and acceleration/deceleration of the orientation variation are different from the parameters except for the case where the rotation axis of the orientation is only one.

While the motion command with the ROT parameter is executed, the specified SpeedS and AccelS parameters are invalid.

The ROT parameter can be used with the following motion commands:

Move BMove Arc TMove Arc3 Jump3CP

## 6.18.8 PTP Speed / Acceleration for Small Distances

You can change the speed and acceleration for small distances using PTPBoost and PTPBoostOK. Normally, PTPBoost is not required. In certain cases, you may want to shorten the cycle time even if vibration becomes larger, or conversely you may want to reduce vibration even if cycle time becomes longer. PTPBoost is a robot parameter with values from 0 – 100 that affects the speed and acceleration for small distances. Normally, for small distance motion, the desired speed cannot be attained using the current acceleration. By increasing PTPBoost, acceleration, deceleration, and speed are increased for small distance motion. To check if a motion command will be affected by PTPBoost, use the PTPBoostOK function. See PTPBoost and PTPBoostOK in the SPEL+ Language Reference manual for more details.

# 6.18.9 Pressing Motion

To use the pressing motion, use the following torque control mode commands.

TC (Returns the torque control mode setting and current mode.)
TCSpeed (Specifies / returns the speed limit in the torque control.)
TCLim (Specifies the torque limit of each joint for the torque control mode.)

The low power mode is limited by a low power upper limit. Therefore, normally use the High power mode. For details and usage of the above commands, refer to "TC Statement", "TCSpeed", and "TCLim" in the *SPEL+ Language Reference* manual.

# 6.18.10 Collision Detection Function (Detection Function of Robot Motion Error)

Detect the robot motion error from differentiation between desired speed and the actual speed (speed deviation value). Errors can be detected by this function is classified into A and B.

- A: Collision or contact of robot arm or hand occurs
- B: Robot motion errors other than collision or contact

Also, error B is classified into below according to the power condition.

#### Error in high power

- B1: Torque saturation due to a low Weight or Inertia setting.
- B2: Torque saturation due to combined motion of multiple joints and movement of a long object.
- B3: Torque saturation due to supply voltage reduction.
- B4: Error motion due to hardware error or software malfunction.

#### Error in low power

- B4: Error motion due to hardware error or software malfunction.
- B5: Torque saturation in low power due to a hand or a long object that exceeds the weight described in the specifications.

Display either message below and stop the robot when detecting an error A or B. Reduce the damage of the robot or equipment.

Error 5057: detect the collision in high power. (Detect the robot motion error.) Error 5058: detect the collision in low power. (Detect the robot motion error.)

The following error has been existed, however, this function can detect the above errors quickly.

Error 5042, 5043: Position error.

Error is not detected by torque saturation in short time. Detect a state with high risk that causes a malfunction and stop the robot. The following phenomena may occur if continuing robot operation in a state of B1 or B2. Make a state that errors do not occur. Loose binding parts such as screws.

Reduction gear is damaged.

Increase a risk of robot damage

Turn ON CollsionDetect command and detection is enabled. (Default in ON)

Default is different depending on the firmware version.

Ver.7.2.1.x or later: default: ON Before Ver.7.2.0.x: default: OFF

When upgrading before Ver.7.2.0.x or Ver7.2.1.x or later: default: OFF

Reboot a controller to return to the default.

The following describes the detail of error B when error 5057 or 5058 is detected without a collision or contact of the robot or arm.

In high power mode

Check the torque saturation by using PTRQ command. Torque saturation is occurred if the joint outputs "1" in PTRQ command.

In that case, make sure that the Weight setting is properly and in accord with the hand weight.

Also, make sure that Inertia setting is properly for joint #4 of SCARA robot and joint #6 of 6-axis robot.

Next, make sure that there is no torque saturation by using PTRQ command by combined motion that multiple joints (#2, #3 and #5 joints of 6-axis robot) operate in the same direction and throwing around the long object.

If torque saturation occurs, reduce acceleration/deceleration of Accel command until there is no torque saturation (the value: 1.0 or less is displayed in PTRQ).

Also, torque saturation may occur due to reduction of supply voltage that inputs to the controller. Check the power supply voltage is within the specifications.

You can turn ON/OFF the collision detection function per equipment if you want to use without performing those error detection due to equipment compatibility securement or similar reasons.

If other error occurs at the same time, take a countermeasure for that first.

#### In low power mode

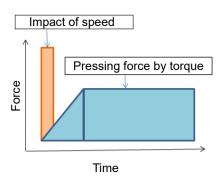
Make sure that hand weight is within the specifications.

Also, check the torque saturation when errors occur on the joint #4 and 5 of 6-axis robot. When torque saturation is occurred, it is long object that cannot be hold by low power mode. Hold in high power mode.

If other error occurs at the same time, take a countermeasure for that first.

Immediately stop result of the torque saturation by combination of the following motion and command. Error of A and B can be detected faster.

HP motion: LimitTorqueStop Command LP motion: LimitTorqueStopLP Command


The following describes details of collision of the robot arm A and contact detection. For reduction of damage on the arms and the end effectors due to the collision with peripherals, there are two functions: Collision detection function and torque restriction function.

The collision detection function detects the collision and stops the robot immediately. The torque restriction function restricts torque at the collision and also stops the robot immediately.

These are functions to reduce damage on the robot at the collision, but cannot avoid damage completely. Also, the functions cannot be used for the purpose of human safety.

The force applied to the robot at the collision can be roughly divided into two types as shown on the right: the impact of speed right before the collision, and the pressing force by the motor torque after the collision.

The collision detection function and the torque restriction function reduce damage caused by the pressing force right after the collision. These functions do not have any effect on damage caused by the impact of speed.



The collision detection function detects collision by the speed deviation value for robot motion control (differentiation between the desired speed and the actual speed) showing an abnormal value which is greatly different from normal motion due to the collision.

Turn ON CollsionDetect command and the detection is enabled. (Default: ON) Default is different depending on the firmware version.

Ver.7.2.1.x or later: default: ON
Before Ver.7.2.0.x : default: OFF
Reboot a controller to return to the default.

When enabled, this function reduces the time of pressing force by the motor torque, by detecting the collision and stopping the robot immediately. This reduces the pressing force by about 20%. To reduce the damage more, use this function together with the torque restriction function.

The collision detection function is automatically disabled during the pressing motion and the force sensing operation described in "6.18.9 Pressing Motion".

Also, the function may have false detection in cases of powerful contact motion and significant acceleration and deceleration which may have consecutive torque saturation. To confirm if there is a risk of false detection, use PTRO.

If PTRQ is less than 1 for all axes, there is no risk of false detection.

If PTRQ is one, torque saturation is occurring on the axis. This means excessive acceleration and deceleration are applied, and it is not preferable for motor control. It also has a risk of damage on the manipulator. In such a situation, take the following countermeasures.

For contacting operation,

- Check if Weight and Inertia settings are appropriate
- Lower acceleration and deceleration
- Lower speed

When performing contacting motion:

- Lower acceleration and deceleration at a contact
- Set a contacting depth shallow

If you want to operate the manipulator without taking the above countermeasures, you can enable and disable the function for each axis. Set the function off for the axis which you want to disable the function.

For details of the command and function, refer to the following manual.

EPSON RC+ 7.0 SPEL<sup>+</sup> Language Reference CollisionDetect Statement CollisionDetect Function

# 6.18.11 Torque Restriction Function

The torque restriction function reduces damage at the collision similarly with "6.18.10 Collision Detection Function".

The torque restriction value used for this function is defined by adding the margin to the upper limit torque value used in the program in order to avoid malfunction. By using the torque restriction function, the pressing force can be reduced.

For example, if the torque is restricted at 30%, the pressing force can also be reduced to 30%. Also, the robot immediately stops when the torque reaches the upper limit value. By stopping the robot immediately, a further 20-30% reduction effect can be obtained. When the torque is restricted at 30% and the robot is stopped immediately, the total of less than 25% or equivalent reduction effect can be obtained.

For SCARA robots, the end of the extended shaft may get caught and bent. To reduce occurrence of the bent shaft, it is recommended to use this function to reduce the pressing force to the maximum degree.

If malfunction occurs, take any of the following measures for the axis of malfunction.

- Set LimitTorqueStop or LimitTorqueStopLp off
- Increase the threshold value of LimitTorque or LimitTorqueLp

To use the torque restriction function for jogging motion, follow the steps below.

- (1) Execute PTCLR and start torque measurement.
- (2) Execute the jogging motion.
- (3) Measure the maximum torque value by PTRQ, and then add the margin to it.
- (4) Set LimitTorqeLP and LimitTorqeLPStop.

If the robot is temporarily stopped in the low power motion, the value larger than the normal program operation or jogging motion may be obtained. In such case, execute the temporary stop while measuring PTRQ and include it into measurement.

For details of the command and function, refer to the following manual.

EPSON RC+ 7.0 SPEL+ Language Reference

LimitTorque Statement, LimitTorque Function,

LimitTorqueLP Statement, LimitTorqueLP Function,

LimitTorqueStop Statement, LimitTorqueStop Function,

LimitTorqueStopLP Statement, LimitTorqueStopLP Function

The following is a sample program which automatically configures the collision detection function and the torque restriction function.

The program repeats the motion called "all ax move".

The program enables the collision detection function, measures the maximum torque in the first five moves, adds the margin to the measured value (1.2 times if HighPower, 1.4 times if LowPower), and sets the upper limit torque value to stop the robot at the upper limit torque.

This is the example of automatic setting to repeat motion with the above settings from the sixth time.

When the upper limit torque value is changed, the changed value will be considered as "1.0" for the subsequent PTRQ measurement. If the margin of 1.2 times is set, PTRQ will be slightly larger than 0.8, and if the margin of 1.4 rimes is set, PTRQ will be slightly smaller than 0.7.

#### Setting example)

```
Function main
  Integer icnt
  Real rtrq(6)
  Motor On
  Power High
  Power Low
  Weight 8
  Speed 50
  Accel 80, 80
  icnt = 1
  PTCLR
  LimitTorque 100
                             'init HighPower limit torque
  LimitTorqueLP 100
                             'init LowPower limit torque
  CollisionDetect On
    Call all ax move
    Print PTRQ(\overline{1}), PTRQ(2), PTRQ(3), PTRQ(4), PTRQ(5), PTRQ(6)
    icnt = icnt + 1
    If icnt = 5 Then
                             'High power case
      If Power = 1 Then
         Print "LimitTorque set"
         rtrq(1) = PTRQ(1) * 1.2 * LimitTorque(1) + 1.0
         rtrq(2) = PTRQ(2) * 1.2 * LimitTorque(2) + 1.0 rtrq(3) = PTRQ(3) * 1.2 * LimitTorque(3) + 1.0
         rtrq(4) = PTRQ(4) * 1.2 * LimitTorque(4) + 1.0
         rtrq(5) = PTRQ(5) * 1.2 * LimitTorque(5) + 1.0
         rtrq(6) = PTRQ(6) * 1.2 * LimitTorque(6) + 1.0
         Print LimitTorque(1), LimitTorque(2), LimitTorque(3),
LimitTorque(4), LimitTorque(5), LimitTorque(6)
         LimitTorque rtrq(1), rtrq(2), rtrq(3), rtrq(4),
rtrq(5), rtrq(6)
         Print LimitTorque(1), LimitTorque(2), LimitTorque(3),
LimitTorque(4), LimitTorque(5), LimitTorque(6)
         LimitTorqueStop On
     Else
                                    'Low poser case
         Print "LimitTorqueLP set"
         rtrq(1) = PTRQ(\bar{1}) * 1.4 * LimitTorqueLP(1) + 1.0
         rtrq(2) = PTRQ(2) * 1.4 * LimitTorqueLP(2)
         rtrq(3) = PTRQ(3) * 1.4 * LimitTorqueLP(3) + 1.0
         rtrq(4) = PTRQ(4) * 1.4 * LimitTorqueLP(4) + 1.0
         rtrq(5) = PTRQ(5) * 1.4 * LimitTorqueLP(5) + 1.0
rtrq(6) = PTRQ(6) * 1.4 * LimitTorqueLP(6) + 1.0
         Print LimitTorqueLP(1), LimitTorqueLP(2)
LimitTorqueLP(3), LimitTorqueLP(4), LimitTorqueLP(5),
LimitTorqueLP(6)
         LimitTorqueLP rtrq(1), rtrq(2), rtrq(3), rtrq(4),
rtrq(5), rtrq(6)
         Print LimitTorqueLP(1), LimitTorqueLP(2)
LimitTorqueLP(3), LimitTorqueLP(4), LimitTorqueLP(5),
LimitTorqueLP(6)
          LimitTorqueStopLP On
    EndIf
    If icnt > 5 Then
      icnt = 6
    Endif
  Loop While icnt > 0
Fend
Function all_ax_move
  Integer icount
    Go JA(10, 10, 10, 10, 10, 10)
    Go JA(-10, -10, -10, -10, -10, -10)
Fend
```

# 6.18.12 Weight, Inertia, and Eccentricity / Offset Measurement Utility

#### Functional overview

EPSON RC 7.0 Ver.7.5.4 supports "weight, inertia, and eccentricity / offset measurement utility".

It is a function measures and sets the following three parameters with the customer's end effector attached to the robot.

Load weight: Specify with the weight command Weight inertia: Specify with the inertia command

Eccentricity (offset of weight center of gravity from J6 flange surface for the 6-axis robot)

#### Measurement methods and compatible models

Two methods to measure:

Static (measured at low speed)

Measures and calculates the parameter value as accurately as possible (errors can occur).

Iteration (measured at high speed)

Sets the target parameter value to use the motor torque appropriately, not to measure the exact value. In particular, for large weight, large inertia, and eccentric end effectors, places importance on setting appropriate values that do not break the robot and are well balanced with speed.

The combination of Static and iteration measurements is determined by the robot model. Table 1 and 2 describe it.

Table 1: Measurement methods and compatible models for the 6-axis robot (Static & iteration)

|                        |                     |                   | Measurement posture (angle for each axis), motion are (motion range angle for each axis) |       |                |       | tion area      |                    |
|------------------------|---------------------|-------------------|------------------------------------------------------------------------------------------|-------|----------------|-------|----------------|--------------------|
| Measurement parameters | Measurement methods | Measurement speed | J1                                                                                       | J2    | J3             | J4    | J5             | J6                 |
| WEIGHT/<br>OFFSET      | Static              | Low speed         | 0 deg                                                                                    | 0 deg | -3 to<br>3 deg | 0 deg | -3 to<br>3 deg | 0 deg              |
| INERTIA                | Iteration           | High speed        | 0 deg                                                                                    | 0 deg | 0 deg          | 0 deg | 0 deg          | 270 to<br>-360 deg |

|                               |                     |                   | version 1.3 compatible models *1                 |
|-------------------------------|---------------------|-------------------|--------------------------------------------------|
| Measurement parameters        | Measurement methods | Measurement speed | C4, C8, C12,<br>C4-B, C8-B, C12-B,<br>VT6 *2, *3 |
| WEIGHT/OFFSET                 | Static              | Low speed         | ✓                                                |
| INERTIA                       | Iteration           | High speed        | ✓                                                |
| A combination of measurements |                     |                   | Staic & iteration                                |

<sup>\*1:</sup> Refer to readme in the project folder for the compatible models in the latest version.

<sup>\*2:</sup> N2 and N6 are not compatible.

<sup>\*3:</sup> The wall mounting type is not compatible.

Table 2: Measurement methods and compatible models for the SCARA robot (Static & iteration, or iteration only)

|                                |                     |                   | Measurement posture (angle for each axis), motion area (motion range angle for each axis) |               |            |                 |  |
|--------------------------------|---------------------|-------------------|-------------------------------------------------------------------------------------------|---------------|------------|-----------------|--|
| Measurement parameters         | Measurement methods | Measurement speed | J1                                                                                        | J2            | J3         | J4              |  |
| WEIGHT                         | Static              | Low speed         | 0 deg                                                                                     | 0 deg         | 0 to -50mm | 0 deg           |  |
| WEIGHT                         | Iteration           | High speed        | 0 deg                                                                                     | 0 to 90 deg   | 0 mm       | 0, 180 deg      |  |
| INERTIA                        | Iteration           | High speed        | 0 deg                                                                                     | 0 deg         | 0 mm       | -180 to 180 deg |  |
| Eccentricity                   | Iteration           | High speed        | 0 to 90 deg                                                                               | -75 to 90 deg | 0 mm       | -360 to 360 deg |  |
| Eccentricity (for RS3 and RS4) | Iteration           | High speed        | 0 to 90 deg                                                                               | 55 to 220 deg | 0 mm       | -360 to 360 deg |  |

|                                |                     |                      | version 1.3 compatible models *1                                                    |          |                                                                                   |  |  |
|--------------------------------|---------------------|----------------------|-------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|--|--|
| Measurement parameters         | Measurement methods | Measurement<br>speed | GX4, GX8<br>GX4-B, GX8-B<br>GX10-B, GX20-B<br>LS3-B, LS6-B,<br>LS10-B, LS20-B<br>*2 | RS3, RS4 | G3, G6, G10, G20 *3<br>T3, T6, T3-B, T6-B<br>LS3, LS6, LS20<br>LS3-B*V1, LS6-B*V1 |  |  |
| WEIGHT                         | Static              | Low speed            | ✓                                                                                   | -        | •                                                                                 |  |  |
| WEIGHT                         | Iteration           | High speed           | -                                                                                   | ✓        | ✓                                                                                 |  |  |
| INERTIA                        | Iteration           | High speed           | ✓                                                                                   | ✓        | ✓                                                                                 |  |  |
| Eccentricity                   | Iteration           | High speed           | ✓                                                                                   | -        | ✓                                                                                 |  |  |
| Eccentricity (for RS3 and RS4) | Iteration           | High speed           | -                                                                                   | ✓        | -                                                                                 |  |  |
| A combination of measurements  |                     |                      | Staic & iteration                                                                   |          | Iteration only                                                                    |  |  |

<sup>\*1:</sup> Refer to readme in the project folder for the compatible models in the latest version.

#### Preparation for measurement

When measuring, secure the necessary space for the operation and attach an end effector to the robot to measure. The motion range depends on the model and the corresponding measurement method. Refer to table 1 and 2. This measurement utility also operates in the simulator. Check the motion range on the simulator beforehand. You can also check the approximate measurement time on the simulator. For high-speed measurements, operates with speed 100, accel 100, 100. It cannot be measured with an end effector which strength cannot withstand high speed. In addition, to move a wide motion range, measure without connecting wiring or piping.

#### Measurement and measurement time

Run a program written in the SPEL+ language to measure.

Destination to save: C:\EpsonRC70\projects\Utilities (for default installation)

Project name: WeightInertiaMeasurement

Execute the main function first.

For the 6-axis robot: Measures in order of weight, offset, and inertia. For the SCARA robot: Measures in order of weight, inertia, and offset.

<sup>\*2:</sup> Exclude LS3-B\*V1/LS6-B\*V1.

<sup>\*3:</sup> G1 is not compatible.

The measurement time takes 4 to 13 minutes. A high-payload (20kg) SCARA robot takes the longest time.

## Check for the start of the measurement and the operation at low speed

Before starting the measurement, the following message appears:

```
Start Measurement: [y: yes, n: no]:
?
```

To measure, enter "y" or "Y". If you enter any other characters, the measurement exits.

When you enter "y" or "Y", after checking the motion range of all measurements at low speed, measures. Make sure that there are no problems with the motion range. The measurement time takes 2 to 4 minutes.

#### Display of the setting parameters before starting the measurement

The three setting parameters before starting the measurement appear as follows. It changes when you start the measurement. To return the parameters after measuring, modify them manually.

#### An example for the SCARA robot:

```
Current Weight: 1 kg, Current Inertia: 0.016 kgm2, Current Eccentricity: 0 mm.
```

#### An example for the 6-axis robot:

```
Current Weight: 1 kg, Current Inertia: 0.03 kgm2, Current Offset: 0 mm.
```

#### Parameter settings by the measurement

After the measurement starts, the above three parameters are changed, and the parameter is confirmed in the order of measurements and set to the Controller. All three parameters are set and the measurement ends. If the measurement is quit in the middle, the setting of the parameter values is not ensured. It is not possible to resume the measurement from the middle. If you quit, start the measurement again from the beginning.

#### Measurement details and what appears in the Run window

An example of the measurement is shown below. "<<" is a supplementary explanation.

# An example of the 6-axis robot measurement (C8, combination of measurement: Static & Iteration)

```
Weight, Inertia, Offset/Eccentricity Measurement Utility ver. 1.0.0. << version display
2022/9/7 10:39:52
Model: C8-A701S, PerformMode 0
Max Weight: 8 kg, Max Inertia: 0.15 kgm², Max Offset: 300 mm.
Current Weight: 1 kg, Current Inertia: 0.03 kgm², Current Offset: 0 mm. << current set value
ROBOT MOVEMENT AREA
WEIGHT, OFFSET Measurement Movement Area: J1, J2, J4, J6 [0 deq.]; J3, J5 [-3 to 3
INERTIA Measurement Movement Area: J1, J2, J3, J4, J5 [0 deg.]; J6 [270 to -360 deg.]
Start Measurement: [y: yes, n: no]:
?y << check for the start of the measurement
WEIGHT, OFFSET Measurement Movement Area: J1, J2, J4, J6 [0 deg.]; J3, J5 [-3 to 3
dea.1
Area Movement Check [Low Power Mode] << low-speed operation for the weight and the offset measurement motion
INERTIA Measurement Movement Area: J1, J2, J3, J4, J5 [0 deg.]; J6 [270 to -360 deg.]
Area Movement Check [Low Power Mode] << low-speed operation for the inertia measurement motion range
Start of WEIGHT, OFFSET Measurement for 6axis [Static Method]
```

```
Warm up Movement: J3, J5 (Repeats 10 times) [High Power Mode] << warm-up operation
Start Measurement J3, J5 (Repeats 6 times)
Measurement 1. << starts measurements for the weight and offset (six measurements)
Measurement 2.
Measurement 3.
Measurement 4.
Measurement 5.
Measurement 6.
WEIGHT 5.7 kg, OFFSET 35 mm < the measurements and set values for the weight and the offset
  _____
WEIGHT, OFFSET Measurement and Settings Completed.
_____
Start of INERTIA Measurement for 6axis [Iteration Method]
Current weight : 5.7 kg, Current offset : 35 mm
Warm up Movement: J6 (Repeats 5 times) [High Power Mode] << warm-up operation
Start INERTIA Measurement: J6
Measurement 1. << starts the measurement for the inertia (one to twelve measurements)
Measurement
Measurement 3.
INERTIA : 0.13 kg * m^2 << measured value for the inertia
INERTIA Measurement and Settings Completed.
WEIGHT: 5.7 kg, INERTIA: 0.13 kg*m², OFFSET: 35 mm << final result and the set value
motor off
2022/9/7 10:43:19
----- COMPLETE ------
An example of the SCARA robot measurement (GX8, combination of measurement: Static & Iteration)
Weight, Inertia, Offset/Eccentricity Measurement Program ver. 1.0.0. << version display
2022/9/7 10:52:40
Model: GX8-A553S, PerformMode 0
Max Weight: 8 kg, Max Inertia: 0.16 kgm2, Max Eccentricity: 150 mm.
Current Weight: 4 kg, Current Inertia: 0.01 kgm2, Current Eccentricity: 0 mm. << current
ROBOT MOVEMENT AREA
WEIGHT Measurement Movement Area: J1, J2 [0 deg.]; J3 [0 to -50 mm.]; J4 [0 deg.]
INERTIA Measurement Movement Area: J1 [0 deg]; J2 [90 deg]; J3 [0mm]; J4 [-180 to 180
ECCENTRICITY Measurement Movement Area: J1 [0 to 90 deg]; J2 [-75 to 90 deg.]; J3
[0mm]; J4 [-360 to 360 deg.]
Start Measurement: [y: yes, n: no]:
WEIGHT Measurement Movement Area: J1, J2 [0 deg.]; J3 [0 to -50 mm.]; J4 [0 deg.]
Area Movement Check [Low Power Mode] << low-speed operation for the weight measurement motion range
INERTIA Measurement Movement Area: J1 [0 deg]; J2 [90 deg]; J3 [0mm]; J4 [-180 to 180
dea.1
Area Movement Check [Low Power Mode] << low-speed operation for the inertia measurement motion range
ECCENTRICITY Measurement Movement Area: J1 [0 to 90 deg]; J2 [-75 to 90 deg.]; J3
[0mm]; J4 [-360 to 360 deg.]
Area Movement Check [Low Power Mode] << moves the eccentricity measurement motion range at low speed
______
Start of WEIGHT Measurement for SCARA [Static Method]
     ______
Warm up Movement: (Repeats 10 times) [High Power Mode] << warm-up operation at high speed
Start WEIGHT Measurement: J3 (Repeats 5 times)
Measurement 1.
               << starts the measurement for WEIGHT (five measurements)
Measurement 2.
Measurement 3.
Measurement 4.
Measurement 5.
WEIGHT: 5.1 kg << measured value for the weight
______
WEIGHT Measurement and Settings Completed.
_____
```

```
Start of INERTIA Measurement for SCARA [Iteration method]
Current Weight: 4.2 kg
Warm up Movement: (Repeats 5 times) [High Power Mode] << warm-up operation
Start Inertia Measurement: J4
                << starts the measurement for the inertia (one to twelve measurements)
Measurement 1.
Measurement 2.
Measurement 3.
Measurement 4.
Measurement 5.
Measurement 6.
INERTIA: 0.07 kg*m² << measured value for the inertia
INERTIA Measurement and Settings Completed.
Start of ECCENTRICITY Measurement for SCARA [Iteration Method]
     ._____
Current weight: 5.1 kg, Current inertia: 0.07kgm<sup>2</sup>
Warm up Movement: (4 movements x 1 set) [High Power Mode] << warm-up operation at high speed
Start ECCENTRICITY Measurement: J1-J4
Measurement 1. << starts the measurement for the eccentricity (one to thirteen measurements)
Measurement 2.
Measurement 3.
Measurement
Measurement 5.
ECCENTRICITY: 90 mm << ends the measurement and sets the value
ECCENTRICITY Measurement and Settings Completed.
WEIGHT: 5.1 kg, INERTIA: 0.07 kg*m2, ECCENTRICITY: 90 mm
motor off
2022/9/7 10:57:54
----- COMPLETE ------
```

An Iteration method example of the measurement for the SCARA robot WEIGHT (LS6B, combination of measurement: Static & Iteration Iteration only)

The measurement for Inertia and eccentricity is omitted because it is the same operation as the GX8 example above.

```
Start of WEIGHT Measurement for SCARA [Iteration Method]

Warm up Movement: (Repeats 6 times) [High Power Mode] << warm-up operation at high speed Start WEIGHT Measurement: J2

Measurement 1. << starts the measurement for WEIGHT (one to thirteen measurements)

Measurement 3.

Measurement 4.

Measurement 5.

Measurement 6.

WEIGHT: 1 kg << ends the measurement and sets the value

WEIGHT Measurement and Settings Completed.
```

#### **Precautions**

- For the 6-axis robot, this function measures the tip weight of Arm 6. For the SCARA robot, it measures the weight attached to the shaft. For the weight of a workpiece, measure by attaching an equivalent object or set by adding the weight separately. The weight attached to the 6-axis arm 3 or 5 and the SCARA arm 2 should be converted to equivalent weight and added separately.

- The weight set value and the inertia set value have the minimum value (about 10% to 20% of the maximum value). 0kg, 0kgm², Values close to these are not set. Light end effectors less the minimum value are rounded up to the minimum value. When operating with the simulator, the minimum value is set.
- It is recommended to use CollisionDetect with the default "ON". You can use the CollisionDetect command to check the current setting.

```
> CollisionDetect
ON, ON, ON, ON (always OFF in the simulator)
```

- The settings for this measurement are as follows:

```
performmode: 0 (normal)
```

```
accel: 100
```

Use this setting with the upper limit of performmode "Normal" and accel "100". If you use performmode other than "Normal", change the mode of this measurement as well. When changing, modify the following Gperformmode variables manually and rebuild it before executing it.

```
"Function main
    GPerformMode = 0 '0:normal, 1:boost, 2:low vibration
    main2
Fend"
```

- If you use other than "0" with a robot not compatible with the perform mode, the following message will appear, and exits.

```
PerfomMode 1 is not supported in this robot.
-- end --"
```

- This measurement result can be used to set the same model uses the same end effector. It cannot be used for setting to different models (even if the arm length is different). Repeat the measurement with the compatible model.
- If an error occurs in the middle of the program, force-quit the program, eliminate the cause (overload of the end effector, collision of the robot, etc.), and run it again.
- The following warning message may be output at each measurement and after all measurements.

```
"Warning: XXXXX over specification, please check the end-
effector."(XXXXX is Weight, Inertia, Offset, and
Eccentricity)
```

The measured value is too large for the parameter. This measurement program ends after setting the maximum value, but check the design to make sure that there is no problem with the end effector specification.

- For not compatible model, the following message appears and the measurement is quit. N2-A450SR is not supported.

```
-- end --"
```

- For the 6-axis wall mounting type, the following message appears and exits.

```
Wall mounted type manipulators are not supported.

C8-A701SW is not supported.

-- end --"
```

# 6.19 Working with Robot Points

A robot point is a set of coordinates that define a position in the robot work envelope. For SCARA and Cartesian robots, a point is defined by the position data (X, Y, Z) within the reference rectangular coordinate space and the orientation data (U) which is the rotation about the Z axis of the rectangular coordinate.

For 6-axis robots, a point is defined by the position and orientation of the tool coordinate system with respect to a reference rectangular coordinate system. The point is specified by the position data (X, Y, Z) and the orientation is specified by the orientation data (U, V, W) which correspond with *roll* (rotation about the Z axis), *pitch* (rotation about the Y axis), and *yaw* (rotation about the X axis).

When the additional ST axis is installed, the point is specified by the position data of each additional axis (S, T).

The X, Y, and Z coordinates of a point are specified in millimeters. The U, V, and W coordinates are specified in degrees.

The S and T coordinates of a point are specified in millimeters or degrees, according to the type of axis.

Points are referenced using the letter P followed by an integer number or integer expression or by a label defined in the point file editor or [Robot Manager]-[Jog & Teach] page.

## 6.19.1 Defining points

You can define points in a program statement, points editor window, [Robot Manager]-[Jog & Teach] page, or at the [Command] window.

In a program statement or at the Command window, you can assign coordinates to a point, or define a point that is the current robot arm position.

```
P1 = XY (200, 100, -25, 0) 'Assign coordinates to point P1

Pick = XY (300, 200, -45, 0) 'Assign coordinates to point pick

P10 = Here 'Assign a point to current position
```

## 6.19.2 Referencing points by point label

You can assign names to point numbers so you can refer to points by name in a program.

Assign names from the point editor (see *Editing Points*) or the [Robot Manager]-[Jog & Teach] page. Names must be unique for each point number when used in the same point file.

Point labels can include up to 32 one-byte alphanumeric, Japanese, and the underscore characters, or 16 two-byte characters. Characters can be upper case or lower case. Only alphabets and Japanese can be used for the first letter.

```
For i = 0 To 10
   Go pick
   Jump place
Next i
```

# 6.19.3 Referencing points with variables

Use the letter P followed by a variable name within parentheses that represents the point number you are referencing.

```
For i = 0 To 10
    Go P(i)
Next i
```



Although you can define points at the [Command] window for test purposes, it is recommended that all points be defined in a program, point editor, or with the [Robot Manager]-[Jog & Teach] page. Points defined at the [Command] window will be cleared from memory when you build a project or run a program unless you execute "SavePoints".

## 6.19.4 Using points in a program

When starting programs, the default point file for the robot is loaded. You can also load other points in the program using the LoadPoints statement.

```
Function main
   Integer i

LoadPoints "model1.pts"
For i = 0 To 10
   Jump pick
   Jump place
   Next i
Fend
```

### 6.19.5 Importing points into program

You can import points into the current project while the program is running using the ImportPoints statement.

```
Function main
    Integer i

ImportPoints "c:\models\model1.pnt", "robot1.pnt"
    LoadPoints "robot1.pnt"

For i = 0 To 10
    Jump pick
    Jump place
    Next i

Fend
```

# 6.19.6 Saving and loading points

Use "LoadPoints" to load a point file in the current project. You can optionally specify the Merge parameter to combine points in a file with points that have already been loaded.

Use "SavePoints" to save the points in a point file. If the point file is in the current project, it will be updated on the PC when it is connected and the same project is open.

If the point file is not the current project, it will not be automatically updated on the PC. Use Project Synchronize to copy the file to the PC if desired.



Rebuild the program if Project Synchronize is performed.

### 6.19.7 Point attributes

Each point definition can optionally specify a local number and various arm orientations, depending on the robot type. You can specify point attributes in point assignment statements or use individual statements and functions to change the attributes of a previously defined point.

#### Local point attribute

To specify a local coordinate system number for a point in an assignment statement, add a forward slash (/) followed by the local number after the coordinates of the point.

$$P1 = XY(300, -125.54, -42.3, 0) / 1$$
 'P1 is in local 1

The local number can also be an expression enclosed in parentheses.

$$P2 = P3 / (mylocal)$$

Use the PLocal function and statement to read and set the local attribute of a point.

### Hand point attribute

To specify orientation for the SCARA or 6-axis robot, add a forward slash (/) followed by L (for Lefty hand orientation) or R (for Righty hand orientation).

```
P2 = XY(200, 100, -20, -45) /L ' Hand orientation is Lefty 
 P3 = XY(50, 0, 0, 0) /2 /R ' Righty in Local 2
```

You can read and set point hand orientation using the Hand statement and function.

# Elbow point attribute

To specify elbow orientation for the 6-axis robot in a point assignment statement, add a forward slash (/) followed by A (Above elbow orientation) or B (Below elbow orientation),

Elbow orientation is Below.

```
P1 = XY(0, 600, 400, 90, 0, 180) /B
```

You can read and set point elbow orientation using the Elbow statement and function.

### Wrist point attribute

To specify wrist orientation for the 6-axis robot in a point assignment statement, add a forward slash (/) followed by NF (NoFlip wrist orientation) or F (Flip wrist orientation).

Wrist orientation is Flip.

```
P2 = XY(0, 600, 400, 90, 0, 180) /F
```

You can read and set point wrist orientation using the Wrist statement and function.

### J4Flag and J6Flag point attributes

At some points in the work envelope, the 6-axis robot can have the same position and orientation even if the fourth joint or the sixth joint is rotated 360 degrees. To distinguish these points, the J4Flag and J6Flag point attributes are provided. These flags allow you to specify a position range for joint 4 and joint 6 for a given point.

To specify the J4Flag in a point assignment statement, add a forward slash (/) followed by J4F0 (-180 < the forth joint angle <= 180) or J4F1 (the forth joint angle <= -180 or 180 < the forth joint angle).

```
P2 = XY(0, 600, 400, 90, 0, 180) / J4F1
```

To specify the J6Flag in a point assignment statement, add a forward slash (/) followed by J6F0 (-180 < the sixth joint angle <= 180), J6F1 (-360 < the sixth joint angle <= -180 or 180 < the sixth joint angle <= 360), or J6Fn (-180\*(n+1) < the sixth joint angle <= -180\*n or 180\*n < the sixth joint angle <= 180\*(n+1)).

```
P2 = XY(50, 400, 400, 90, 0, 180) / J6F2
```

### J1Flag and J2Flag point attributes

At some points in the work envelope, the RS series can have the same position and orientation even if the first joint or the second joint is rotated 360 degrees. To distinguish these points, the J1Flag and J2Flag point attributes are provided. These flags allow you to specify a position range for joint 1 and joint 2 for a given point.

To specify the J1Flag in a point assignment statement, add a forward slash (/) followed by J1F0 (-90 < the first joint angle <= 270) or J1F1 (-270 <= the first joint angle <= -90 or 270 < the first joint angle <= 450).

```
P2 = XY(-175, -175, 0, 90) / J1F1
```

To specify the J2Flag in a point assignment statement, add a forward slash (/) followed by J2F0 (-180 < the second joint angle  $\le 180$ ), J2F1 (-360 < the second joint angle  $\le -180$  or 180 < the second joint angle  $\le 360$ ).

```
P2 = XY(300, 175, 40, 90) / J2F1
```

#### J1Ang and J2Flag point attributes

At the origin of the robot coordinate system, the RS series can have the same position and orientation even if the first joint is rotated. To distinguish these points, the J1Ang point attributes are provided.

### 6.19.8 Extracting and setting point coordinates

Use the CX, CY, CZ, CU, CV, CW, CS, and CT commands to get a coordinate of a point and set it.

```
xcoord = CX(P1)
P2 = XY(xcoord, 200, -20, 0)
ycoord = CY(P*)

' Gets current Y position coordinate

CX(pick) = 25.5
CY(pick) = CY(pick) + 2.3
```

# 6.19.9 Alteration of points

There are several ways of modifying a point without re-teaching it. You can change one or more coordinate values with relative offsets or absolute values.

To set an absolute value for a coordinate, use a colon followed by the axis letter and the value.

To add a relative offset to a coordinate, use an axis letter followed by the offset value or expression in parentheses. If the offset is negative, then precede the axis letter with the minus sign. If parentheses are omitted, they will be automatically added.

```
Go P1 -Z (20) Move to P1 with a z offset of -20mm

Go P1 : Z (-25) Move to P1 with a z absolute position of -25mm

Go P1 -X (20) +Y (50) : Z (-25) Move to P1 with offsets for X and Y relative offsets and an absolute position for Z
```

### Point alternation of 6-axis robot

When changing the orientation by roll (U), pitch (V), and yaw (W) in the SPEL<sup>+</sup> program, adding the angles to V and W axes (e.g. +V(10), +W(10)) does not mean the rotation of Y and X axes in the robot coordinate system. To change the orientation (U, V, and W) after teaching the points, set the robot to actual posture by Jog & Teach in the Robot Manager.

# 6.20 Input and output control

### 6.20.1 Hardware I/O

There are 24 DC inputs and 16 DC outputs on a standard controller.

By purchasing I/O boards, you can add additional inputs and outputs. You can expand the I/O by using the Fieldbus I/O master option and Fieldbus I/O slave option. Also, you can input/output the Analog signal by using the Analog I/O board option. Refer to 11. Inputs and Outputs for details.



I/O boards cannot be added to T series and VT series manipulators.

# 6.20.2 Memory I/O

There are 128 bytes (1024 bits) of memory I/O. Memory I/O is especially useful for synchronizing multi-tasking. Each memory bit can be treated as both an input and an output.

Use the commands with the "Mem" prefix for memory I/O.

# 6.20.3 I/O Commands

| Command | Description                                                        |
|---------|--------------------------------------------------------------------|
| In      | Reads one byte (eight bits) of input data.                         |
| InW     | Reads one word (sixteen bits) of input data.                       |
| MemIn   | Reads one byte (eight bits) of Memory I/O.                         |
| MemInW  | Reads one word (sixteen bits) of Memory I/O.                       |
| MemOff  | Turns off one Memory I/O bit.                                      |
| MemOn   | Turns on one Memory I/O bit.                                       |
| MemSw   | Read status of one bit of memory I/O.                              |
| Off     | Turns off one output bit.                                          |
| On      | Turns on one output bit.                                           |
| Out     | Sets/reads one byte (eight bits) of output data.                   |
| OutW    | Sets/reads one word (sixteen bits) of output data.                 |
| Oport   | Reads the status of one output bit.                                |
| InBCD   | Reads one byte of input data in BCD (binary coded decimal) format. |
| OpBCD   | Outputs one byte of output data in BCD format.                     |
| Sw      | Read status of one bit of hardware inputs or memory inputs.        |

# 6.21 Using Traps

Traps enable a program to jump to a label or enable a function to be called when a certain event occurs.

Traps are divided into the following two types:

- 4 Traps are fired by user defined input
- 7 Traps are fired by system

You should keep trap functions short and avoid continuous loops. According to the type, some Traps must be re-armed. Also, some motion commands are limited to execute in trap functions.

For details on Trap statement, see the SPEL<sup>+</sup> Language Reference manual.

Here is a simple example for a trap. In this example, when input 1 turns on, it executes the Sw1Trap function.

```
Function main
  ' Sets the trap
  Trap 1 Sw(1) = On Xqt SwlTrap
  Do
    RunCycle
  Loop
Fend
Function SwlTrap
  'Turn on output 1 for 2 seconds
  On 1, 2
  'Wait for trap condition to clear
  Wait Sw(1) = Off
  'Re-arm the trap
  Trap 1 Sw(1) = On Xqt SwlTrap
Fend
```

| Trap               | Description                                                                                                                                                                             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trap 1 – 4 Goto    | Triggered by an input condition specified by the user.                                                                                                                                  |
| Trap 1 – 4 Call    | User traps can use GoTo, Call, or Xqt.                                                                                                                                                  |
| Trap 1 – 4 Xqt     |                                                                                                                                                                                         |
| Trap Emergency Xqt | When Emergency Stop occurs, a specified function is executed.                                                                                                                           |
| Trap Error Xqt     | When an error occurs, a specified function is executed.                                                                                                                                 |
| Trap SgOpen Xqt    | When the Safeguard circuit is open, a specified function is executed.                                                                                                                   |
| Trap SgClose Xqt   | When the Safeguard circuit is closed, a specified function is executed.                                                                                                                 |
| Trap Pause Xqt     | When the system enters the Pause state, a specified function is executed.                                                                                                               |
| Trap Abort Xqt     | When all tasks (except background tasks) have been stopped by user or system, such as when a command corresponding to Abort All is executed, a specified function is executed.          |
| Trap Finish Xqt    | When all tasks (except background tasks) have been finished, a specified function is executed. However, the function will not be executed under the condition that executes Trap Abort. |

# 6.21.1 Cautions of Trap when it triggers the system condition

# ■ Forced Flag



Specify Forced flag in the I/O output commands such as On/Off command to enable On/ Off of the I/O outputs during Emergency Stop, Safety Door open, Teach mode, and error condition.

Do not connect external equipment that operates mechanically such as actuator to the I/O output that specifies Forced flag. Otherwise, the external equipment may move during Emergency Stop, Safety Door Open, Teach mode, or error condition and this will cause serious safety problems.

Forced flag is designed to be specified for I/O outputs connected to external equipment without mechanical motion such as status display LEDs.

### Outputs off during Emergency Stop

Uncheck "Outputs off during Emergency Stop" in the Preferences page of System Configuration SPEL Controller Board to execute I/O On/Off using the Trap Emergency Xqt task after Emergency Stop. If this checkbox is checked, the execution order of turning Off by the controller and turning On using the task are not guaranteed.

# 6.22 Special Tasks

Each task of SPEL<sup>+</sup> pauses by Pause input or Safety Door open and stops by Emergency Stop or Error. Therefore you cannot create a system that monitors the whole system.

To enable the Robot Controller to monitor the whole system, the following special tasks are provided:

### NoPause/NoEmgAbort task

You can create a task that continues a processing even when the Pause is input or safeguard is open by specifying NoPause or NoEmgAbort as a task type when creating task by Xqt.

### Background task

You can create a task that starts as the controller power is turned ON and continues a processing even when the Pause is input or safeguard is open.

These special tasks are useful tasks but may reduce the safety of the system by using them improperly.

Be sure to understand the following items when using these tasks.

# 6.22.1 Precautions to Use the Special Tasks

### ■ Forced Flag



Specify Forced flag in the I/O output commands such as On/Off command to enable On/ Off of the I/O outputs during Emergency Stop, Safety Door open, and error.

Do not connect external equipment that operates mechanically such as actuator to the I/O output that specifies Forced flag. Connecting external equipment may cause serious safety problems and operate the external equipment during Emergency Stop, Safety Door Open, or error occurrence.

Forced flag is designed to be specified for I/O outputs connected to external equipment without mechanical motion such as status display LEDs.

#### NoEmgAbort Task

When Emergency Stop or errors occur, finish the task promptly after completing the error handling.

If you do not complete the NoEmgAbort task, the controller does not change to Ready status and you cannot cancel the Emergency Stop or the error. You cannot execute Reset command from the NoEmgAbort task to cancel the Emergency Stop or the error automatically.

NoEmgAbort task is designed for I/O process without motion and communication with external device using the Ethernet. Therefore there are commands such as robot motion commands that cannot be executed in the NoEmgAbort task. An error occurs if you use these commands. The list of these commands is in the next section.

For details, refer to EPSON RC+ 7.0 *Online Help* or *Xqt* in *SPEL*<sup>+</sup> *Language Reference*.

#### NoPause Task

NoPause task continues the operation during the Pause or Safety Door open condition. However, when a robot is operating NoPause task, the task pauses as the robot pauses.

#### Background task

Background task always exists while the controller is working, and it is designed for monitor of the entire system and communication with external device. Therefore there are commands such as robot motion commands that cannot be executed in the background task.

An error occurs if you use these commands. The list of these commands is in the next section.

In addition, the background task continues processing even when Pause is input or safeguard is open, so it doesn't affect the controller state transition.

For details, refer to 6.23 Background Task.

### Outputs off during Emergency Stop

Uncheck this preference to execute I/O On/Off using the NoEmgAbort task or background task after Emergency Stop. If this checkbox is checked, the execution order of turn Off by the controller and turn On using the task are not guaranteed.

### Setting of Safeguard open stops all tasks

When this preference is checked, NoPause task stops by Safety Door open. NoEmgAbort task or background task continues the task.

### Setting of [Enable the Background task]

Set this preference when you use the background task.

### Setting of [Initialize global variables as the MainXX starts]

Uncheck this preference when you use the global variables from the background task. When this checkbox is checked, the controller will initialize the variables and the variable-access conflict from tasks will occur.

## ■ Setting of [Enable advanced task commands]



Check this preference when you execute the commands below from a background task.

StartMain, Cont, Recover, Reset Error, Reset

When you execute these commands from a task, you should understand each command specification and verify that the system has the appropriate conditions.

Improper use, such as executing commands continuously in a loop, can reduce the security of system.

# 6.22.2 NoPause/NoEmgAbort task specification

Status by Event and Task

| Frank                     | Task Type |                |            |
|---------------------------|-----------|----------------|------------|
| Event                     | Normal    | NoPause        | NoEmgAbort |
| Pause Statement           |           |                |            |
| Pause Input               | Pause     | Continue *1    | Continue   |
| Pause Button              |           |                |            |
| Safety Door Open          | Pause *2  | Continue *1 *2 | Continue   |
| Error during Auto Mode    | Stop      | Stop           | Continue   |
| Error during Program Mode | Pause     | Pause          | Continue   |
| Emergency Stop            | Stop      | Stop           | Continue   |
| Stop Button               | Stor      | Stop           | Stop       |
| Stop Input                | Stop      |                |            |
| Halt Statement            | D         | Pause          | Pause      |
| Halt Button               | Pause     |                |            |
| Brake Point               | Pause     | Pause          | Pause      |
| Switching to Teach Mode   | Stop      | Stop           | Stop       |

<sup>\*1</sup> When the robot is operating, the task pauses as the robot pauses.

### Task Execution

| Normal     | Omit the task type in Xqt statement, or specify Normal for the task |
|------------|---------------------------------------------------------------------|
|            | type.                                                               |
|            | Xqt NormalTask                                                      |
|            | Xqt NormalTask, Normal                                              |
| NoPause    | Specify NoPause in Xqt statement.                                   |
|            | Xqt NoPauseTask, NoPause                                            |
| NoEmgAbort | Specify NoEmgAbort in Xqt statement.                                |
|            | Xqt NoEmgAbortTask, NoEmgAbort                                      |

You cannot change the task type after executing a task.

main to main63 that are executed at the beginning of the program are executed as normal tasks.

Type of a task executed in Trap Xqt is determined by the event type.

For details, refer to EPSON RC+ 7.0 Online Help or Trap in SPEL+ Language Reference.

# Restricted Commands by Task Types

| Normal     | No restriction                                                              |
|------------|-----------------------------------------------------------------------------|
| NoPause    | No restriction                                                              |
| NoEmgAbort | Cannot execute the following commands.                                      |
|            | Command for robot motion                                                    |
|            | Commands for vision                                                         |
|            | Reset, Xqt, Trap, etc.                                                      |
|            | For details, refer to EPSON RC+ 7.0 Online Help or Xqt in SPEL <sup>+</sup> |
|            | Language Reference.                                                         |

<sup>\*2</sup> When [Outputs off during Emergency Stop] is checked in the [Preferences] page of [Setup Controller], normal tasks and NoPause tasks stop by Safety Door open.

# 6.22.3 NoPause/NoEmgAbort task example

The following example shows a program that monitors the error of the controller and switches the I/O On/Off when error occurs according to the error number.

The program example of ErrOn, EStopOn, SafetyOn are indicated in the *EPSON RC+ 7.0 SPEL+ Language Reference*.

# 6.23 Background Task

## 6.23.1 Primary features of background task

The purpose of the background task is to monitor the status of the cell as a whole and to communicate with external devices.

Function BgMain, a function specified as the "Background task" will be automatically activated as task 65 when the controller starts and loads the project.

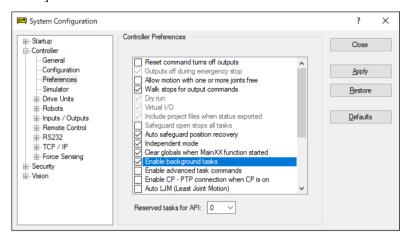
If another task is created within the background task using the XQT command, that created task will be assigned to task No.65 (and onward in the ascending order) and will also function as a background task. In addition, specifying a task type for an XQT command in a background task has no meaning.

An operator is not necessarily aware of the operating Background task which does not stop at the input of emergency stop or safeguard signal. The Background task will not stop when an operator inputs "PAUSE" or "ABORT".

In this sense, the background task functions for the application program to work as a part of the system.

On the other hand, the execution commands to operate the Manipulator, set-up commands for the Manipulator or the commands for image processing cannot be executed within the background task.

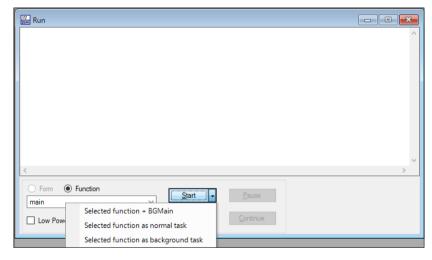



Specify Forced flag in the I/O output commands operated from the background tasks to enable On/ Off of the I/O outputs during Emergency Stop, Safety Door open, and error.

Do not connect external equipment that operates mechanically such as actuators to the I/O output that specifies the Forced flag. Connecting external equipment may cause serious safety problems and operate the external equipment during Emergency Stop, Safety Door Open, or error occurrence.

Forced flag is designed to be specified for I/O outputs connected to external equipment without mechanical motion such as status display LEDs.

# 6.23.2 Setup and start the background task


When you use the background task, first of all you need to check the [Enable background tasks] in the [Preferences] page of [Setup]-[System Configuration]-[SPEL Controller Board].



When you have already checked the box above and the Function BgMain exists in your program, it will automatically start as Task 65 as the controller starts and loads the project, it executes as a "Background task".

However in PROGRAM mode, the Function BgMain will not start automatically. You need to start it using the <Start> button in the [Run] window.

This is because the PROGRAM mode is for creating programs and debugging and it may be more efficient when it doesn't start the Function BgMain.



When the controller operating mode shifts from PROGRAM to AUTO mode, the Function BgMain will start automatically.

# 6.23.3 Holding background task (from being activated)

The purpose of the background task is to monitor the status of the cell as a whole and to communicate with external devices. It is activated before a non-background task is activated and continues to function when the non-background task either generates an error or is aborted by an operator. In this sense, the background task can be a program that never stops functioning.

The background task can be debugged in PROGAM mode. Click the <Stop> button dropdown menu in the [Run] window and you can select the background task is to be aborted as well or not.



In the [Task Manager] window, the background tasks can be managed in the same way as the non-background tasks except for the <Pause/Cont> button. You can set a break point in a background task and step through the code.

As a rule, the background task cannot be controlled in AUTO mode. It is by design that any error that occurs in the background task cannot be recovered in AUTO mode. Therefore, thorough debugging in PROGRAM mode is recommended. Be particularly careful that the communication errors are handled properly without fail before using the background task in AUTO mode.

The following tables show how the background will (or will not) be affected by operation from the console.

### **Operator Window**

| Button   | Background task          |
|----------|--------------------------|
| START    | It will not be affected. |
| Abort    | It will not be affected. |
| Pause    | It will not be affected. |
| Continue | It will not be affected. |

# Remote Input

| Button           | Background task          |
|------------------|--------------------------|
| Start / Stop     | It will not be affected. |
| Pause / Continue | It will not be affected. |
| Reset            | It will not be affected. |
| Shutdown         | It will be stopped.      |

# Run Window (PROGRAM mode)

| Button   | Background task                                                                                                        |  |
|----------|------------------------------------------------------------------------------------------------------------------------|--|
| Start    | You can select how to start the task.                                                                                  |  |
| Abort    | You can select how to abort the task: abort only non-background task or abort all tasks including the background task. |  |
| Pause    | It will not be affected.                                                                                               |  |
| Continue | It will not be affected.                                                                                               |  |

Task Manager (PROPGRAM mode)

| Button        | Background task                                             |  |  |
|---------------|-------------------------------------------------------------|--|--|
| Halt / Resume | When the background task is selected, you cannot execute    |  |  |
|               | Halt/Resume.                                                |  |  |
| Quit          | When the background task is selected, you can execute Quit. |  |  |
| Pause/Cont    | It will not be affected.                                    |  |  |
| Stop          | All tasks including the background task will stop.          |  |  |

# Break point (PROGRAM mode)

| Switch name       | Background task                                                 |  |
|-------------------|-----------------------------------------------------------------|--|
| Set a break point | You can set a breakpoint to the background task.                |  |
|                   | It will pause at the break point.                               |  |
| Step Into         | Available                                                       |  |
| Step Over         | Available                                                       |  |
| Continue          | Available                                                       |  |
| Walk              | Available, but the motion commands are not available to execute |  |
|                   | from the background task.                                       |  |

# 6.23.4 Commands that will cause error in background task

The following commands are prohibited in background tasks and execution will result in error:

- commands that relate to the Manipulator operation or operation settings
- commands that relate to the Vision relation instruction
- TRAP commands

If a program that is to be executed as the background task includes any of the following commands, it will result in error when executed.

However, using the command related to the Manipulator operation settings or the Manipulator settings to gain the current setting values or refer to them will not result in error:

Commands that will cause error are almost the same as with NoEmgAbort, but there are some commands such as Xqt that can be executed in a background task.

For details, refer to EPSON RC+ 7.0 *Online Help* or *Xqt* in *SPEL*<sup>+</sup> *Language Reference*.

# 6.23.5 Background task and Remote control

No matter whether the background task is being executed or not, it doesn't affect the remote I/O outputs Ready, Running, and Pause. For example, even if the background task is being executed, when no non-background tasks (Task No. 1 - 32) are being executed, the READY output will be ON.

# 6.24 Predefined Constants

There are several predefined constants for use in SPEL+ program. A project build time, the values for these constants are substituted for the constant name.

For the predefined constants list, Refer to the EPSON RC+ 7.0 SPEL+ Language Reference manual.

# 6.25 Calling Native Functions in Dynamic Link Libraries

EPSON RC+ 7.0 allows you to call native functions in Dynamic Link Libraries (DLLs).

This is used for complicated arithmetic processing and call for a native function of an external device.

To call the native DLL function, use a Declare statement which is a function definition command from the SPEL<sup>+</sup> program and write a function call as normal.

For details, refer to the *Declare* in the *EPSON RC+ 7.0 SPEL<sup>+</sup> Language Reference*.

# Sample of calling a native DLL

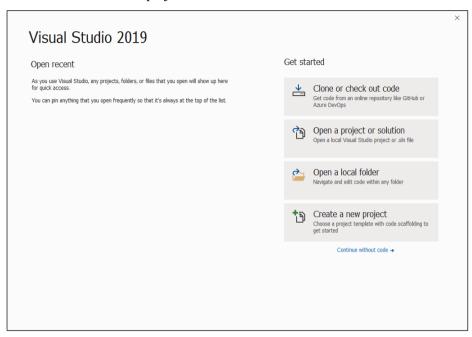
By using a development tool such as Microsoft Visual Studio 2019, you can create a native DLL that can be called from SPEL<sup>+</sup>. Here, it uses Visual Studio 2019 as a sample to create a function that executes the arithmetic operator.

### Step 1: Decide on variable type for a native DLL

You need to plan the data type to use for transferring with the native DLL in the EPSON RC+ 7.0.

Correspondence table for the EPSON RC+ 7.0 data type and the C/C++ variable type is shown below.

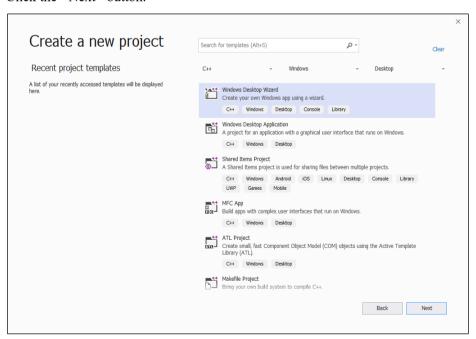
You cannot use the C/C++ byte type and structure because the EPSON RC+ 7.0 has no correspond data for them.


### Data correspondence

| EPSON RC+ 7.0 | C/C++                      |
|---------------|----------------------------|
| Boolean       | short                      |
| Byte          | short                      |
| Short         | short                      |
| Integer       | short                      |
| Long          | int                        |
| Real          | float                      |
| Double        | double                     |
| String        | char [256] * Null included |

# Step 2: Create a native DLL

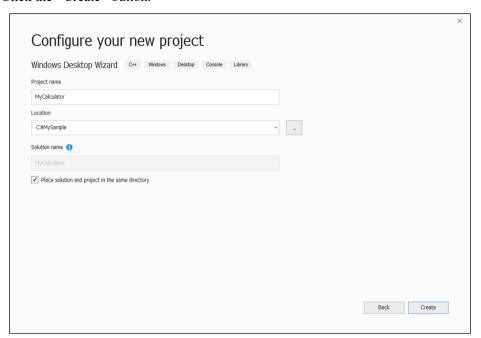
(1) Start Visual Studio 2019.


Select the "Create a new project" on the start window.



(2) [Create a new project] dialog box will appear.

Select "Windows Desktop Wizard" from the project template list shown on the right of dialog box.

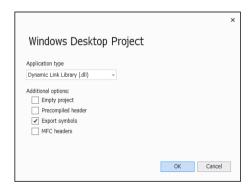

Click the <Next> button.



# (3) Start the Windows Desktop Wizard.

Type in a name for a project in the [Project name] box. (Here types in "MyCalculator".)

Click the <Create> button.

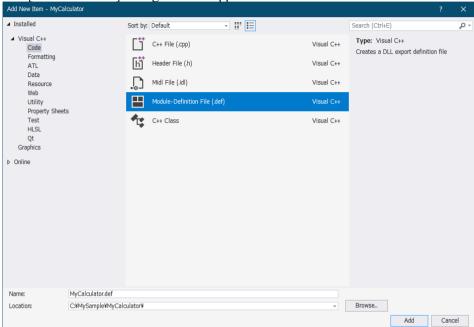



# (4) Set the project options.

Select the "Dynamic Link Library (.dll)" in the [Application type].

Check the [Export symbols] box in the [Additional options:].

Click the <OK> button.




(5) A simple example of function "fnMyCalculator" will be created in MyCalculator.cpp. Add a function MyArithmetic which executes the arithmetic operator to this file.

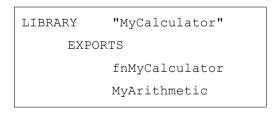
```
MYCALCULATOR API float MyArithmetic(short value1, short
value2, char * kind )
      if (!strcmp(kind, "add"))
            return (float) (value1 + value2);
      else if ( !strcmp(kind, "sub") )
            return (float) (value1 - value2);
      else if ( !strcmp(kind, "mul") )
            return (float) (value1 * value2);
      else if ( !strcmp(kind, "div") )
            return (float) (value1) / (float) (value2);
      }
      else
      {
            strcat s(kind, 10, "NG");
            return 0;
      }
```

(6) Export a function to enable it to be called from SPEL<sup>+</sup>. Select Visual Studio 2019 menu-[Project]-[Add New Item].

The [Add New Item] dialog box will appear.



Select the [Visual C ++]-[Code] in the tree on the left.


Select "Module-Definition File (.def)" from the project template list shown on the center of dialog box.

Type in a file name in the [Name:].

(Here types in "MyCalculator.def" as a file name.)

Click the <Add> button.

Register "fnMyCalculator function" and "MyArithmetic function" to the created "MyCalculator.def" file.



(7) Build the project and create the DLL.

Select [Win32] as a solution platform for Visual Studio 2019. Then, select Visual Studio 2019 menu-[Build]-[Build MyCalculator].

DLL will be successfully created if no error occurs.



In EPSON RC+ 7.0, 64 bit native DLL is not available. When using a DLL created with a version older than Visual Studio 2015, it is necessary to install the runtime corresponding to that version in advance.

# Step 3: Call the DLL function from SPEL+

You can now try your DLL function from SPEL<sup>+</sup>.



Before you call your function from the EPSON RC+ 7.0, you must debug it and check thoroughly if it can work without errors.

In case that error occurs (such as system error) in the native function, the EPSON RC+ 7.0 will not work normally.

- (1) Copy the created MyCalculator.dll to the EPSON RC+ 7.0 project folder (e.g. C:\EpsonRC70\projects\dllcall).
- (2) Define a DLL function which executes the arithmetic operator in the SPEL<sup>+</sup> program and write a function call for MyArithmetic in Function main.

```
Declare MyArithmetic, "MyCalculator.dll" (value1 As Integer,
value2 As Integer, ByRef calc$ As String) As Real
Function main
     Real result:
     String calc$
     calc$ = "add"
     result = MyArithmetic(1, 2, ByRef calc$);
     Print "1+2=", Str$(result)
     calc$ = "sub"
     result = MyArithmetic(1, 2, ByRef calc$);
     Print "1-2=", Str$(result)
     calc$ = "mul"
     result = MyArithmetic(1, 2, ByRef calc$);
     Print "1*2=", Str$(result)
     calc$ = "div"
     result = MyArithmetic(1, 2, ByRef calc$);
     Print "1/2=", Str$(result)
Fend
```

(3) Build and execute the project.

The following result will be displayed.

```
1+2=3
1-2=-1
1*2=2
1/2=0.5
```



Before you build the project, be sure to copy the native DLL to the project folder without fail. If you fail, a warning or error will occur.

Please note the dependency of the DLL when using a third party DLL as a native DLL. If the dependent DLL does not exist in the project folder or the folder set in the environment variable PATH of Windows, a warning or error will occur.

# 7. Building SPEL+ Applications

# 7.1 Designing Applications

# 7.1.1 Creating the simplest application

The simplest SPEL<sup>+</sup> application has one program and one point file. This is what is automatically defined for you when you create a new project. A blank program named "Main.prg" and a blank point file named "Points.pts" are created.

### To write and run a simple application

- 1. Select [New Project] from the [Project] menu to create a new project.
- 2. Write your program source code in the file that was created for you called "Main.prg".
- 3. Teach the robot points using the [Robot Manager]-[Jog & Teach] page.
- 4. Run the program by selecting [Run] Window from the [Run] menu or by pressing F5 (the shortcut key for the [Start] command).

# 7.1.2 Application layout

Before writing your application, you need to decide what your application will accomplish and how the project will be structured. Here are some general guide lines.

### **Programs**

Each project can contain up to 64 programs that can be started from the Operator Window, Remote Control, RC+ API, or GUI Builder. Each program has a start function, as shown in the table below.

| Program # | Program Name | Start Function |
|-----------|--------------|----------------|
| 0         | main         | main           |
| 1         | main1        | main1          |
| 2         | main2        | main2          |
| 3         | main3        | main3          |
| 4         | main4        | main4          |
| 5         | main5        | main5          |
| 6         | main6        | main6          |
| 7         | main7        | main7          |
| •••       | •••          | •••            |
| 63        | main63       | main63         |

Your project must always define function main so that the main program can be started. The other programs are optional. If you use the Operator Window for your operator interface, you can define meaningful names for each of the programs used in your project in [Project]-[Properties]-[Operator setting]-[Operator Window].

### Operator interface

### **Operator Window**

Use the operator window provided with EPSON RC+ 7.0. You can configure EPSON RC+ 7.0 so that after Windows starts, EPSON RC+ 7.0 will start in Auto mode, which will automatically open the Operator Window.

Operators can select up to 64 programs. They can also optionally use the Pause/Continue buttons, I/O Monitor, Robot Manager, and System History viewer.

To use the Operator Window to allow programs to be started and stopped, the Control Device must be set to Self from [Setup]-[System Configuration]-[Controller]-[Configuration].

For details on configuring EPSON RC+ 7.0 for auto start, refer to 4.2.3 Start Mode.

#### Remote Control

Use remote control to turn motors on/off, home the robot, start programs, etc. A simple push button box can be used, or a PLC can be connected.

When using Remote Control, the Control Device must be set to Remote from [Setup]-[System Configuration]-[SPEL Controller Board]-[Configuration].

### Windows Applications using RC+ API

Use the RC+ API Option along with a Windows development tool such as Visual Basic, Visual C#, or Visual C++. See the RC+ API Manual for more information.

#### **GUI** Builder

To use the GUI Builder option, refer to the GUI Builder manual.

#### Safety interface

Use guard doors, safety mats, light curtains, etc. to protect the operator from injury.

### Robot Points, Pallets, Tools, Locals

Decide on which points you need for the work cell. In many cases you will only need one point file per robot.

Take advantage of Pallets, Tools, and Locals. Time spent on using these can save hours later on the production line. For example, if your cell has many points that take a lot of time to train, consider using Locals so that if the end effecter is damaged or replaced, you only need to redefine the Locals, not retrain all of the points.

Try to design in automatic or semi-automatic procedures for calibrating tools and locals. Even if you define them manually, write instructions on how to define them so the process can be repeated easily.

### Inputs and outputs

Layout your I/O early in the design stages. Use I/O labels in your programs. You must purchase additional I/O boards if you need more than 24 inputs or 16 outputs. You can also use the Fieldbus option so the controller can be a Fieldbus slave.

### Peripherals

The Robot Controller has one RS-232C port as standard. Available ports can be added up to 5 ports by installing an optional RS232C expansion board. Refer to 13. RS-232C Communications for details.

NOTE



T series and VT series manipulator do not have RS-232C port on the controller. Optional RS-232C expansion board cannot be added.

You can use TCP/IP to connect peripheral equipment. Refer to 14. TCP/IP Communications for details.

### 7.1.3 Auto start at power up

Your application can automatically log in a Windows user and start you SPEL<sup>+</sup> project after Windows boots.

Refer to 4.2.7 Auto Start.

# 7.2 Managing Projects

### 7.2.1 Overview

# What is an EPSON RC+ 7.0 Project?

An EPSON RC+ 7.0 project is a collection of SPEL<sup>+</sup> program files, include files, robot point files, I/O labels, user errors, Vision settings, and conveyor settings used to run a SPEL<sup>+</sup> application.

# Why do you need projects?

Projects are a safe and convenient way to manage your SPEL<sup>+</sup> applications. All the information for each application is kept in one project. By keeping all of your application code and point definitions in one project, it is easy to open a project and begin running or editing. Also, it is easy to create new versions of an application and run older versions.

Projects make it easier to maintain your application code with less chance of a program being lost.

There are also functions for copying and renaming projects, making it easy to create new projects from previous versions and for backing up projects to an external media such as a USB memory key.

### What does an EPSON RC+ 7.0 project consist of?

Each project is stored in the \EpsonRC70\Projects directory.

The following paragraphs describe the components of a project.

### Project file

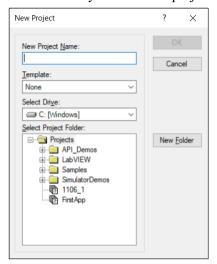
This file contains all of the information that describes the project. This file is automatically created by EPSON RC+ 7.0. You should never edit this file. Doing so may cause errors when you open the project. The file extension is ".sprj".

### Program files

A program file is an ASCII text file that contains one or more SPEL<sup>+</sup> functions. Each function in SPEL<sup>+</sup> can be run as a separate task (thread) in the controller or called from other functions.

Include files can also be used. These contain macro definitions and must be included in a program file using the #include statement. The file extension is ".prg".

### Point files


A point file contains a list of robot points. The file extension is ".pts".

#### Include files

In the include file, you can declare variables and macros. The file extension is ".inc".

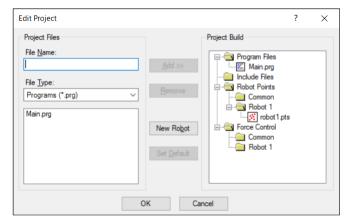
# 7.2.2 Creating a new project

Projects always reside in specific drive, \EpsonRC70\Projects folder. Also you can create a sub-folder to systematize the projects of different types.



### To create a new project

- 1. Select [New Project] from the [Project] menu. The [New Project] dialog box will appear.
- 2. Select the disk drive where you want the project to be stored on.
- 3. Select the project folder or create a new folder by clicking the <New Folder> button after selecting the parent folder.
- 4. Type in the name for the new project.
- 5. Optionally, select a template to base the project on.
- 6. Choose <OK> to create the project.


### 7.2.3 Configuring a project

Each application project you create must be configured properly before you can run the program.

There are two commands in the [Project] menu that allow you to configure a project: [Edit and Properties].

#### Editing a project

Select [Edit] from the [Project] Menu to open the [Edit Project] dialog. From this dialog, you configure program files, include files, and point files used in the current project.



For details on [Project]-[Edit], refer to 5.10.6 [Edit] Command (Project Menu).

# 7.2.4 Building a project

Before you run any program in your application, you must build the project.

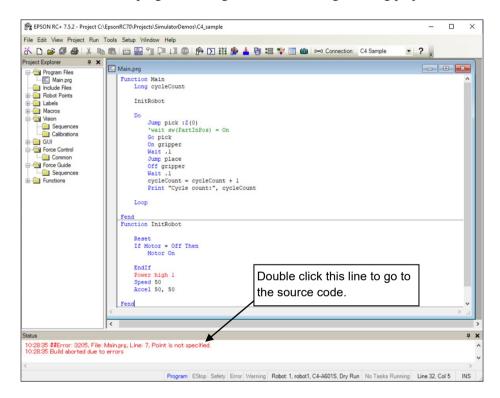
To build your application project

Select [Build] from the [Project] menu or click on the <Build> button on the toolbar.

Select [Rebuild] from the [Project] menu. This will rebuild the entire project.

Or

Select [Run Window] from the [Run] menu or click the <Run> button on the toolbar. The project will be built before the [Run] Window appears.


Or

Select [Operator Window] from the [Run] Menu. The project will be built before the [Operator Window appears.

After the files have been compiled and linked, the project files are sent to the controller.

#### Status Pane

This window shows progress messages and error messages during project build.



When errors occur during the build process, a message is displayed that includes the error number, program file name, and line number. Double click on the line with the error to go directly to the source code that caused the error.

### 7.2.5 Backing up a project

To make a backup copy of the current project, use the [Copy Project] command in the [Project] menu to copy the project to another disk drive or folder. You can also save the project under a different name.

This command is useful for transferring a project to an external media such as a USB memory.

# 7.3 Editing Programs

Before you can edit a program, it must be in the current project and opened in a program window.

# To open a program for editing

- 1. Select [Open] from the [File] menu.
- 2. Select the file(s) you want to open.
- 3. Choose <OK> to open the file.

# 7.3.1 Program rules

A program contains one or more SPEL<sup>+</sup> function definitions.

Lines can be blank. You can insert any number of blank lines to separate subroutines and functions, if desired.

The maximum length for each line is 512 characters, including the line number, if used.

# 7.3.2 Typing in program code

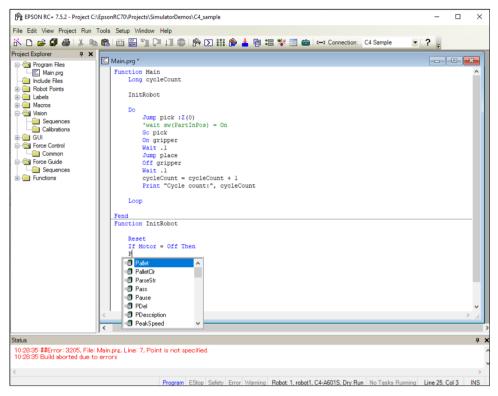
You can enter program statements in upper or lower case. Whenever you leave a line that has been changed, the line will be formatted. SPEL<sup>+</sup> keywords are case formatted and spaces are inserted around operators and after semi-colons and commas.

Consider using mixed case or lower case for variables and function names instead of all CAPs. This will make your code easier to read.

Use indentation for statements within loops. The "Auto Indent" feature automatically moves the cursor under the start of the previous line. It also indents lines after If, Else, For, Select, Case, and Do statements.

```
For i = 1 To 10

Jump P(i)


Jump P0

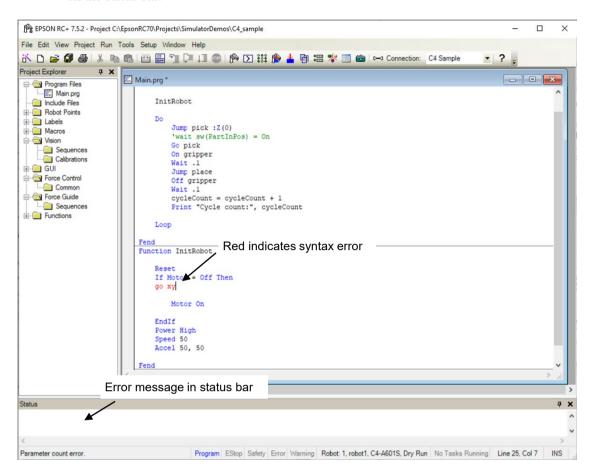
Next i
```

Use the "Auto End Construct" feature to automatically add the end construct statement. For example, when you enter a For statement and press <Enter>, a Next statement is automatically created with an indented blank line above it.

# 7.3.3 Syntax Help

When you are entering a keyword for a statement, a dropdown list appears showing the available SPEL<sup>+</sup> statement keywords and user functions that start with the text you have typed. When you are entering a value, a dropdown list appears showing available SPEL<sup>+</sup> function keywords, constants, and user functions that start with the text you have typed. As you type, the dropdown list is updated. To use a keyword in the dropdown list, select the keyword and type Tab, or double-click the keyword.




When you type in a After you enter a SPEL<sup>+</sup> keyword, the syntax help window will appear to show the syntax of the statement or function. After the statement is entered, the syntax helper will automatically close, or you can press the Esc key to close it. You can enable / disable Syntax Help from the [Setup]-[Preferences]-[Editor] tab.

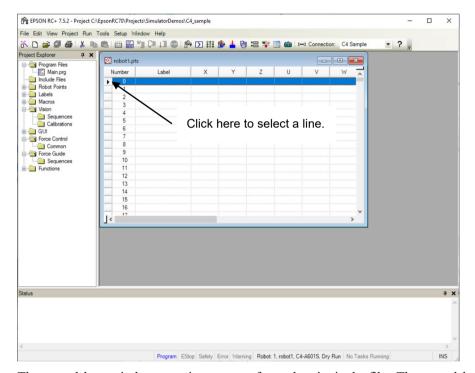
A list box will be displayed for some parameters as you type. To select a value in the list, use the up and down arrow keys, or type the first few characters, to highlight the desired item, then press <Tab> to select the item. You can also type in a value not shown in the list, such as a variable or literal constant. Press <Esc> to hide the list box. In addition to <Tab>, you can use a comma or period to select an item. In the example shown below, the first parameter of the On statement can be an output label, so a list of output labels in the current project is displayed.



# 7.3.4 Syntax Errors

When a syntax error is detected, the line with the error will be displayed in red. If the caret is placed on the line with the error, then a brief message will be displayed on the status bar. For example, in the program shown below, the message "Parameter count error" is displayed on the status bar.




# 7.4 Editing Points

You can edit the robot points from the robot point file. You can define new points or cut, copy, and paste points from one point file to another, including between projects.

### To open a point file for editing

- 1. Select [Open] from the [File] menu to show the Open dialog box.
- 2. Choose the Points option button. You will see a list of point file names in the files list box.
- 3. Select the point file you want to edit by clicking on the name.
- 4. Click <Open> to open the file. You will see a spread sheet window for the point file you selected.

### The robot points spread sheet window



The spreadsheet window contains one row for each point in the file. The spreadsheet always contains rows for all points, even if they are not defined. The cells for an undefined point are blank.

| Item                | Description                                                        |
|---------------------|--------------------------------------------------------------------|
| Row select column   | This is the leftmost column. Click on this column to select a row. |
| Number column       | Point number. Range is from 0 to a maximum point number.           |
| Name column         | Name of the point.                                                 |
| Coordinate columns  | Coordinates of X, Y, Z in millimeters and U, V, and W in degrees.  |
| Local number column | Drop down list of local numbers. Range is from "0" to "15".        |
| Hand column         | Drop down list of robot hand orientations: Lefty and Righty.       |
| Elbow column        | Drop down list of robot elbow orientations: Above and Below.       |
|                     | This column is shown only for 6-axis robots.                       |
| Wrist column        | Drop down list of robot wrist orientations: Flip and NoFlip.       |
|                     | This column is shown only for 6-axis robots.                       |
| J4Flag column       | Drop down list of robot J4Flag: "0" and "1".                       |
|                     | This column is shown only for 6-axis robots.                       |
| J6Flag column       | Drop down list of robot J6Flag: "0" – "127".                       |
|                     | This column is shown only for 6-axis robots.                       |
| J1Flag column       | Drop down list of robot J1Flag: "0" and "1".                       |
|                     | This column is shown only for RS series and 6-axis robots.         |
| J2Flag column       | Drop down list of robot J2Flag: "0" and "1".                       |
|                     | This column is shown only for RS series.                           |
| J1Angle             | Coordinate in units of degrees.                                    |
|                     | This column is shown only for RS series and N series.              |
| J4Angle             | Coordinate in units of degrees.                                    |
|                     | This column is shown only for N series.                            |
|                     |                                                                    |

### To select one or more rows

Click on the row select column (leftmost column) to select a row. To select more than one row, point to the row select column of the first row you want to select. Hold down the left mouse button and drag the mouse down or up to select more rows.

### To select all rows

Execute Select All from the Edit Menu, or type <Ctrl> + A.

### To define a new point

Move the cursor anywhere in the row of the point you want to define using the mouse, and then click a cell you want to type in. Enter information for the point. This automatically defines the point, which means it will be sent to the robot controller at the next project build or Jog and Teach command.

For example, click on the Name column and type in a name of the point. Press the <TAB> key to move to the X coordinate column. Type a coordinate value and then press <Enter>. You will see zeros automatically entered in all of the other coordinates. This means that the point is defined.

#### To delete a point

Select the row containing the point and cut it by selecting [Cut] from the [Edit] menu or by typing  $\langle \text{Ctrl} \rangle + X$ .

### To cut and paste points

- 1. Select one or more rows and execute either [Cut] or [Copy] from the [Edit] menu.
- 2. Select the row where you want to start the paste.
- 3. Select [Paste] from the [Edit] menu.

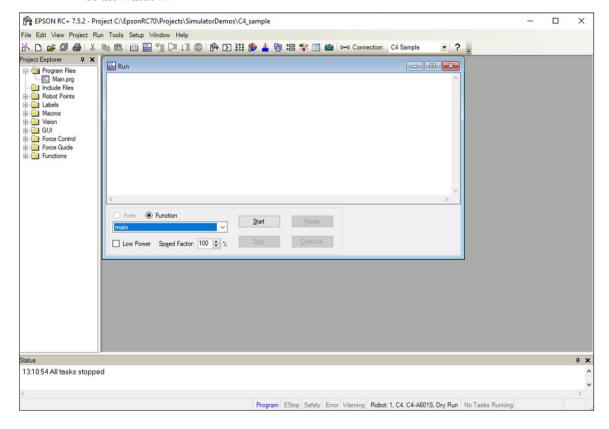
# 7.5 Running and Debugging Programs

You can run programs from the Run Window or from the Operator Window. The Run Window is used primarily for testing and debugging. The Operator Window is used as an operator interface for simple applications or demos. You can also run programs using the RC+ API option or GUI Builder option.

# To run a program

Select [Run] Window from the [Run] menu. This command will build the project (if required) and open the [Run] Window. The [Run] Window allows you to choose which function to execute. Select a function, and then click <Start>.

#### 7.5.1 The Run window


The Run window includes controls for running the programs in the current project.

### To open the Run window

Select [Run] Window from the [Run] Menu, or click on the <Run> button on the toolbar. If necessary, all changed open files will be saved and the project will be built. If the build is successful, the Run window will appear.

#### To close the Run window

Choose [Close] from the [File] menu or click on the **X** button in the upper right hand corner of the window.



| Item         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text area    | This is the area that takes up most of the run window. Output from your programs is displayed here. When your program uses an Input statement, you can type in the requested input from this text box. You can use the scroll bars to view the entire text buffer. If an error occurs while running a program, the error number, program file name, line number and function name will be displayed in this text area. You can double click on the line where the error is displayed to directly go to the source line that caused the problem. |
| Function     | Select a function to start. Functions are sorted alphabetically. Function main is selected by default.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Low Power    | When this box is checked, SPEL <sup>+</sup> ignores the Power High command. This allows you to run your program in low power mode to verify operation without having to change the program.                                                                                                                                                                                                                                                                                                                                                     |
| Speed Factor | Specifies the robot motion speed factor. The speed factor is a percentage of maximum point to point speed and linear interpolated speed. For example, if you program executes Speed 80 and the speed factor is 50%, the robot will move at speed 40.                                                                                                                                                                                                                                                                                            |
| Start        | Starts the function shown in the function drop down list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stop         | Stops all tasks. If the robot is executing a motion command when this button is pressed, the robot will decelerate to a stop.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pause        | Pauses all tasks with pause enabled. Activates the <continue>button. If the robot is executing a motion command when this button is pressed, the robot will decelerate to a stop.</continue>                                                                                                                                                                                                                                                                                                                                                    |
| Continue     | Continues paused tasks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CTRL+C       | Same as <stop> button.</stop>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# 7.5.2 Debugging

EPSON RC+ 7.0 supports source level debugging. You can set breakpoints and step through your source code. You can also pause / continue a program or halt a task using the Task Manager.

#### Setting and clearing breakpoints

Open the program where you want to set a breakpoint, and then click on the line where you want to stop. Use one of the following methods to set a breakpoint:

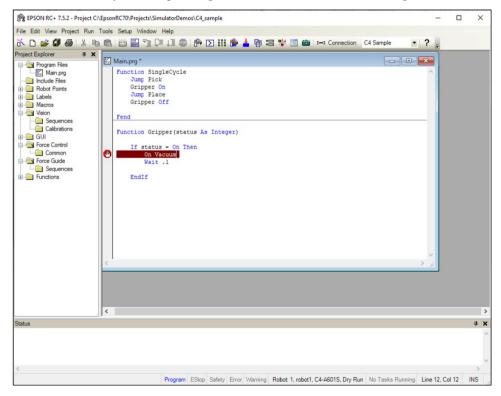
- If Margin Indicators are enabled, then click in the margin next to the line on the left. You will see a breakpoint symbol next to the line.

Or

- Type F9.

Or

- Select Toggle Breakpoint from the [Run] menu.


Execute one of the methods above to clear a breakpoint, or select [Clear All Breakpoints] from the [Run] menu.

You cannot set a breakpoint on non-executing statements, such as #define, #include, or blank lines.

After setting a breakpoint, the task will halt when the execution line is reached the breakpoint. You can set or clear a breakpoint while a task is running.

When reached a breakpoint, the program window containing the program source line at the breakpoint is opened and the line is highlighted in yellow. The task number is shown in the title of the program window.

If more than one task reaches a breakpoint, then a program window will be opened for each task. This allows you to step through each task that reached the breakpoint.

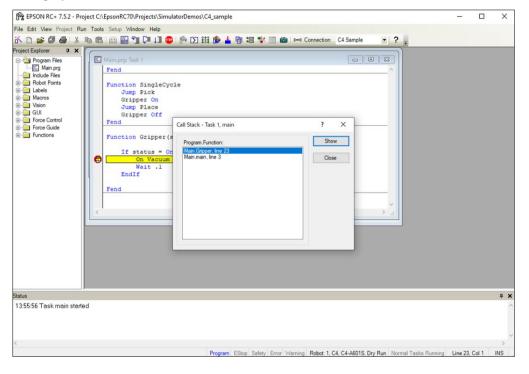


### Stepping through a program

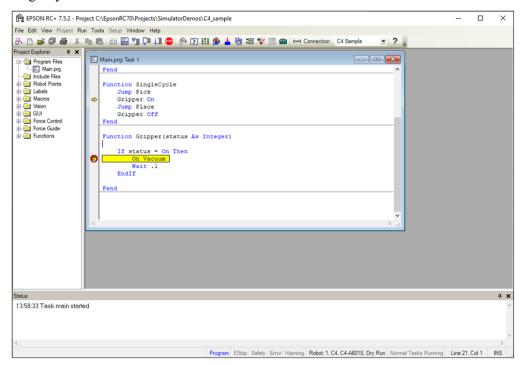
There are three commands on the [Run] Menu that are used for stepping through code.

[Step Into] steps through each line and also steps into functions when a step is executed on a Call statement.

[Step Over] steps through each line but when a Call statement is encountered, the function in the statement is executed completely.


Walk executes lines until after the next motion command and then halts the task. It will halt after the next output command if the [Setup]-[System Configuration]-[Controller]-[Preferences]-[Walk stops for outputs] checkbox is checked.

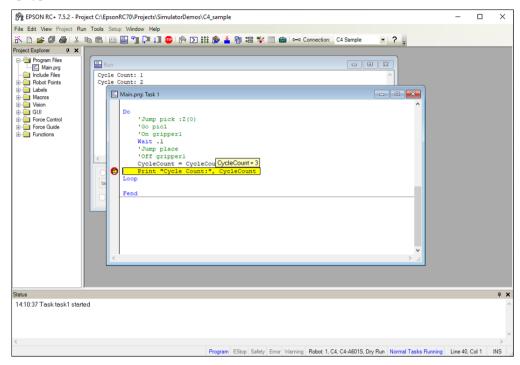
To step through code, you must set a breakpoint and run until the breakpoint is reached, or suspend a task from the Task Manager using the <Halt> button.


### Viewing the Call Stack

Sometimes you may want to examine the call stack for the current task after you halt the task from the task manager, or reach a break point.

To view the call stack, select [Call Stack] from the [Run] Menu. The [Call Stack] list will be displayed, as shown below.



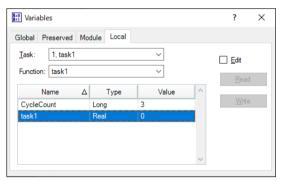

After you double click a function in the Call Stack list, the function will be displayed in a program window and an arrow in the left margin will point to the line where the next function in the call stack is being called. In the example below, the arrow in the SingleCycle function is pointing to the Gripper On statement to indicate that Gripper was called from SingleCycle.



### Displaying variables

To view variable values, you can do one of the following:

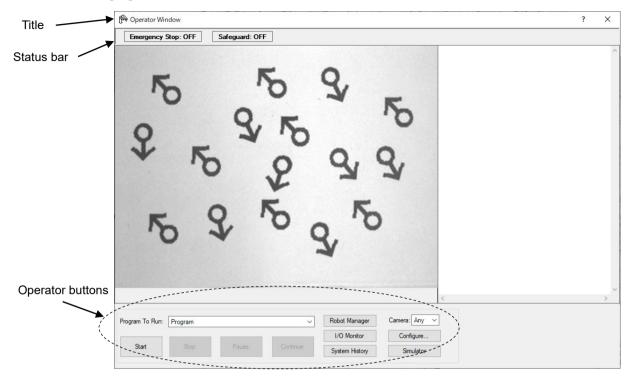
1. When a task is halted by halt or breakpoint, you can view the value for a variable by moving the mouse cursor over the variable name. The value will be displayed in a tool tip type window above the variable name.




2. Select [Display Variables] from the [Run] menu to display the variable display dialog. This dialog has three tabs for viewing Global, Module, and Local variables.

#### NOTE

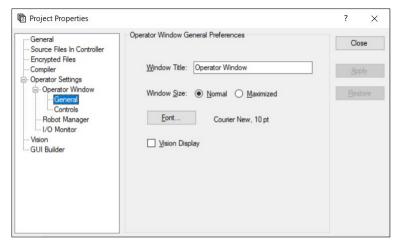



Up to 600 variables can be displayed on each tab.



You can change the value of a variable by checking the [Edit] checkbox, then type in the new value in the value column. Next, click the <Write> button to change the variable. When the [Edit] box is checked, the variable values are not automatically updated. You can click the <Read> button to update all values.

# 7.6 The Operator Window


The Operator Window can be used as a simple interface for operators. You can configure EPSON RC+ 7.0 to open only the Operator Window when started. In addition, when Remote Control is being used, the Operator Window can be displayed for monitoring purposes.



| Item           | Description                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program to Run | Select a program to run.                                                                                                                                                                                                                                                                                                                                                                         |
| Start          | Starts the selected program.                                                                                                                                                                                                                                                                                                                                                                     |
| Stop           | Stops all tasks.                                                                                                                                                                                                                                                                                                                                                                                 |
| Pause          | Pauses all tasks that are enabled for pause.                                                                                                                                                                                                                                                                                                                                                     |
| Continue       | Continues paused tasks.                                                                                                                                                                                                                                                                                                                                                                          |
| Robot Manager  | Opens the Robot Manager dialog in operator mode. It cannot be shown while the program is running.                                                                                                                                                                                                                                                                                                |
| I/O Monitor    | Opens the I/O Monitor in operator mode. This window can remain open while programs are running.                                                                                                                                                                                                                                                                                                  |
| System History | Opens the System History window.  This window can remain open while programs are running.                                                                                                                                                                                                                                                                                                        |
| Camera         | Project cameras appear in a drop-down list.                                                                                                                                                                                                                                                                                                                                                      |
| Configure      | Opens the [Configure Video Displays] window. You can set the window to be displayed as the main window.                                                                                                                                                                                                                                                                                          |
| Simulator      | Opens the [Simulator] window. This window can remain open while programs are running.                                                                                                                                                                                                                                                                                                            |
| Status Bar     | The status bar is located at the top of the window and shows emergency stop and safeguard status. In addition, if a warning is detected from the controller (such as low encoder battery), a warning label will be displayed on the right side of the status bar. If the mouse is over this label, you can see the warning error message. When there is no warning, the warning label is hidden. |
|                |                                                                                                                                                                                                                                                                                                                                                                                                  |

# 7.6.1 Operator window configuration

You can configure the Operator Window from the Operator Window pages in [Project]-[Properties].



There are several settings for operator Robot Manager and I/O Monitor.

For details, refer to 5.10.16 [Properties] Command (Project Menu).

# 7.6.2 Auto start configuration

You can configure the system to let it log into Windows automatically. Also you can configure a program to start automatically from the [Operator] window. For details, refer to 4.2.7 Auto Start.

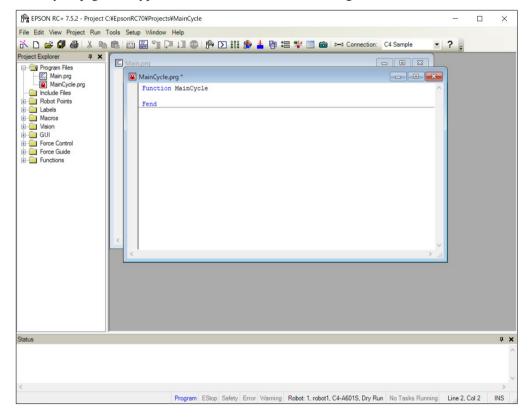


# 7.7 Using Remote Control

You can design your application to be run from external equipment using hardware I/O control. This includes push button boxes, PLCs, and other PC systems.

Refer to 12. Remote Control for details.

# 7.8 Using Encrypt Files


Encrypted files allow you to prevent end users from viewing your source code. When a file is encrypted, you must supply a password to open the file. Other users cannot view the file contents, even with an external editor, such as Notepad.

Each encrypted file can have its own password, or you can choose to encrypt multiple files with one password. You can encrypt program files, include files, Vision Guide, and GUI Builder.

If an encrypted file is imported from another project, it will remain encrypted in the current project.

As an example, assume you have some special SPEL+ programming code that you do not want your end users to view. But you want to allow end users to change some of the code in the project. To do this, put all of the functions you want to be hidden in one or more encrypted program and include files. When you go to the customer site, you can view your encrypted code by supplying the password(s) to open the encrypted files.

When files are encrypted, their icons are shown with a lock in the Project Explorer and also in the title bar of the program window. In the screenshot below, the file MainCycle.prg is encrypted, so its icons include a lock image.



When you open an encrypted file, you will be prompted for the password.



NOTE



Up to 16 characters can be entered for password.



### ■ USE EXTREME CAUTION!

Keep a record of the password(s) used for encryption in a safe place. Once a file is encrypted, it can only be opened with the password you enter. If you forget the password, the file contents CANNOT BE RECOVERED.

To configure encrypted files in your project, select Properties from the Project menu, then select Encrypted Files in the tree on the left.

Refer to section 5.10.16 [Properties] Command (Project Menu) for details.

# 8. Simulator

### 8.1 Simulator Functions

Simulator functions enable easy robot motion checking on your PC, which gives you flexibility to consider the system layout, measure the operation time, and create robot programs.

They are useful from the introduction stage to the launch of robot system.

### 8.1.1 Overview

The following are the major simulator functions:

# Robot motion 3D display

Shows robot orientation and motion in a 3D display from various viewpoints. Offers accurate display data based on design data.

This function is not available for the manipulator series (models) as described below. If a simplified layout consideration or measurement of motion time is needed, set an alternative model. However, external dimensions and motion range may differ. Be careful when you set the alternative models.

For details on the unsupported models, refer to the following section.

| Appendix C: Simulator Functions | List of Unsupported Manipulator Models |
|---------------------------------|----------------------------------------|

| Series | Model                                         | Alternative model (When using a Virtual Controller         | r) |
|--------|-----------------------------------------------|------------------------------------------------------------|----|
| X5     | All models                                    | No alternative model                                       | -  |
| G6     | Protected model<br>G6-***D*, G6-***P*         | Standard model, Cleanroom model G6-***S*, G6-***C*         | *  |
| G6-II  | Protected model<br>G6-***D*-II, G6-***P*-II   | Standard model, Cleanroom model G6-***S*-II, G6-***C*-II   | *  |
| G10    | Protected model<br>G10-***D*, G10-***P*       | Standard model, Cleanroom model G10-***S*, G10-***C*       | *  |
| G10-II | Protected model<br>G10-***D*-II, G10-***P*-II | Standard model, Cleanroom model G10-***S*-II, G10-***C*-II | *  |
| G20    | Protected model<br>G20-***D*, G20-***P*       | Standard model, Cleanroom model G20-***S*, G20-***C*       | *  |
| G20-II | Protected model<br>G20-***D*-II, G20-***P*-II | Standard model, Cleanroom model G20-***S*-II, G20-***C*-II | *  |

<sup>\*:</sup> External dimensions and motion range differ.

#### Interference check

Checks whether the robot (including the hand and devices installed on the robot) interferes with itself or its peripherals.

(This function is not available for the robots that do not support 3D display.)

#### Robot operation time prediction

Predicts the robot operation time for a program.

Considers the speed setting (Speed, etc.) and acceleration / deceleration setting (Accel, etc.) when predicting the robot motion time.

# SPEL+ program execution

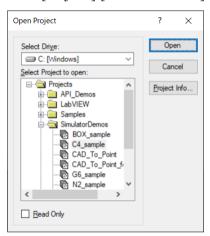
Allows you to create, execute, and debug SPEL+ programs.

The restrictions on the simulator functions are described in 8.4 Simulator Specifications and Restrictions.

# 8.2 Using the Simulator

You can try the simulation functions using the provided sample virtual controllers and projects.

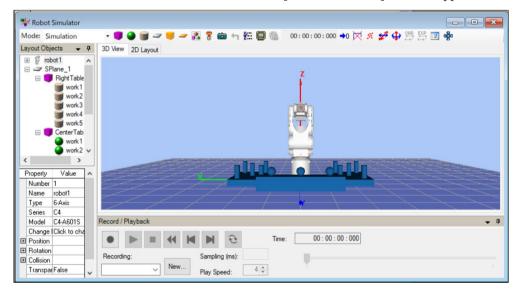
# 8.2.1 Working with the samples


You can operate a robot easily using the samples provided. Follow the steps below:

- 1. Connect with a sample virtual controller (robot)
- 2. Open the corresponding sample project
- 3. Display the [Robot Simulator] window
- 4. Operate the robot by executing a program
- 5. Next step
- 1. Connect with a sample virtual controller

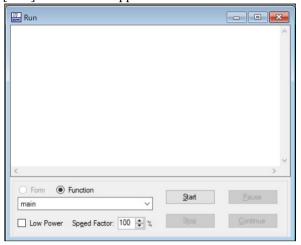


Select "C4 Sample" from the EPSON RC+ 7.0 Tool bar-<Connection> list box. When the connection is complete, the <Connection> list box shows "C4 Sample".


- 2. Open a corresponding sample project
- (1) Click the EPSON RC+ 7.0 menu-[Project]-[Open...].
- (2) Select [Projects]-[SimulatorDemos]-[C4 Sample].



(3) Click the <Open> button. Then, the following program window appears.


# 3. Display the [Robot Simulator] window

Click the Tool bar-<Simulator \*> button. The [Robot Simulator] window appears.



### 4. Operate the robot by executing program

(1) Click the Tool bar-<Run Window => button. The project will be built and the [Run] window will appear.



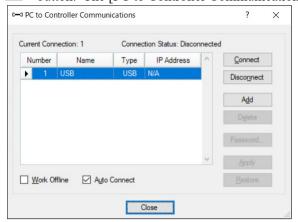
(2) Click the <Start> button.

The message "Are you ready to start?" appears. Click the <Yes> button. The program starts and the robot moves in the 3D display.

### 5. Next step

If you want to change the sample, follow the steps in 8.2.2 Working with the user created system - Steps 5 to 7. If you want to create your own system, start from Step 1.

If you want to change the sample virtual controller, follow the steps in 8.3.7 Virtual controller - Copy the sample or configured virtual controller and change the copied sample.


### 8.2.2 Working with the user created system

You can create your own system and simulate the robot operation on your PC.

Follow the steps below:

- 1. Create a new virtual controller (Connection setting)
- 2. Connect with the virtual controller
- 3. Configure a robot
- 4. Display the [Robot Simulator] window
- 5. Create and place objects
- 6. Create a project and program
- 7. Operate the robot by executing the program
- 8. Measure the robot operation time
- 9. Test for collisions


- 1. Create a new virtual controller (Connection setting)
- (1) Click the EPSON RC+7.0 Tool bar-<Setup PC to robot controller communications. > button. The [PC to Controller Communications] dialog appears.



- (2) Click the <Add> button. The [New Controller Connection] dialog appears.
- (3) Select the [Connection to new virtual controller] and click the <OK> button.



(4) A new virtual controller named "Virtual 1" is created. Click the <Apply> button.



Note: Program total execution time

In the virtual controller, the total execution time of programs is limited to one hour.

If total execution is over one hour, a warning message appears.

You can execute the program again after the warning is displayed, and the total execution timer will be reset.

(5) Close the dialog to return to the EPSON RC+ 7.0 main window.

2. Connect with the virtual controller




(1) Select the created "Virtual 1" connection from the EPSON RC+ 7.0 Tool bar-<Connection> list box. When the connection is complete, the <Connection> list box shows "Virtual 1".

### 3. Configure a robot

In this tutorial, a C4-A601S robot model is used.

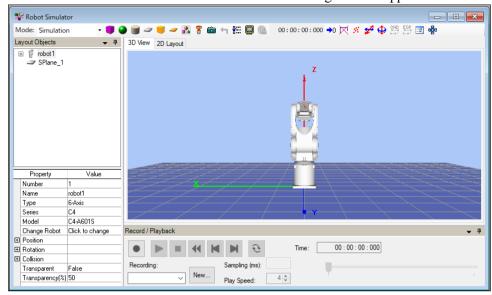
- (1) Select the EPSON RC+ 7.0 menu-[Setup]-[Controller].
- (2) Select the [Controller]-[Robots] from the tree, the message "There are currently no robots in the system. Click the Add button to add a robot" will appear.



(3) Click the <Add> button to open the [Add New Robot] dialog box. Input the robot information as follows:

[Robot Name]: robot1 [Robot Serial #]: 1

[Motion System]: Standard [Drive Unit]: CU [Robot Type]: Six Axis [Series]: C4


[Robot]: C4-A601S



- (4) Click the <Apply> button. The message "Restarting Controller" appears.
- (5) When the message disappears, close the window and go back to the EPSON RC+ 7.0 main window.

# 4. Display the [Robot Simulator] window

(1) Click the Tool bar-<Simulator >> button. The following window appears.



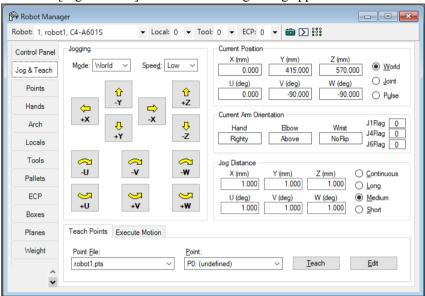
# 5. Place the objects

For this tutorial, we will add a box to the layout.

(1) Click the <Box • button on the Tool bar.

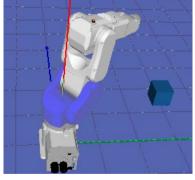


(2) Select "SBox\_1" from the [Layout Objects] and change the [Property]-[Position]. For this tutorial, enter X = 600, Y = 300.




To change the position, you can also drag the objects in the [2D Layout] tab.

To save the layout change, execute the EPSON RC+ 7.0 menu-[File]-[Save].


### 6. Create a project and program

- (1) Create a new project
  - (1)-1 Click the EPSON RC+ 7.0 menu-[Project]-[New Project].
  - (1)-2 Enter a new project name. For this tutorial, enter "Test".
  - (1)-3 Click the <OK> button. Then, the project "Test" is created.
- (2) Operate the robot and teach points.
  - (2)-1 Click the Tool bar-<Robot Manager > button. The [Robot Manager] window appears.
  - (2)-2 Select the [Control Panel] tab and click the <MOTOR ON> button. The message appears to confirm the operation. Click the <Yes> button.
  - (2)-3 Select the [Jog & Teach] tab. The following dialog appears.



(2)-4 In the [Robot Simulator] window, move the robot joint to a point where it does not interfere with the box.

To move the robot joint, click the Rotate/Jog > button on the tool bar and drag the joint, or drag while simultaneously pressing the Ctrl> key.



- (2)-5 Go back to the [Robot Manager] window and click the <Teach> button in the [Teach] tab. The message appears to confirm the operation. Click the <Yes> button.
- (2)-6 The [New Point Information] dialog appears. Click the <OK> button.
- (2)-7 Select "P1 (undefined)" from the [Point] list box on the lower right.
- (2)-8 In the [Robot Simulator] window, drag the robot joint while simultaneously pressing the <Ctrl> key to another point without interfering with the box.

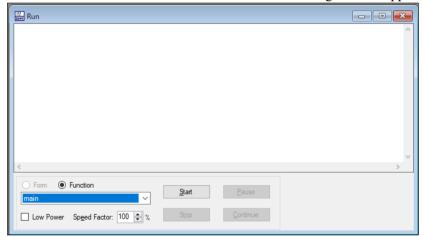
- (2)-9 Go back to the [Robot Manager] window and click the <Teach> button. The message appears to confirm the operation. Click the <Yes> button.
- (2)-10 The [New Point Information] dialog appears. Click the <OK> button.
- (2)-11 Click the Tool bar-<Save all files> button to save the P0 and P1 data.



You can also use the [Jog & Teach] window to move the robot.

- (3) Create and execute a program with robot motion.
  - (3)-1 Create the following program in the program "Main.prg".

Function main
Go P0
Go P1


Fend

(3)-2 Click the Tool bar-<Build> button to build the program.

When the program building is completed, the message "Build complete, no errors" appears in the [Status] window.

### 7. Operate the robot by executing program

(1) Click the Tool bar-<Run Window> button. The following window appears.



(2) Click the <Start> button.

The message "Are you ready to start?" ann

The message "Are you ready to start?" appears. Click <Yes> button. The program starts and the robot moves in the 3D display.

### 8. Measure the robot operation time

The elapsed program run time (cycle time) is displayed in the Tool bar of the [Robot Simulator] window.

It is the execution time of the program from start to finish.



The following describes how to measure the operation time between two points (P0  $\rightarrow$  P1).

(1) Change the program in the "Main.prg" file to the following program.

```
Function main

Motor On

Power High

Speed 100

Accel 100,100

Go PO

Fend

Function main2

Go P1

Fend
```

- (2) Click the Tool bar-<Build> button to build the project.

  When the project build is complete, the message "Build complete, no errors" appears in the [Status] window.
- (3) Click the Tool bar-<Run Window> button.
- (4) Confirm that "main" is selected in the [Function] dropdown list and click the <Start> button.

The message "Are you ready to start?" appears. Click <Yes> button.

The program starts and the robot goes to P0, the point to start the time measurement, in the 3D display.

- (5) Select "main2" in the [Function] dropdown list.
- (6) Click the <Start> button.

The message "Are you ready to start?" appears. Click the <Yes> button.

The program starts and the robot moves in the 3D display.

Now, the cycle time displayed in the Tool bar is the execution time to move the robot from P0 to P1.



When you operate the real robot, the actual cycle time will be longer than the simulated cycle time according to the model, Fine, load settings. For details, refer to 8.4 Simulator Specifications and Restrictions.

Also, when Speed, Accel values in the program are changed, the cycle time will reflect it.



Motion command includes Move and Jump as well as Go.

For the information on how to use these commands, refer to *Online Help* or *SPEL*<sup>+</sup> *Language Reference manual*.

- 9. Test the collision detection
- (1) Go back to the [Robot Simulator] window.
- (2) Drag the robot joint while simultaneously pressing the <Ctrl> key to a point where it interferes with the box. When the robot joint hits the box, the display turns to red.
- (3) In the [Robot Manager] window, select "P2 (undefined)" from the [Point] list box in the [Teach] tab.
- (4) Click the <Teach> button.

  The message to confirm the operation appears. Click the <Yes> button.
- (5) The [New Point Information] dialog appears. Click the <OK> button.
- (6) Click the Tool bar-<Save all files> button and save the P2 information.
- (7) Go back to the [Robot Simulator] window and drag the robot joint while simultaneously pressing the <Ctrl> key to the point where it does not interfere with the box.
- (8) Click the Tool bar-<Reset Collision > button. Then, the red display returns to normal.
- (9) Add the following function to the "Main.prg" program file.

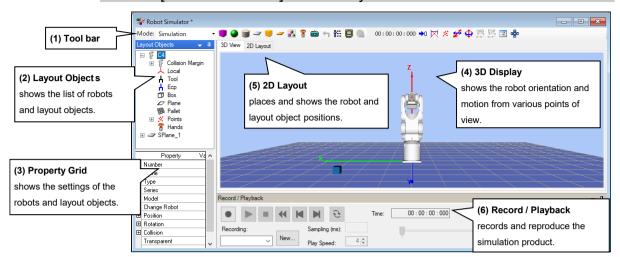
```
Function main3

Go P2

Fend
```

- (10) Click the Tool bar-<Build> button to build the project.

  When the project build is complete, the message "Build complete, no errors" appears in the [Status] window.
- (11) Click the Tool bar-<Run Window> button.
- (12) Select "main3" in the [Function].
- (13) Click the <Start> button. The message "Are you ready to start?" appears. Click the <Yes> button. The program starts and the robot moves in the 3D display. When the robot joint hits the box, the display turns to red.



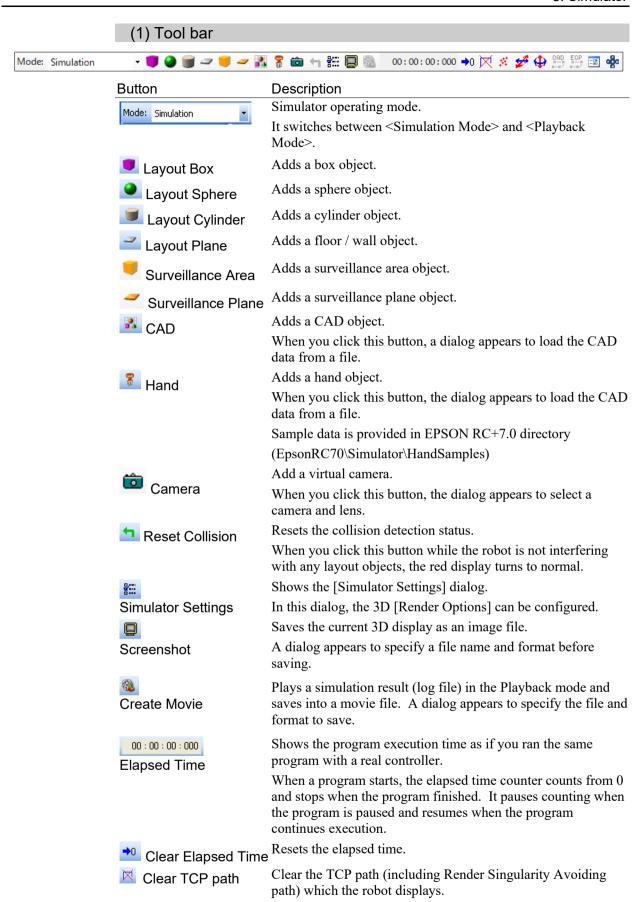

When a collision happens, the users can stop the controller program execution with an error. For details, refer to 8.3.4 Collision detection.

# 8.3 Description of Functions

This section describes how to use the [Robot Simulator] window and its functions.

### 8.3.1 [Robot Simulator] window layout





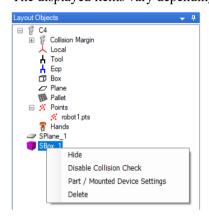

You can select the following display methods for the layout panel including (2) Layout Object and (3) Property Grid, and (6) Record/Playback panel.

Hide, Floating, Auto Hide



Panel that you selected to Hide can be re-displayed by clicking <Ctrl> + <Shift> + <R> key.




#### **Button** Description Displays the [Teach] dialog box. Current robot position can be registered as a point. \_\_\_\_ Teach Point Teach × Robot: Current Position X (mm) Y (mm) 415.000 0.000 570.000 U (deg) 0.000 -90.000 -90.000 Local: Teach Point file robot1pts P1 - (undefined) Cancel Point: Displays the guides. The objects can be moved by dragging the Move guides. Displays the guides. The objects can be rotated by dragging the 4 guides. Rotate/Jog The guides for the Manipulator are shown only at the Manipulator base. The guides for the manipulator arm change to blue when selected. Joint angle can be changed by dragging the guides. Switches to the mode for outputting the point data from the CAD CAD data. CAD to Point Switches to the mode for outputting the point data for external ECP control point (ECP) motion from the CAD data. CAD to Point for ECP Displays the robot operation panel. Jog operation is available. Robot Operation Panel By dragging the robot, you can operate jog operating with virtual direct teaching. **Direct Teaching**

### (2) Layout Objects Pane



The Layout Objects pane shows the robot objects and layout objects in a tree format.

The context menu appears by right-clicking the layout object. The frequently used functions can be used without operating by the property grid. The displayed items vary depending on objects.



[Cut], [Copy], and [Paste] commands in the [Edit] menu are available for the layout objects except CAD objects.

Also, the hierarchy of the layout objects can be changed by dragging and dropping.

### What is an Object?

The objects in the simulator are either a "Robot Object" or a "Layout Object":

A "Robot Object" includes the robot itself, its hand, local coordinates, point information, etc.

A "Layout Object" includes objects to be placed around the robot to simulate the robot peripheral environment in the 3D display.

### ◆ Robot Object

Robot : The robot itself. The display data is handled by the simulator.

Hand : The hand is created by loading the CAD data (XVL(.xv3),

VRML2.0, STEP, and IGES) from a file.

Force Sensor: Set force sensor can be displayed.

Safety Function : When using option of safety function, it displays robot monitored

range and monitored areas.

Object to reflect force control data: Force Control, Force Guide

Object to reflect collision detection margin: Collision Margin

Object to reflect a robot parameter: Local, Tool, Box, Plane, Pallet, XYLim

Object to reflect robot point data: Point

Objetct to reflect safety function parameter: Monitored Range, Monitored Areas

◆ Layout Objects

Simple object : Box, Sphere, Cylinder, Floor / Wall

The display data for these objects is handled by the simulator. The object size can be changed as desired by editing properties.

CAD object: These objects are created by loading CAD data (XVL(.xv3),

VRML2.0, STEP, IGES, and DXF) from a file.

◆ Camera Objects: The following devices can be displayed.

Devices that are supported in EPSON RC+ 7.0 Option Vision

Guide 7.0 Hardware & Setup can be selected..

Camera : USB and GigE camera can be selected.

Lens : Each model of standard camera lens, megapixel camera lens,

mega-pixel camera lens (HF), 1 inch lens can be selected.

Extension tube : Each length of tubes can be selected.

◆ Surveillance objects: Layout object that detects a contact or a collision with a robot.

There are two types; Surveillance Area and Surveillance Plane. Similar to the layout objects, the display data is prepared in advance. You can adjust the size by changing the property.

### (3) Property Grid Pane

In the Property Grid pane, you can view and change the settings of the robot objects and layout objects in the Layout Object pane.

# ◆ Robot Object Properties

### Robot

|   | Property        | Value           |
|---|-----------------|-----------------|
|   | Number          | 1               |
|   | Name            | C4L             |
|   | Туре            | 6-Axis          |
|   | Series          | C4              |
|   | Model           | C4-A901S        |
|   | Change Robot    | Click to change |
| ⊟ | Position        |                 |
|   | X(mm)           | 0.000           |
|   | Y(mm)           | 0.000           |
|   | Z(mm)           | 0.000           |
| ⊟ | Rotation        |                 |
|   | X(degree)       | 0.00            |
|   | Y(degree)       | 0.00            |
|   | Z(degree)       | 0.00            |
| ⊟ | Collision       |                 |
|   | Check           | True            |
|   | Check Self      | True            |
|   | Color           | 168,0,0         |
|   | Transparent     | False           |
|   | Transparency(%) | 50              |

| Property | Value                                                                   |
|----------|-------------------------------------------------------------------------|
| Number   | Robot number                                                            |
| Name     | Robot name                                                              |
|          | You can specify any name for a robot.                                   |
| Туре     | Robot type                                                              |
|          | The robot type (SCARA and 6-Axis) is shown. This property is read-only. |
| Series   | Robot series                                                            |
|          | The robot series is shown. This property is read-only.                  |

| Model              | Robot model name                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | The robot model is shown. This property is read-only.                                                                                                        |
| Change Robot       | If you want to change the robot model, click on button. When you click on this button, a dialog appears to change the robot.                                 |
|                    | For details, see <i>Changing the robot model</i> described later in this chapter.                                                                            |
| Position           | Robot position                                                                                                                                               |
|                    | Specifies the robot's base center in the simulator World coordinates.                                                                                        |
| Rotation           | Robot angle                                                                                                                                                  |
|                    |                                                                                                                                                              |
| Collision Property | Value                                                                                                                                                        |
| Check              | Enables / disables the collision detection for layout objects.                                                                                               |
|                    | Enable: True (default)                                                                                                                                       |
|                    | Disable : False                                                                                                                                              |
|                    | Even if this is enabled, it does not detect collision between the robot base and layout objects.                                                             |
| Check Self         | Enables / disables the collision detection for a robot itself.                                                                                               |
|                    | Enable : True (default) Disable : False                                                                                                                      |
| Color              | Specify color to be used when collision of the arms is detected. Default: 168,0,0                                                                            |
|                    |                                                                                                                                                              |
| Property           | Value                                                                                                                                                        |
| Transparent        | Semi-transparent : True Not semi-transparent : False (Default)                                                                                               |
|                    | The front-back relation of the objects may be incorrect depending on the viewing angle. For details, refer to 8.4 Simulator Specifications and Restrictions. |
| Transparency       | Specify the transparency in the range of 1 to 90%. Transparency increases as the setting value becomes larger.                                               |

# Changing the robot model

When you want to change the displayed robot model, click the <Change Robot> button. The [System Configuration]-[(Name of the displayed robot)]-[Model] dialog will be displayed. If you cannot see the button, increase the property grid width and click the [Value] column of the grid once.



When you change the displayed robot model, all the settings for the robot (Local coordinates, Tool coordinates, etc.) will be initialized to the default values.

# Collision Margin

Sets a collision detection margin for each robot arm collectively or separately.

When the robot type is changed from SCARA robot to 6-Axis robot or 6-Axis robot to SCARA robot, the Value will be reset. When changing to the same type robot, the value will be remained.

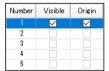


| Property       | Value                                                         |
|----------------|---------------------------------------------------------------|
| Visible        | Display : True                                                |
|                | Not display: False (default)                                  |
| Size           | Margin size                                                   |
| Color          | Margin color                                                  |
|                | Default: 255,216,0                                            |
| Check          | Enable/disable the collision detection.                       |
|                | Enable: True                                                  |
|                | Disable : False (default)                                     |
| CollisionColor | Specifies a color to be displayed when detecting a collision. |
|                | Default: 168,0,0                                              |

### Local / Tool / Box / Pallet

If the local coordinate system of the corresponding number is not defined yet, the check box is grayed.




| Property | Description                              |  |
|----------|------------------------------------------|--|
| Visible  | Shows / Not show corresponding settings. |  |
|          | Visible : Check                          |  |
|          | Not visible : Uncheck (default)          |  |



For Local 0 (Base), "Visible" is the default.

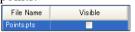
### Plane

If the each setting of the corresponding number is not defined yet, the check box is grayed.



| Property | Description                                                                     |
|----------|---------------------------------------------------------------------------------|
| Visible  | Shows / Not show corresponding settings.                                        |
|          | Visible : Check                                                                 |
|          | Not visible : Uncheck (default)                                                 |
| Origin   | Shows / Not show the origin of corresponding settings.                          |
|          | When the checkmark is not placed in [Visible], the [Origin] checkbox is grayed. |
|          | Visible : Check                                                                 |
|          | Not visible : Uncheck (default)                                                 |

# **XYLim**


If the XYLim is not defined yet, the check box is grayed.



| Property | Description                                                             |
|----------|-------------------------------------------------------------------------|
| Pos.     | Shows the position of parameter that configures XYLim.                  |
| Visible  | Shows / Not show the plane in corresponding position.                   |
|          | Visible : Check                                                         |
|          | Not visible: Uncheck (default)                                          |
|          | If Pos. All is checked, it displays all plane that configures XYLim.    |
|          | Not put in the check, they will be hidden.                              |
|          | If it set to show some planes, the check box shows indeterminate state. |

### **Points**

Display the point display setting status in the point file. Switch to show/non-show all points.



| Property  | Description                                                                |
|-----------|----------------------------------------------------------------------------|
| File Name | Show a point file name.                                                    |
| Visible   | Shows / Not show all points                                                |
|           | Visible : Check                                                            |
|           | Not visible : Uncheck                                                      |
|           | If it is set to show some points, the check box shows indeterminate state. |

### Point

If the point of the corresponding number is not defined yet, the check box is grayed.



| Property | Description                                                 |  |
|----------|-------------------------------------------------------------|--|
| Name     | Shows a point label                                         |  |
|          | In the dialog, point labels cannot be configured or edited. |  |
| Visible  | Shows / Not show a point                                    |  |
|          | Visible : Check                                             |  |
|          | Not visible : Uncheck (default)                             |  |



If you cannot see the [Visible] column, increase the property grid display width.

### **Force Control**

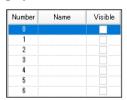
Show the display method of the force objects in the force file. Switch visible and not visible of the all force objects.



| Property  | Description                                                                       |  |
|-----------|-----------------------------------------------------------------------------------|--|
| File Name | Show a force file name.                                                           |  |
| Visible   | Shows / Not Show all force objects.                                               |  |
|           | Visible : Check                                                                   |  |
|           | Not visible : Uncheck                                                             |  |
|           | If it is set to show some force objects, the check box shows indeterminate state. |  |

### Force Object

Show the display method of the force control objects, force trigger objects, and force monitor objects in the force file. Switch visible and not visible of the all force objects of the specified type.


If there is no force object of the specified type, the checkbox is grayed.



| Property | Description                                                                                |
|----------|--------------------------------------------------------------------------------------------|
| Туре     | Control (force control), Trigger (force trigger), and Monitor (force monitor) are shown.   |
| Visible  | Shows / Not Show all force objects of the specified type.                                  |
|          | Visible : Check                                                                            |
|          | Not Visible: Uncheck                                                                       |
|          | If it is set to "Visible" for some force objects, the check box shows indeterminate state. |

# Force Control, Force Trigger, Force Monitor

When the force object of the corresponding number is not defined yet, the checkbox is grayed.



| Property | Description                                                |
|----------|------------------------------------------------------------|
| Name     | Show a force label.                                        |
|          | In the dialog, force label cannot be configured or edited. |
| Visible  | Shows / Not Show the force object.                         |
|          | Visible : Check                                            |
|          | Not Visible · Uncheck                                      |

### Force Guide

Show the display method of the force guide object in the sequence which is set by the force guide, and switch visible and not visible of the all force objects.



| Property | Description                                                                                |  |  |
|----------|--------------------------------------------------------------------------------------------|--|--|
| Sequence | Show a force guide sequence name.                                                          |  |  |
| Visible  | Shows / Not Show the all force objects.                                                    |  |  |
|          | Visible : Check Not visible : Uncheck                                                      |  |  |
|          | If it is set to "Visible" for some force objects, the check box shows indeterminate state. |  |  |

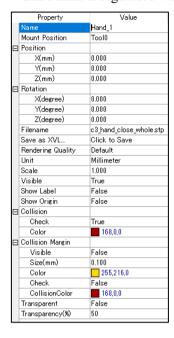
# Force Guide Object

When the force guide object type of the corresponding number (a step number in the sequence) is "Decision" or "SPELFunc", the checkbox is grayed. When the [Enabled] property of the object is set to "False", the [Name] is also grayed.



| Property | Description                                                                      |  |
|----------|----------------------------------------------------------------------------------|--|
| Name     | Show a force guide object name.                                                  |  |
| Visible  | Shows / Not Show the force guide object.  Visible : Check  Not visible : Uncheck |  |

#### Hands


Show a status of Visible and Collision of the configured hand.



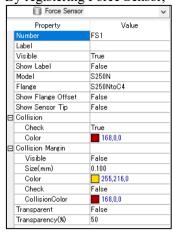
| Property  | Description                               |
|-----------|-------------------------------------------|
| Name      | Shows a hand name.                        |
| Visible   | Shows / Not Show the hand.                |
|           | Not visible : Uncheck                     |
|           | Visible : Check                           |
| Collision | Enable / Disable the collision detection. |
|           | Disable: Uncheck                          |
|           | Enable: Check                             |

### Hand

When a hand is registered with a robot, "Hand" is added in the Layout Objects tree.



| Property          | Value                                                                                                        |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Name              | Hand name                                                                                                    |  |  |
|                   | You can specify any name for a hand. (Default: Hand_1)                                                       |  |  |
| Mounted Position  | Hand mounting position                                                                                       |  |  |
|                   | It can be attached to Force Sensor or Tool coordinate system.                                                |  |  |
| Position          | Mounting offset from the robot end effector position.                                                        |  |  |
| Rotation          | Hand mounting direction                                                                                      |  |  |
| File name         | CAD data file name of the hand<br>It cannot be changed.                                                      |  |  |
| Save as XVL       | The loaded hand object can be saved in the XVL format.                                                       |  |  |
|                   | Click and specify the destination.                                                                           |  |  |
|                   | When the XVL-format hand data is loaded, this item is grayed out and cannot be used.                         |  |  |
| Rendering Quality | Standard : Default                                                                                           |  |  |
|                   | Quality-preferred : Fine<br>Speed-preferred : Fast                                                           |  |  |
| Visible           | Visible : True (default)                                                                                     |  |  |
| VISIBIC           | Not visible : False                                                                                          |  |  |
| Show Label        | Displays the label : True Not display the label : False (default)                                            |  |  |
|                   | This property sets whether to display the label when [Label Display in the [Simulator setting] is specified. |  |  |
| Show Origin       | Displays the origin coordinate system : True  Not displays the origin coordinate system : False (default)    |  |  |


| Collision Property | Value                                                                                  |  |
|--------------------|----------------------------------------------------------------------------------------|--|
| Check              | Enables / disables the collision detection.                                            |  |
|                    | Enable: True (default) Disable: False                                                  |  |
|                    | Collision with the robot flange is not detected even when this property is set "True". |  |
| Color              | Specify the color to be used when collision is detected. Default: 168,0,0              |  |

| Collision Margin Property | Value                                              |
|---------------------------|----------------------------------------------------|
| Visible                   | Display : True                                     |
|                           | Not display: False (default)                       |
| Size                      | Margin size                                        |
| Color                     | Margin color to be displayed.                      |
|                           | Default: 255,216,0                                 |
| Check                     | Enable / Disable the collision detection.          |
|                           | Enable : True                                      |
|                           | Disable : False (default)                          |
| CollisionColor            | Specifies a color to be displayed when detecting a |
|                           | collision.                                         |
|                           | Default: 168,0,0                                   |

| Property     | Value                                                                                                                                                     |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Transparent  | Semi-transparent : True                                                                                                                                   |  |
|              | Not semi-transparent : False (Default)                                                                                                                    |  |
|              | The front-back relation of the objects may be incorrect depending the viewing angle. For details, refer to 8.4 Simulator Specifications and Restrictions. |  |
| Transparency | Specifies the transparency in the range of 1 to 90%. Transparency increases as the setting value becomes larger.                                          |  |

### Force Sensor

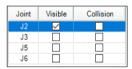
By registering Force Sensor, "Force Sensor" is displayed in the layout object.



| Property           | Value                                                                                                       |                                   |  |
|--------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Number             | Displays a sensor number registered in the controller.                                                      |                                   |  |
| Label              | Displays a sensor na                                                                                        | ame registered in the controller. |  |
| Visible            | Visible<br>Not visible                                                                                      | : True (Default)<br>: False       |  |
| Show Label         | Display a label<br>Not display a label                                                                      |                                   |  |
|                    | This property sets whether to display the label when [Label Display] in the [Simulator Setting] is set.     |                                   |  |
| Model              | Displays a model registered in the controller.                                                              |                                   |  |
| Flange             | Displays a flange determined by combination of the robot and Force Sensor (default). Select "None" to hide. |                                   |  |
| Show Flange Offset | Show<br>Not show                                                                                            | : True<br>: False (Default)       |  |
|                    | Specifies whether to display the flange offset posicoordinate system.                                       |                                   |  |
| Show Sensor Tip    | Show<br>Not show                                                                                            | : True<br>: False (Default)       |  |
|                    | Specifies whether to display the tip position of Force Sensor in coordinate system.                         |                                   |  |

For properties such as "Collision", "Collision Margin" or "Transparent", refer to the hand or layout objects properties.

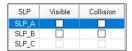
# Safety Function


If option of safety function is enabled, "Safety Function" is displayed in the layout object. Shows robot monitored range and monitored areas are displayed or hidden, and also shows status of collision. Moreover, it switches visible and not visible of robot monitored range and monitored areas, and switched enabled and disabled of collision detection.



| Property  | Description                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| Туре      | Displays Range of robot monitored range, and Areas of robot monitored areas.                                                  |
| Visible   | Shows / Not Show the robot monitored range and monitored areas.                                                               |
|           | Not visible : Uncheck                                                                                                         |
|           | Visible: Check                                                                                                                |
|           | If it set to show some robot monitored range and monitored areas, the check box shows indeterminate state.                    |
| Collision | Enable / Disable the collision detection for the robot monitored range and monitored areas.                                   |
|           | Disable: Uncheck                                                                                                              |
|           | Enable: Check                                                                                                                 |
|           | If collision detection of some of robot monitored range and monitored areas enabled, the check box shows indeterminate state. |

# Monitored Range


Shows robot monitored range are displayed or hidden, and shows the enabled and disabled of collision detection.



| Property  | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| Joint     | Display joints that able to be set of robot monitored range.                                |
|           | If it is SCARA robot, displays J2 or J3. If it is 6-Axis robot, displays J2, J3, J5 and J6. |
| Visible   | Shows / Not Show the robot monitored range.                                                 |
|           | Not visible : Uncheck                                                                       |
|           | Visible: Check                                                                              |
| Collision | Enable / Disable the collision detection for the robot monitored range.                     |
|           | Disable: Uncheck                                                                            |
|           | Enable: Check                                                                               |

#### **Monitored Areas**

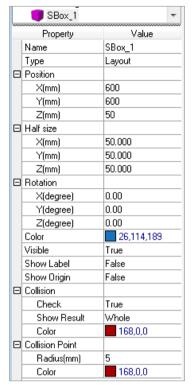
Shows monitored areas are displayed or hidden, and shows status of collision detection. Also, it switches visible and not visible of monitored areas, and switches enabled and disabled of collision detection.

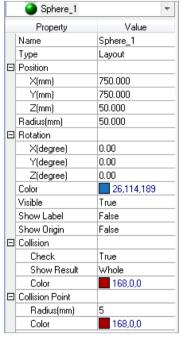


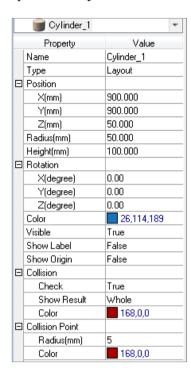
| Property  | Description                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------|
| SLP       | Display monitored areas of SLP_A, SLP_B and SLP_C.                                                        |
| Visible   | Shows / Not Show the robot monitored range.                                                               |
|           | Not visible : Uncheck                                                                                     |
|           | Visible: Check                                                                                            |
|           | If it set to show some robot monitored areas, the check box shows indeterminate state.                    |
| Collision | Enable / Disable the collision detection for the robot monitored areas.                                   |
|           | Disable: Uncheck                                                                                          |
|           | Enable: Check                                                                                             |
|           | If collision detection of some of robot monitored areas enabled, the check box shows indeterminate state. |

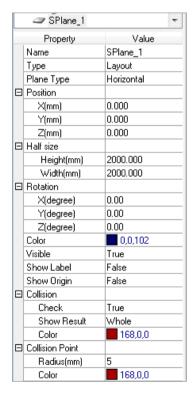
# SLP\_A, SLP\_B, SLP\_C

Shows each plane that configures monitored areas are displayed or hidden, and shows status of collision detection. If the plane in corresponding position is not defined yet, the checkbox is grayed.


| Pos. | Visible | Collision |
|------|---------|-----------|
| X1   |         |           |
| X2   |         |           |
| Y1   |         |           |
| Y2   |         |           |
| Z1   |         |           |
| Z2   |         |           |


| Property  | Description                                                                             |
|-----------|-----------------------------------------------------------------------------------------|
| Pos.      | Display X1, X2, Y1, Y2, Z1 and Z2 as a plane that configures monitored areas.           |
| Visible   | Shows / Not Show the plane that configures monitored areas.                             |
|           | Not visible : Uncheck                                                                   |
|           | Visible: Check                                                                          |
| Collision | Enable / Disable the collision detection for the plane that configures monitored areas. |
|           | Disable : Uncheck                                                                       |
|           | Enable: Check                                                                           |


#### ◆ Layout Objects


Layout Box / Layout Sphere / Layout Cylinder / Layout Plane / CAD

There are common attributes for all objects and others are for particular objects.









|   | 🚉 CAD 1           | ▼             |   |
|---|-------------------|---------------|---|
|   | Property          | Value         |   |
|   | Name              | CAD_1         |   |
|   | Туре              | Layout        |   |
| ⊟ | Position          |               |   |
|   | X(mm)             | -45.157       |   |
|   | Y(mm)             | 328.320       |   |
|   | Z(mm)             | 294.427       |   |
|   | Rotation          |               |   |
|   | X(degree)         | 0.00          |   |
|   | Y(degree)         | 0.00          |   |
|   | Z(degree)         | 0.00          |   |
|   | Filename          | c3_hand_a.xv3 |   |
|   | Save as XVL       | Click to Save |   |
|   | CAD to Point      | True          |   |
|   | Rendering Quality | Default       |   |
|   | Unit              | Millimeter    |   |
|   | Scale             | 1.000         | _ |
|   | Visible           | True          | _ |
|   | Show Edge         | True          | _ |
|   | Show Label        | False         | _ |
|   | Show Origin       | False         | _ |
|   | Collision         |               | _ |
|   | Check             | True          | _ |
|   | Show Result       | Whole         | _ |
|   | Color             | 168,0,0       | _ |
|   | Collision Point   | _             | _ |
|   | Radius(mm)        | 5             | _ |
|   | Color             | 168,0,0       | _ |
|   | Transparent       | False         | _ |
|   | Transparency(%)   | 50            | _ |

| Property          | Object   | Value                                                                                                                                                       |
|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name              | All      | You can specify any name.                                                                                                                                   |
| Plane Type        | Plane    | Floor : Horizontal (default ) Wall : Vertical                                                                                                               |
| Туре              | All      | Clicking the button to display the [Part/Mounted Device Settings] dialog. You can set the type. For details, refer to "8.3.3 Part/Mounted Device Settings". |
|                   |          | Layout : Layout object (Default)                                                                                                                            |
|                   |          | Part : Part object                                                                                                                                          |
| <b>5</b>          | . 11     | Mounted Device: Mounted device                                                                                                                              |
| Position          | All      | Specifies a center point in simulator World coordinates.<br>Layout Cylinder: Bottom surface center                                                          |
| Half size         | Box      | Specifies a length from the center.  The box length is double this length.                                                                                  |
| Radius            | Sphere   | Sphere radius                                                                                                                                               |
|                   | Cylinder | Cylinder radius                                                                                                                                             |
| Height            | Cylinder | Cylinder height                                                                                                                                             |
|                   | Plane    | Floor length / Wall height                                                                                                                                  |
| Width             | Plane    | Floor width / Wall width                                                                                                                                    |
| Rotation          | All      | Object angle (Z-axis centering)                                                                                                                             |
| File name         | CAD      | CAD data file name. It cannot be changed.                                                                                                                   |
| Save as XVL       | CAD      | The loaded hand object can be saved in the XVL format.                                                                                                      |
|                   |          | Click and specify the destination.                                                                                                                          |
|                   |          | When the XVL-format hand data is loaded, this item is grayed out and cannot be used.                                                                        |
| CAD to Point      | CAD      | Use this property to generate a point from the CAD data by using CAD To Point. For details, refer to 8.3.5 CAD To Point.                                    |
| Rendering Quality | CAD      | Set the rendering quality. Standard : Default Quality-preferred : Fine Speed-preferred : Fast                                                               |
| Unit              | CAD      | Set the unit of length for the CAD data.                                                                                                                    |
| Scale             | CAD      | Set the scale ratio of the CAD data.                                                                                                                        |
| Color             | Box      | Display color                                                                                                                                               |
|                   | Sphere   | Click the drop-down 👤 to change display color.                                                                                                              |
|                   | Cylinder | The display color setting dialog will be displayed.                                                                                                         |
|                   |          | Refer to Change layout object color for the details.                                                                                                        |

| Property        | Object | Value                                                                                                          |
|-----------------|--------|----------------------------------------------------------------------------------------------------------------|
| Visible         | All    | Visible : True (default) Not visible : False                                                                   |
| Show Edge       | CAD    | Displays Edge (edge line) of the CAD data.                                                                     |
|                 |        | Display : True (default) Not display : False                                                                   |
|                 |        | The display time can be reduced and operability can be improved by hiding the edge lines.                      |
| Show Label      | All    | Displays the label : True Not display the label : False (default)                                              |
|                 |        | This property sets whether to display the label when [Label Display] in the [Simulator setting] is specified.  |
| Show Origin     | All    | Displays the origin coordinate system : True  Not displays the origin coordinate system : False (default)      |
| Transparent     | CAD    | Semi-transparent : True Not semi-transparent : False (default)                                                 |
|                 |        | The front-back relation of the objects may be incorrect                                                        |
|                 |        | depending on the viewing angle. For details, refer to 8.4 Simulator Specifications and Restrictions.           |
| Transparency    | CAD    | Specify the transparency in the range of 1 to 90%. Transparency increases as the setting value becomes larger. |
| Collision       |        |                                                                                                                |
| Property        | Object | Value                                                                                                          |
| Check           | CAD    | Enables/disables the collision detection.                                                                      |
|                 |        | Enable : True (default) Disable : False                                                                        |
|                 |        | Collision with the robot flange is not detected even when this property is set "True".                         |
| Show result     | CAD    | Specify how to display the color configured in Color property when collision is detected.                      |
|                 |        | Entirely : Whole (default) Collision point : Point                                                             |
|                 |        | Entire object and collision point : WholeAndPoint                                                              |
| Color           | CAD    | Specify the color to be used when collision of the arms is detected.  Default: 168,0,0                         |
| Collision Point |        |                                                                                                                |
| Property        | Object | Value                                                                                                          |
| Radius(mm)      | CAD    | Specify the radius of collision point displayed when collision is detected.                                    |
| Color           | CAD    | Specify the color to be used when collision is detected. Default: 168,0,0                                      |

### Change layout object color

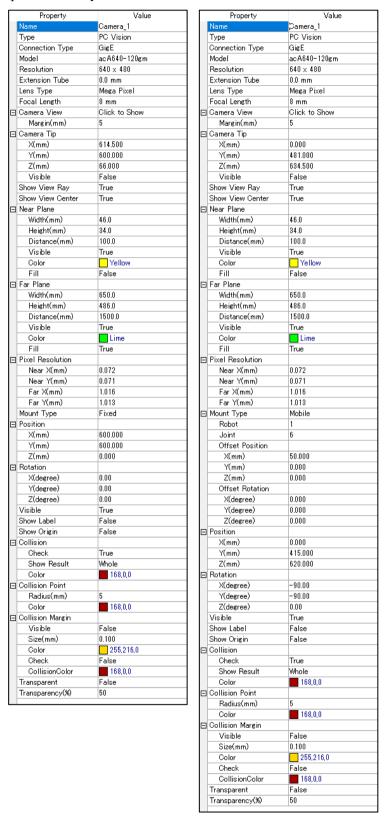
When you want to change layout object color, click on the drop-down in the Color property and the dialog shown below will be displayed. If you cannot see the drop-down increase the property grid width.



Click color you want to display. Layout object color will be changed.

If you do not want to change color, click anywhere other than the display color setting dialog. The dialog will be closed.

If you create a custom color, right-click any color in the bottom two rows (16 colors) in the [Custom] tab, and the color setting dialog will be displayed.




Create a custom color and click the <OK> button.

Created color will be displayed in the display color setting dialog.

### ◆ Camera Objects

Some properties are common for the both fixed camera and mobile camera, and other properties are only enabled for either one of them.



| Property              | Object | Value                                                                                         |
|-----------------------|--------|-----------------------------------------------------------------------------------------------|
| Name                  | All    | Displays the camera name.                                                                     |
| Туре                  | All    | Displays the camera type. You can change it.                                                  |
| Connection Type       | All    | Displays connection type of camera.                                                           |
| Model                 | All    | Displays a camera model. You can change it.                                                   |
| Resolution            | All    | Displays a camera resolution.                                                                 |
| Extension Tube        | All    | Displays a length of extension tube.<br>You can change it.                                    |
| Lens Type             | All    | Displays a lens type. You can change it.                                                      |
| Focal Length          | All    | Displays focal length of lens. You can change it.                                             |
| Show View Ray         | All    | Show / not show the view ray.                                                                 |
| ,                     |        | Show : True (default)                                                                         |
|                       |        | Not show: False                                                                               |
| Show View             | All    | Show / not show the view center.                                                              |
| Center                |        | Show : True (default)                                                                         |
|                       |        | Not show: False                                                                               |
|                       |        |                                                                                               |
| Camera View           |        |                                                                                               |
| Property              | Object | Value                                                                                         |
| Click to Show         | All    | Clicks the to show the camera view.                                                           |
| Margin                | All    | Sets a margin of lengthwise direction from camera view to a border of the camera view window. |
|                       |        | Show : True                                                                                   |
|                       |        | Not show: False (Default)                                                                     |
|                       |        |                                                                                               |
| Camera Tip            |        |                                                                                               |
| Property              | Object | Value                                                                                         |
| X, Y, Z               | All    | Displays the world coordinates on the edge of the camera                                      |
|                       |        | lens.                                                                                         |
|                       | A 11   | Change the value to change the camera position.                                               |
| Visible               | All    | Visible : True (Default)                                                                      |
|                       |        | Not visible : False                                                                           |
| Near Plane/ Far Plane |        |                                                                                               |
| Property              | Object | Value                                                                                         |
| Width                 | All    | Displays the camera view width.                                                               |
| Height                | All    | Displays the camera view height.                                                              |
| Distance              | All    | Displays distance of Camera Tip and Near Plane/ Far                                           |
| Diotario              |        | Plane.                                                                                        |
| Visible               | All    | Visible / not visible the depth of field.                                                     |
|                       |        | Visible : True (Default) Not visible : False                                                  |
|                       | . 11   | C d d                                                                                         |

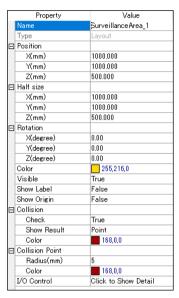
Sets the camera view color.

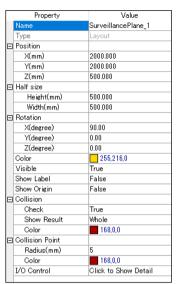
Color

All

| Fill | All | Sets a fill of the camera view. |
|------|-----|---------------------------------|
|      |     | In case of Near Plane:          |
|      |     | Display : True                  |
|      |     | Not display: False (Default)    |
|      |     | In case of Far Plane:           |
|      |     | Display : True (Default)        |
|      |     | Not display: False              |
|      |     |                                 |

#### Pixel Resolution


| Property        | Object | Value                                                                                                                                                                                                                                                                                                                                            |
|-----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Near X, Y       | All    | Displays the size of Near Plane in pixel.                                                                                                                                                                                                                                                                                                        |
| Far X, Y        | All    | Displays the size of Far Plane in pixel.                                                                                                                                                                                                                                                                                                         |
| Mount type      |        |                                                                                                                                                                                                                                                                                                                                                  |
| Property        | Object | Value                                                                                                                                                                                                                                                                                                                                            |
| Mount type      | All    | Displays the mount type of camera. Fixed camera/mobile camera can be changed.                                                                                                                                                                                                                                                                    |
| Robot           | Mobile | Displays the mounted robot number. You can change it.                                                                                                                                                                                                                                                                                            |
| Joint           | Mobile | Displays the mounted joint number. You can change it.                                                                                                                                                                                                                                                                                            |
| Offset Position | Mobile | Display the relative position from the mounted joint. It is linked to the setting value of the camera's Position property or Joint property. Therefore, changes to these properties may cause the values to be updated automatically. Even in such cases, the values are correct as settings and do not affect the position of the camera in 3D. |
| Offset Rotation | Mobile | Display the relative orientation from the mounted joint. It is linked to the setting value of the camera's Rotation property or Joint property.                                                                                                                                                                                                  |
|                 |        | Therefore, changes to these properties may cause the setting values to be updated automatically as follows:                                                                                                                                                                                                                                      |
|                 |        | - A setting of +360 degrees or -360 degrees is reset to 0.                                                                                                                                                                                                                                                                                       |
|                 |        | - When Y is set at +90 degrees or -90 degrees, the X and Z settings are swapped.                                                                                                                                                                                                                                                                 |
|                 |        | Even in such cases, the values are correct as settings and do not affect the orientation of the camera in 3D.                                                                                                                                                                                                                                    |


For properties such as "Collision", "Collision Margin", or "Transparent", refer to the layout objects properties.

### ◆ Surveillance Objects

### SurveillanceArea, SurveillancePlane

There are attributes that are enabled SurveillanceArea or SurveillancePlane or both.





| Property    | Value                                                                                                                                                                                                                |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name        | You can specify any name.                                                                                                                                                                                            |  |  |
| Туре        | Set to Layout. Cannot change the setting.                                                                                                                                                                            |  |  |
| Position    | Specifies a center point in simulator World coordinates.                                                                                                                                                             |  |  |
| Half size   | Specifies a length from the center. The length is double this length.                                                                                                                                                |  |  |
| Color       | Box Sphere Cylinder Display color Click the drop-down to change display color. The display color setting dialog will be displayed. Refer to Change layout object color for the details.                              |  |  |
| Visible     | Visible : True (default) Not visible : False                                                                                                                                                                         |  |  |
| Show Label  | Displays a label : True Not display a label : False (default)                                                                                                                                                        |  |  |
| Show Origin | This property sets whether to display the label when [Label Display] in the [Simulator setting] is specified. Displays the origin coordinate system: True Not displays the origin coordinate system: False (default) |  |  |

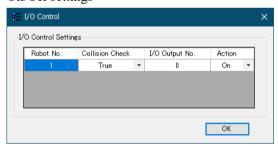
| Collision   |                                                                                           |                                                       |
|-------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Property    | Value                                                                                     |                                                       |
| Check       | Enables/disables the collist<br>Enable: True (default)<br>Disable: False                  | on detection and I/O control setting.                 |
| Show result | Specify how to display the color configured in Color property when collision is detected. |                                                       |
|             | Entirely Collision point Entire object and collision                                      | : Whole (default)<br>: Point<br>point : WholeAndPoint |
| Color       | Specify the color to be use Default: 168,0,0                                              | d when collision of the arms is detected.             |

#### Collision Point

| Property   | Value                                                                       |
|------------|-----------------------------------------------------------------------------|
| Radius(mm) | Specify the radius of collision point displayed when collision is detected. |
| Color      | Specify the color to be used when collision is detected.  Default: 168,0,0  |

# Property Value

I/O Control


Click local to display the [I/O Control] dialog box.

Set the following items for each configured robots.

Enable or Disable of Collision Check: Enable (True), Disable (False)

I/O Output No.

#### On/Off settings



When a robot collides or contacts with an object, Output No. of the specified I/O is turned On or Off.

This setting is valid only when a virtual controller is connected.

Also, 0 to 8 of I/O output bit number cannot be used because it is reserved for remote output signal. Specify a number 9 or after.

## (4) 3D Display

In the 3D display, you can check the robot orientation and motion from various points of view.



#### Adding a layout object

When a layout object is added while the robot object is selected in [Layout Objects], it will be added as independent object.

When a layout object is added while the layout object is selected in [Layout Objects], it will be added as a grouped object of the selected object.

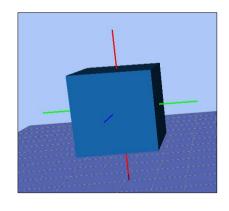


Grouped objects move together when the parent object moves.

RightTable/CenterTable/LeftTable of the sample virtual controller "C4 Sample" is an example of grouping.

#### Editing a layout object

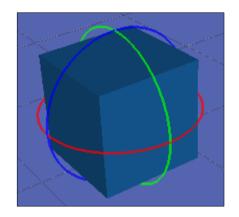
[Cut], [Copy], and [Paste] commands in the [Edit] menu are available for the layout objects except CAD objects.


#### Changing a hierarchy of layout objects

To change a hierarchy of layout objects, drug and drop a layout object in the layout object.

#### Change the robot / layout object position

The grids indicating directions to move can be displayed by clicking the <Move button on the toolbar and clicking the object such as a robot or a box. They can also be displayed by clicking the object while pressing the <Shift>key.

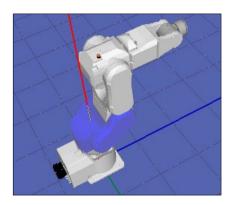

To move the object, drag the grid corresponding to the axis.



#### Rotate the robot / layout object

The grids which indicate the rotation directions can be displayed by clicking the <Rotate/Jog button on the toolbar and clicking the object such as a robot base or a box. They can also be displayed by clicking the object while pressing the <Ctrl> key.

To rotate the object, drug the guide corresponding to the direction you want to rotate the object.




#### Move the robot joint

The robot joint can be moved by clicking the <Rotate/Jog button on the toolbar and dragging the joint. The selected joint is displayed in blue.

The joint can also be moved by dragging while pressing the <Ctrl> key.

If a robot moves to a point out of the motion range, the joint comes back to the previous point.



### Change the view point

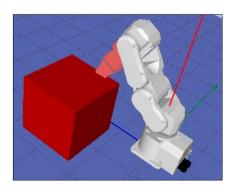
To rotate the view point, press the mouse left button and drag the 3D display.

To move the view point up and down, press the mouse right and left button and drag the 3D display.

Also, you can use the <L>, <R>, <D>, and <U> key to move the view point.

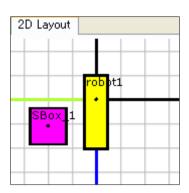
You can reset the view point from the menu opened by right click.

#### Zoom the layout


To zoom the 3D display, use the mouse wheel to scroll.

You can change the zoom level from the menu opened by right clicking with the mouse.

#### Check for collisions


When a collision between a robot and layout object is detected, the collided robot joint and layout object are displayed in red.

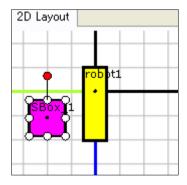
For details, refer to 8.3.4 Collision detection.



# (5) 2D Layout

In the [2D Layout] panel, you can specify and check the robot objects and layout objects positions.




#### Change robot and layout object position

Drag an object (robot, box, etc.) to change its position.

To move an object in Z direction, use the <D> and <U> keys.

Drag O to change the size of an object, and drag • to rotate an object.

If you are moving a box, it is shown as in the figure on the right:



#### Zoom the layout

To zoom the 2D layout, use the mouse wheel to scroll.

#### Move the display area

To move the 2D layout display area, drag the 2D layout while simultaneously pressing the <Shift> key.

#### Rotate the display

To rotate the 2D layout display area, right-click on the 2D layout and use the options - [Rotate Clockwise] [Rotate CounterClockwise].

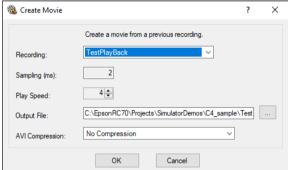
# (6) Record / Playback

In Playback mode, you can record and produce simulation results.

Also, you can store the simulation results in movie files.



| Function                  | Description                                                                                                                                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RECORD                    | When the button is red , it saves the simulation result into the specified log file. Every time you execute the program, the log file is overwritten with the new information. |
|                           | When the button is gray , it doesn't save the simulation result.  As the default, it doesn't save the simulation result.                                                       |
| PLAY                      | Plays a simulation result of a specified log file.                                                                                                                             |
| STOP                      | Stops the simulation playback.                                                                                                                                                 |
| <b>≪</b> REWIND           | Puts the playback step to the starting point.                                                                                                                                  |
| <b>■</b> BACK             | Goes back one step.  The number of steps back is specified in [Play Speed].                                                                                                    |
| <b>▶</b> NEXT             | Goes to next step.  The number of steps to go is specified in [Play Speed].                                                                                                    |
| <b>€</b> REPEAT           | When this button is pressed, repeats the simulation playback.                                                                                                                  |
| Log list                  | Specifies a recording file to record and play.                                                                                                                                 |
| New button                | Create a new log file.                                                                                                                                                         |
| Sampling (ms): 4 Sampling | Displays the log file sampling interval.                                                                                                                                       |
| Play Speed: Play Speed    | Specifies the playback interval with a number of steps.                                                                                                                        |
| Play position             | Display the current playing position.                                                                                                                                          |


#### Produce the robot motion by outputting to a recording file

- (1) Confirm that the mode is "Simulation" mode on the Simulator Tool bar.

  Mode: Simulation
- (2) Click on the <New> button in the [Record / Playback] window. The [New Recording] dialog appears.
- (3) Here, enter "TestPlayBack" and click the <OK> button. Now, you can see "TestPlayBack" in the Recording list.
- (4) Click on the <RECORD> button in the [Record / Playback] window, which enables recording. Now, the <RECORD> button is in red.
- (5) Start a program from the [Run] window to move the robot. The simulation result is saved in the recording file while executing the program.
- (6) Change the simulator operating mode to "Playback Mode" again.
- (7) Click on the <PLAY> button and the simulation result starts to play.

#### Produce the robot motion with saving in a movie file at once

- (1) Confirm that the mode is set to "Playback" on the Simulator Tool bar.
- (2) Click the <Create Movie> button in the Simulator Tool bar.
- (3) When the [Create Movie] dialog appears, select "TestPlayBack" from the Log list.



- (4) Specify the [Output File] and [AVI Compression] if necessary.
- (5) Click on the <OK> button.

  The [Create Movie] status window appears and the specified movie file is created with playing the log file.
- (6) The created movie file is "TestPlayBack.avi" in EPSON RC+ 7.0 project folder (\EpsonRC70\projects\"a project name").

# (7) Loading the CAD file

The CAD file can be loaded to lay out the hand or CAD object data in the 3D display. For details of available CAD data, refer to *Available CAD data for 3D display* in 8.4.2 *Specifications and precautions for the 3D display*.

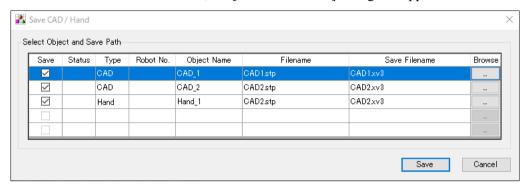
Pressing the <CAD > button on the toolbar opens the [Open CAD Data] dialog box.



| Function                                                                                                            | Description                                                                                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <browse> button</browse>                                                                                            | Displays the dialog box for selecting the file.<br>Select a CAD file to load.                                                                                 |  |
| Scale Unit                                                                                                          | Select a unit of length used in the CAD data in order to match the unit with the simulator.  This can be changed in the property grid after loading the data. |  |
| Rendering Quality                                                                                                   | Specify the rendering quality.  If "Fine" is selected, the data is displayed in details but it takes time.                                                    |  |
|                                                                                                                     | If "Fast" is selected, the details are not displayed (e.g. the screw holes are shown as a square), but the data can be displayed faster.                      |  |
| Enable CAD to Point Check this checkbox to use the CAD to Point which extracts the points from the loaded CAD data. |                                                                                                                                                               |  |
|                                                                                                                     | This can be changed in the property grid after loading the data.                                                                                              |  |
|                                                                                                                     | If the data is loaded as Hand, this item does not appear.                                                                                                     |  |
| <open> button</open>                                                                                                | Starts loading the data.                                                                                                                                      |  |

#### (8) Saving the CAD file

The loaded CAD file can be converted to the XVL format to save. Converting the file to the XVL format can reduce the file size, resulting in a shorter loading time.


There are two ways to save the files: saving the CAD files one by one, or saving them altogether. The CAD files can be saved one by one in the property grid, or altogether in the [Save CAD/Hand] dialog box.

#### To save the CAD files one by one

- (1) Select the CAD object to save in the layout object.
- (2) Click [Click to Save] of the <Save as XVL...> property in the property grid.
- (3) The [Save As] dialog box appears. Click <Save>.
- (4) If the file is saved successfully, the confirmation message appears. Click <Yes>.

### To save the CAD files altogether

(1) If there is an unsaved CAD data or Hand data when you attempt to exit the EPSON RC+ or turn off the Controller, the [Save CAD/Hand] dialog box appears.

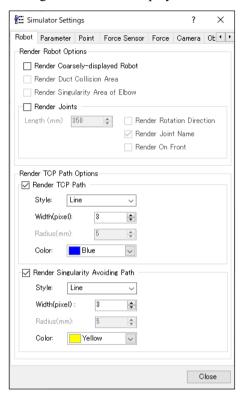


- (2) The changed data is saved in the same folder as the previous data.

  The filename extension is changed to "xv3" automatically. If you want to change the file name or the destination to save, click the <Browse > button to display the [Save As] dialog box, and then change the file name and destination.
- (3) Click the <Save> button.
- (4) If the file is saved successfully, "Success" will be displayed in [Status].
- (5) Click the <Close> button to close the dialog.

#### CAD/Hand save dialog box

| Function                 | Description                                                                     |
|--------------------------|---------------------------------------------------------------------------------|
| [Save] checkbox          | Check the checkbox of the object to save.                                       |
| Status                   | If the file is saved successfully, it shows "Success".                          |
|                          | If failed, it shows "Fail".                                                     |
| Туре                     | Displays either "Hand" or "Cad".                                                |
| Robot No.                | If the type is "Hand", the robot number is displayed.                           |
| Object Name              | Displays the setting value of [Name] in the property grid.                      |
| Filename                 | Displays the name of the loaded file.                                           |
| Save Filename            | Displays the name of the destination file selected in the [Save As] dialog box. |
| Browse                   | Displays the [Save As] dialog box.                                              |
| <save> button</save>     | Starts saving the file.                                                         |
| <cancel> button</cancel> | Cancel saving the file.                                                         |
| <close> button</close>   | Close the dialog.                                                               |
|                          | This button appears when saving is completed successfully.                      |


## 8.3.2 Simulator Settings

Pressing the <Simulator Settings => button displays the [Simulator Settings] dialog box.

This dialog box is used to configure the 3D display. The settings will be kept after restarting the EPSON RC+ 7.0.

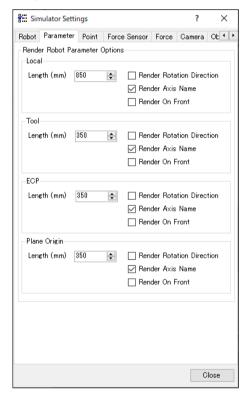
#### [Robot]

Settings related to 3D display of the robot.



#### Render Robot Options

| Function                         | Description                                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------|
| Render Coarsely-displayed        | Displays the simplified robot data.                                                        |
| Robot                            | The setting is effective the next time you connect the robot.                              |
|                                  | This option is useful when the computer capacity is insufficient or the CAD data is large. |
| Render Duct Collision Area       | Displays the range of collision detection at the robot duct with a bounding box.           |
|                                  | This option is available for G1 and LS series.                                             |
| Render Singularity Area of Elbow | Displays the elbow singularity area and elbow singularity neighborhood on the simulator.   |
| LIBOW                            | This option is available for N series.                                                     |
| Render Joints                    | Displays an arrow that shows a supporting point and a rotation axis of the robot.          |
| Length                           | Set a length for rendering the joints.                                                     |
| Render Rotation                  | Display a rotation direction when rendering the joints.                                    |
| Direction                        |                                                                                            |
| Render Joint Name                | Display the joint names (J1, J2, J3, J4, J5, J6) when rendering the joints.                |
| Render On Front                  | Display the arrow of "Render Joints" in front of the robot.                                |

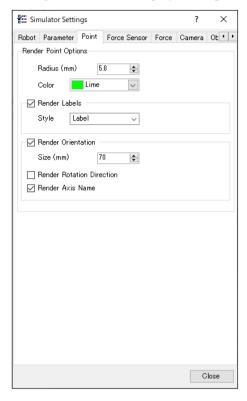

### Render TCP Path Options

| Function                            | Description                                                                                                                        |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Render TCP Path                     | Displays the path of the origin point on active Tool coordinate system for a fixed time.                                           |
| Render Singularity<br>Avoiding path | Only displays the path of operation to avoid render singularity for the path of the origin point on active Tool coordinate system. |
| Style                               | Select line or dot to indicate the paths.                                                                                          |
| Width                               | Specify the line width of paths.                                                                                                   |
| Radius                              | Specify the diameter of dots indicating paths.                                                                                     |
| Color                               | Specify the color of paths.                                                                                                        |

### [Parameter]

Settings related to 3D display of robot parameters.

You can set the local coordinate system, tool coordinate system, ECP coordinate system, and plane origin coordinate system.



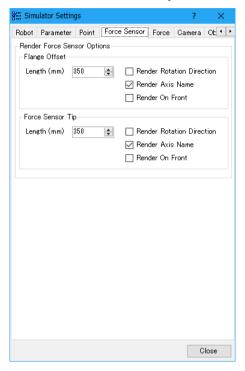

#### Render Robot Parameter Options

| Function                  | Description                                               |
|---------------------------|-----------------------------------------------------------|
| Length                    | Set a length of the coordinate axis.                      |
| Render Rotation Direction | Display the rotational direction of the coordinate axis.  |
| Render Axis Name          | Display the coordinate axis names (X, Y, Z, U, V, W).     |
| Render On Front           | Display the arrow of "Render Robot Parameter" in front of |
|                           | the robot or the object.                                  |

### [Point]

Settings related to 3D display of the point data of the robot.




# **Render Point Options**

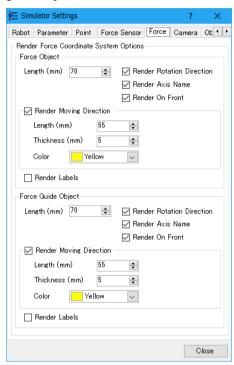
| Function                  | Description                                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|
| Radius                    | Specify the diameter of dots indicating points.                                                                     |
| Color                     | Specify the color of dots indicating points.                                                                        |
| Render Labels             | Display a point label.                                                                                              |
| Style                     | Set a display style when rendering the point label.                                                                 |
| ·                         | Label : Label registered in point file.                                                                             |
|                           | Number: Point number                                                                                                |
|                           | NumberAndLabel: Point number and label                                                                              |
| Render Orientation        | Display an orientation at the point as a coordinate axis.                                                           |
| Size                      | Set a size of coordinate axis that shows the orientation at the point.                                              |
| Render Rotation Direction | Display the rotational direction on the coordinate axis that shows the orientation at the point.                    |
| Render Axis Name          | Display the coordinate axis name (X, Y, Z, U, V, W) of the coordinate axis that shows the orientation at the point. |

### [Force Sensor]

Settings related to 3D display of the force sensor.

You can set the coordinate system that shows a flange offset and tip of the force sensor.




### Render Force Sensor Options

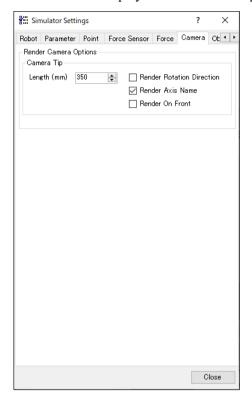
| Function                  | Description                                                                     |
|---------------------------|---------------------------------------------------------------------------------|
| Length                    | Set a length of the coordinate system.                                          |
| Render Rotation Direction | Display the rotational direction of the coordinate axis.                        |
| Render Axis Name          | Display the coordinate axis names (X, Y, Z, U, V, W).                           |
| Render On Front           | Display the arrow of "Render Force Sensor" in front of the robot or the object. |

### [Force]

Settings related to 3D display of the force control data.

You can set the force coordinate system and moving direction for force object or force guide object.




### Render Force Coordinate System Options

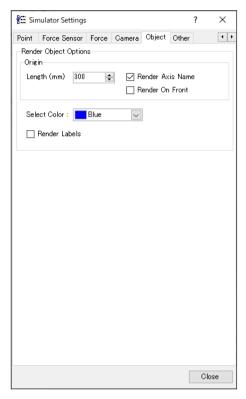
| Function                  | Description                                                                                      |
|---------------------------|--------------------------------------------------------------------------------------------------|
| Length                    | Set a length of the coordinate axis of the force coordinate system.                              |
| Render Rotation Direction | Display the rotational direction of the coordinate axis.                                         |
| Render Axis Name          | Display the coordinate axis names (Fx, Fy, Fz, Tx, Ty, Tz).                                      |
| Render On Front           | Display the arrow of "Render Force Coordinate System" in front of the robot or the force sensor. |
| Render Moving Direction   | Show the moving direction of the robot by the force control.                                     |
| Length                    | Set a length of an arrow that shows the moving direction of the robot.                           |
| Thickness                 | Set a thickness of an arrow that shows the moving direction of the robot.                        |
| Color                     | Set a color of an arrow that shows the moving direction of the robot.                            |
| Render Labels             | Show a label of the force object and force guide object name.                                    |

### [Camera]

Settings related to 3D display of the camera object.

You can set the display of the coordinate system that shows the camera tip.

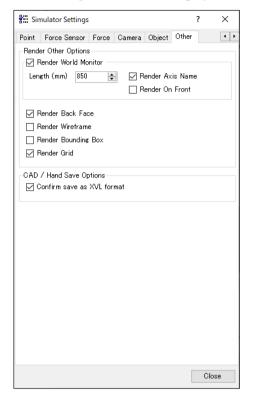



# Render Camera Options

| Function                  | Description                                                  |
|---------------------------|--------------------------------------------------------------|
| Length                    | Set a length of the coordinate axis.                         |
| Render Rotation Direction | Display the rotational direction of the coordinate axis.     |
| Render Axis Name          | Display the coordinate axis names (X, Y, Z, U, V, W).        |
| Render On Front           | Display the arrow of "Render Camera" in front of the object. |
|                           |                                                              |

### [Object]

Settings related to 3D display of the general objects including robot, CAD object, and simple object.


You can set the display of coordinate system which shows an origin of the object and a selection color when the robot and CAD object move or rotate.



### Render Object Options

| Function         | Description                                                                     |
|------------------|---------------------------------------------------------------------------------|
| Length           | Set a length of the coordinate axis which shows an origin of the object.        |
| Render Axis Name | Display a coordinate axis name. Display the coordinate axis names $(X, Y, Z)$ . |
| Render On Front  | Display the arrow of "Render Object" in front of the object.                    |
| Select Color     | Set a color when the robot and CAD object move, rotate, or jog.                 |
| Render Labels    | Display names of robot and layout object.                                       |

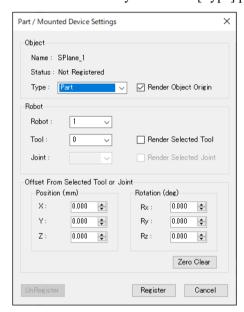
[Other]
Other settings related to 3D display.



# Render Other Options

| Function              | Description                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Render World Monitor  | Displays the World coordinates.                                                                                                   |
| Length                | Set a length of the coordinate axis which shows a world coordinate.                                                               |
| Render Axis Name      | Displays the name of coordinates (X, Y, Z).                                                                                       |
| Render On Front       | Display the arrow of "Render Other" in front of the object.                                                                       |
| Render Back Face      | Displays the surface of polygons.                                                                                                 |
| Render Wireframe      | Changes to the wire frame model (3D image only using lines and dots)                                                              |
| Render Bounding Box   | Displays the robot and layout objects with a bounding box.                                                                        |
| Render Grid           | Displays the grids on the simulator.                                                                                              |
|                       |                                                                                                                                   |
| CAD/Hand Save Options |                                                                                                                                   |
| Function              | Description                                                                                                                       |
| Confirm save as XVL   | Displays the [Save CAD/Hand] dialog box if there is CAD data or Hand object in other than XVL format when starting the simulator. |

## 8.3.3 Part/Mounted Device Settings


You can move the layout objects along with the robot like part such as workpieces grasped by the robot or devices mounted on the robot arm.

Set the layout objects for part/mounted device settings in the [Part/Mounted Device Settings] dialog. In the dialog, there are two methods to display

- Right-click the target object.
   Select [Part/Mounted Device Settings] from the displayed context menu.
- 2. Click the <Downward arrow > button displayed on [Type] of the property grid.

There are two methods to reset the Part/Mounted Device Settings and return the [Type] to "Layout".

- 1. Click the <UnResister> button on the [Part/Mounted Device Settings] dialog.
- 2. Select the "Layout" on the [Type] property of property grid.



| unction               | Description                      |                                                |
|-----------------------|----------------------------------|------------------------------------------------|
| Туре                  | Select from the following.       |                                                |
|                       | Layout                           | : Layout objects (Default)                     |
|                       | Part                             | : Part objects                                 |
|                       | Mounted Device                   | e: Mounted device                              |
| Render Object Origin  | Display the object origin.       |                                                |
| Robot                 | Set a robot that                 | relates to the selected object.                |
| Tool                  | When the [Type place an object.  | ] is "Part", set the tool coordinate system to |
| Render Selected Tool  | Display the tool                 | coordinate system.                             |
| Joint                 | When the [Type place an object.  | ] is "Mounted Device", set joint number to     |
| Render Selected Joint | Display joints.                  |                                                |
| Offset From Selected  | Set a relative po                | sition from the selected tool or joint.        |
| Tool                  |                                  |                                                |
| or Joint              |                                  |                                                |
| Zero Clear            | Set the offset value to "0.000". |                                                |

| Function   | Description                                             |
|------------|---------------------------------------------------------|
| Register   | Register an object to the selected type.                |
| UnRegister | Return the registered [Type] of the object to "Layout". |
| Cancel     | Cancel the settings.                                    |

The Part/Mounted Device Settings can also be configured from the property grid.

From the property grid, you can configure the following settings.

| Property        | Value                                                                                                                                                                                                    |                                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре            | Display the type of                                                                                                                                                                                      | object currently set.                                                                                                                            |
|                 | Click the Dutton                                                                                                                                                                                         | to display the [Object Settings] dialog box.                                                                                                     |
|                 | Set the type.                                                                                                                                                                                            |                                                                                                                                                  |
|                 | Layout:                                                                                                                                                                                                  | Layout object (default)                                                                                                                          |
|                 | Part:                                                                                                                                                                                                    | Part object                                                                                                                                      |
|                 | Mounted Device:                                                                                                                                                                                          | Mounted device                                                                                                                                   |
| Robot           | Display the robot number to which the selected object is associated. If multiple robots are set, you can also change robots.                                                                             |                                                                                                                                                  |
| Tool            | If the Type is "Part", the number of the tool coordinate system in which the object is placed is displayed. If multiple tool coordinate systems are set, the tool coordinate system can also be changed. |                                                                                                                                                  |
| Joint           |                                                                                                                                                                                                          | nted Device", the number of the joint where the isplayed. This can also be changed.                                                              |
| Offset Position | Display the position be changed.                                                                                                                                                                         | relative to the tool or joint being set. This can also                                                                                           |
|                 |                                                                                                                                                                                                          | tting value of the selected object's Position erty, or Joint property.                                                                           |
|                 | updated automatica                                                                                                                                                                                       | to these properties may cause the values to be<br>lly. Even in such cases, the values are correct as<br>affect the position of the object in 3D. |
| Offset Rotation | Display the orientat also be changed.                                                                                                                                                                    | ion relative to the tool or joint being set. This can                                                                                            |
|                 |                                                                                                                                                                                                          | tting value of the selected object's Rotation erty, or Joint property.                                                                           |
|                 | Therefore, changes be updated automat                                                                                                                                                                    | to these properties may cause the setting values to ically as follows:                                                                           |
|                 | - A setting of +36                                                                                                                                                                                       | 0 degrees or $-360$ degrees is reset to $0$ .                                                                                                    |
|                 | - When Y is set at are swapped.                                                                                                                                                                          | t +90 degrees or -90 degrees, the X and Z settings                                                                                               |
|                 | Even in such cases,                                                                                                                                                                                      | the values are correct as settings and do not affect                                                                                             |

the orientation of the object in 3D.

### 8.3.4 Collision detection

In the simulation, collisions can be detected between the robots including its hand and the layout objects. (X5 series cannot use this function.)

Here we describe the settings and details of collision detection.

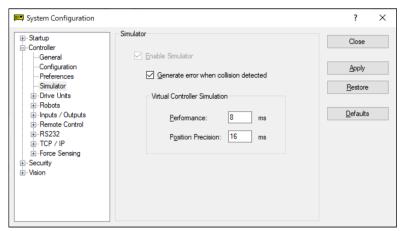
#### Basic settings for collision detection

In the [Property Grid] of the robot, the following can be configured.

| Property             | Value                                                                                                      |
|----------------------|------------------------------------------------------------------------------------------------------------|
| Check Collision      | Enables / disables the collision detection for layout objects.                                             |
|                      | Enable: True (default)                                                                                     |
|                      | Disable: False                                                                                             |
|                      | Collision between the robot base and layout objects is not detected even when this property is set "True". |
| Check Self Collision | Enables / disables the collision detection for a robot itself.                                             |
|                      | Enable: True (default)                                                                                     |
|                      | Disable: False                                                                                             |

### Target of collision detection

In the Property Grid of the layout objects, the following can be configured.


#### Collision

| Property        | Object | Value                                                                                       |
|-----------------|--------|---------------------------------------------------------------------------------------------|
| Check           | CAD    | Enables / disables the collision detection for a robot.                                     |
|                 |        | Enable: True (default)                                                                      |
|                 |        | Disable: False                                                                              |
|                 |        | Collision with the robot flange is not detected even when this property is set "True".      |
| Show result     | CAD    | Specify how to display the color configured in Color property when a collision is detected. |
|                 |        | Entirely : Whole (default)                                                                  |
|                 |        | Collision point : Point Entire object and collision point : WholeAndPoint                   |
| 0.1             | CAD    | •                                                                                           |
| Color           | CAD    | Specify a color to be used when collision is detected. Default: 168,0,0                     |
| Collision Point |        |                                                                                             |
| Property        | Object | Value                                                                                       |
| Radius(mm)      | CAD    | Specify the radius of collision point displayed when collision is detected.                 |
| Color           | CAD    | Specify the color to be used when collision of the arms is detected.                        |
|                 |        | Default: 168,0,0                                                                            |

#### Generate error when collision is detected

When you open the [Setup]-[System Configuration]-[Controller]-[Simulator] and check the [Generate error when collision detected] checkbox, if a collision is detected during SPEL<sup>+</sup> program execution, an error occurs in the controller and the program stops.

After checking the check box, click <Apply> and then click <Close>.





The purpose of this function is to find where the program has a problem and not to prevent the collision of robots.

It cannot guarantee that it has enough time for robots to stop when the simulator detects the collision.

#### Caution about the collision detection of Floor / Wall

A collision is detected when a floor or wall is in contact with the robot. If the robot or plane positions are changed so that the robot passes completely through the plane, then no collision is detected.

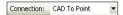
#### Accuracy of collision detection

The collision detection in the simulator cannot guarantee accuracy. Make sure to have a margin when you apply the simulation result for a real robot system.

#### Caution about the CAD data

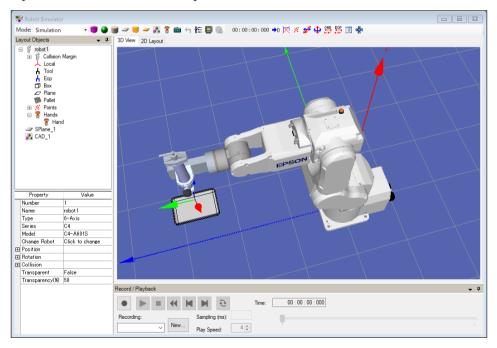
Collision cannot be detected when the CAD data has only the wire frame models. To use the collision detection function, add surface to the CAD data.

The restrictions of the simulator are described in 8.4 Simulator Specifications and Restrictions.


#### 8.3.5 CAD To Point

CAD To Point outputs the edge (edge line) information included in the CAD data as a point data. This function enables the user to generate a point data according to the path by sequentially selecting the edges of the CAD data shown in the 3D display. Since this function automatically register points of manipulator motion based on the CAD data of the work piece, it can save time to develop a program.

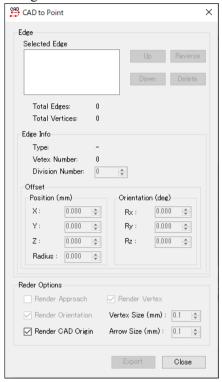
Follow the simple CAD data sample below to use CAD To Point.


In this example, a motion in which the tip of a syringe traces a periphery of the CAD object (tray) will be created.

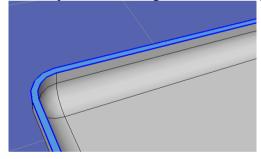
- 1. Connect to the virtual controller (CAD To Point)
- 2. Open a project file
- 3. Select edges of the CAD object to generate a motion path
- 4. Export the edges as point data
- 5. Create a program
- 6. Execute the program and operate the manipulator
- 1. Connect to the virtual controller (CAD To Point)



Select "CAD To Point" from the EPSON RC+ 7.0 tool bar-<Current controller connection> list box. When the connection is completed, "CAD To Point" will be displayed in <Current controller connection> list box.

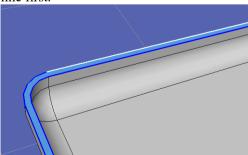

Click the tool bar-<Simulator <sup>№</sup> > to display the [Robot Simulator] window. The CAD object "Work" and the Hand are placed in "CAD To Point".

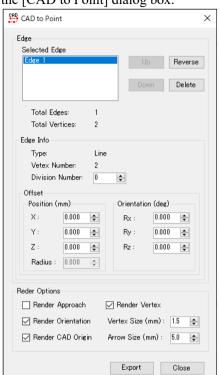



#### 2. Open a project file

- (1) Click the EPSON RC+ 7.0 menu-[Project]-[Open...].
- (2) Select [Projects]-[SimulatorDemos]-[CAD\_To\_Point].
- (3) Click the <Open> button.

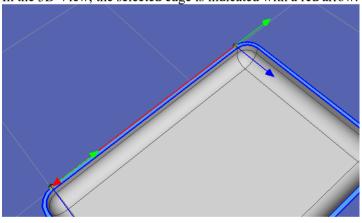
- 3. Select edges of the CAD object to generate the motion path
- (1) Click the <CAD to Point button on the toolbar to display the [CAD to Point] dialog box.



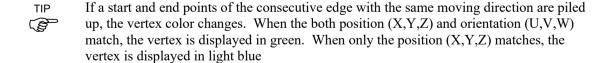


(2) Hover the mouse over the CAD object and select a part having the edges. The selected part turns to be light blue and the edges are shown in blue.

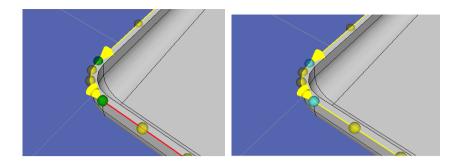


(3) Hover the mouse over a desired blue edge.

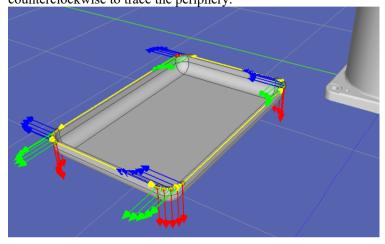

The selected edge turns to be white. Select the line first. This sample program will not operate properly when selecting the curve first since this is designed to select the line first.





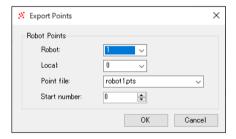


(4) Click the white edge. The selected edge will be shown in the [Selected Edge] box of the [CAD to Point] dialog box.

In the 3D View, the selected edge is indicated with a red arrow.

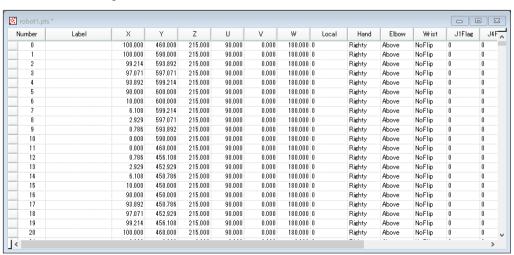



TIP
The arrow indicates the direction from the starting point to the end point.
The direction of the arrow can be reversed by clicking the <Reverse Reverse button.





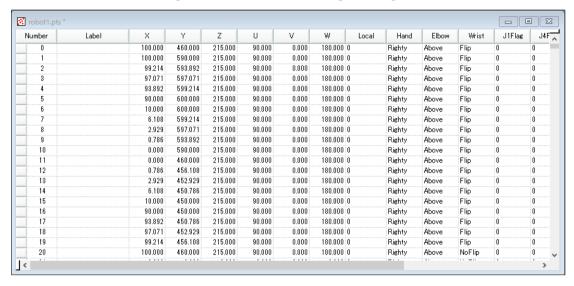

The image will be shown as below after you select the edges one by one in counterclockwise to trace the periphery.




# 4. Export the edges as point data

Click the <Export Points Export > button of the [CAD to Point] dialog box to display the [Export Points] dialog box.




Click the <OK button to output the point data to the rows No.0-20 in the point file named "robot1.pts".



### 5. Create a Program

(1) Set the appropriate robot orientation for the point data

Open the point file "robot1.pts" from the layout object, and change the wrist orientation (Wrist) of the exported No. 0-20 from "NoFlip" to "Flip".



#### (2) Write the following program in "Main.prg" program

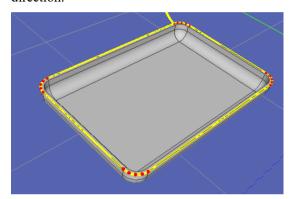
Function main

```
Motor On
TLSet 1, XY(-112, -41, 80, 0, -90, 0)
Tool 1

Go PO
Move P1 CP
Arc P3, P5 CP
Move P6 CP
Arc P8, P10 CP
Move P11 CP
Arc P13, P15 CP
Move P16 CP
Arc P18, P20 CP

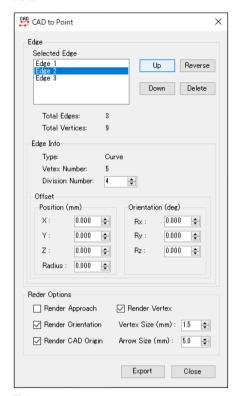
Pulse 0, 0, 0, 0, 0, 0
Motor Off
Fend
```




By using Tool coordinate system 1, the tip of the syringe can trace outlines of workpiece.

(3) Click the tool bar-<Build project>. The program will be built.

When the program build is completed normally, the message "Build complete, no errors" will be displayed in the Status window.


### 6. Execute the program and operate the manipulator

- (1) Click the tool bar<Open run window> to open the <Run> window
- (2) Click <Start>. Then, the message "Are you ready to start?" will be displayed. Click <Yes>.
- (3) The program will be executed. Check that the manipulator moves from P0 to P20 sequentially and the tip of the syringe traces the edge of Work in counterclockwise direction.



#### 7. Function of CAD to Point

Pressing the <CAD to Point button on the toolbar to display [CAD to Point] dialog box.



### Edge

| Function         | Description                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Up Up button     | Move the order of the selected edge to up.                                                                                                 |
| Down Down button | Move the order of the selected edge to down.                                                                                               |
| Reverse button   | Switch the start point and end point of the selected edge.<br>Red arrow on the edge indicates the direction from start point to end point. |
| Delete button    | Delate the selected edge.                                                                                                                  |

### **Edge Information**

| Function        | Description                                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Type            | Display the type of the selected edge.                                                                                                  |
| ,,              | Types are Line, Curve, and Composite Curve.                                                                                             |
| Vertex Number   | Display the number of vertex of selected edge.<br>Increase or decrease division number to increase or decrease<br>the number of vertex. |
| Division Number | Set the division number of the selected edge.                                                                                           |

| Offset      |                                                                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function    | Description                                                                                                                                                 |
| Position    | Enable to move the vertex position to X, Y, and Z direction. Refer to the coordinate system of CAD object for the directions.                               |
|             | Also, enable to expand or decrease from the center of the arc to radius direction if the edge is curve or composite curve which can approximate to the arc. |
| Orientation | Enable to rotate tool orientation to Rx, Ry, and Rz direction.                                                                                              |
|             | Refer to the coordinate system of CAD object for the directions.                                                                                            |

# **Render Option**

| Function           | Description                                                 |
|--------------------|-------------------------------------------------------------|
| Render Approach    | Display the Z-axis (red arrow) of the render orientation to |
|                    | the vertex. It is useful when Z-axis of the render          |
|                    | orientation cannot be seen due to workpieces.               |
| Render Orientation | Display the orientation on the vertex.                      |
|                    | Only displays when the vertex is displayed.                 |
| Render CAD Origin  | Display the origin of CAD object in coordinate system.      |
| Render Vertex      | Display the vertex of the selected edge.                    |
| Vertex Size        | Set the vertex size.                                        |
| Arrow Size         | Change an arrow size that is directed to start point to end |
|                    | point of the selected edge.                                 |

Click the <Export Points Export > button on the [CAD to Point] dialog to display the [Export Points] dialog.

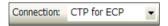


# Point output

| Function     | Description                                    |
|--------------|------------------------------------------------|
| Robot        | Set the robot to output the points.            |
| Local        | Set the local coordinate to output the points. |
| Point File   | Set the point file to output the points.       |
| Start Number | Set the start number of outputting points.     |

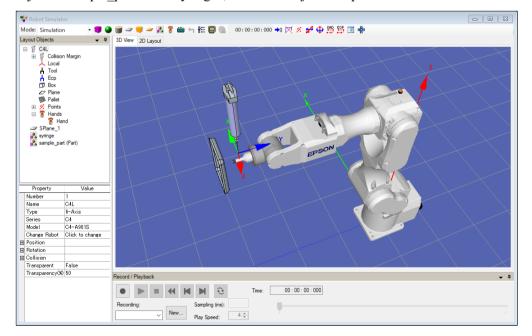
# 8.3.6 CAD to Point for ECP

CAD To Point for ECP is a function to output edge line information which is included in CAD data as point data to operate external control point (ECP) motion. By the robot grasps workpiece and selecting edges of CAD objects on the 3D view sequentially, you can generate point data along with the motion path. The robot motion points can be registered automatically based on CAD data such as part. Therefore, development time of programs can be shortened.


Use a sample using easy CAD data to execute CAD To Point for ECP.

In the example, create a motion to follow an outer circumference of grasped CAD object (tray) by the robot on the edge of fixed syringe.

Operate the following procedures:

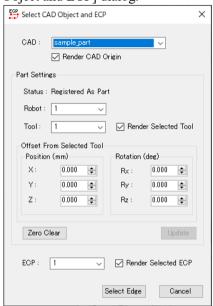

- 1. Connect to virtual controller "CTP for ECP"
- 2. Open a project
- 3. Select CAD Object and ECP
- 4. Select an edge of CAD object and create a motion path of the robot
- 5. Output as point data
- 6. Create a program
- 7. Execute the program and move the robot

#### Connect to virtual controller "CTP for ECP"



Select "CTP for ECP" of [Connection:] on EPSON RC+ 7.0 toolbar. When the connection is complete, "CTP for ECP" is displayed in the [Connection:] box.

Click the <Simulator > button on the toolbar to display the [Simulator] window. CAD objects: "sample part" and "syringe", and Hand objects are placed.




# 2. Open a project

- (1) Click [Open...] from [Project] on EPSON RC+ 7.0 menu.
- (2) Select [Projects]-[SimulatorDemos]-[CAD\_to\_Point\_for\_ECP].
- (3) Click the <Open> button.

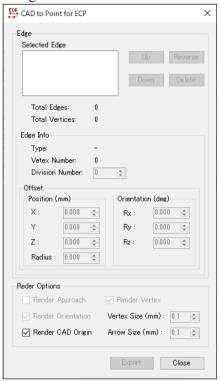
# 3. Select CAD Object and ECP

(1) Click the <CAD to Point for ECP > on the toolbar to display the [Select CAD Object and ECP] dialog.



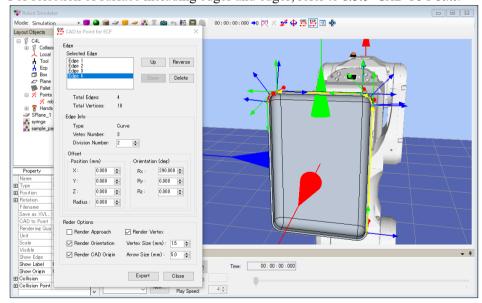
(2) Set as follows.

CAD : sample\_part

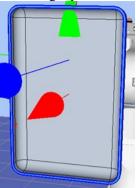

Robot : 1 Tool : 1

Offset settings (X, Y, Z, Rx, Ry, Rz)

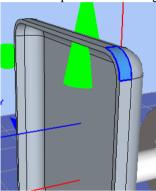
: 0.000


ECP : 1

- 4. Select an edge of CAD object and create a motion path of the robot
- (1) Click the <Select Edge Select Edge > button to display the [CAD to Point for ECP] dialog.




(2) To operate the sample program properly, select edges in counterclockwise rotation sequentially from edge of straight part of right tray.


For selection of surface including edges and edges, refer to 8.3.5 CAD To Point.



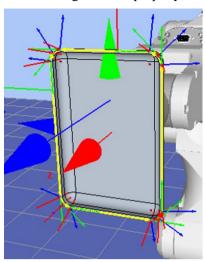
The straight part indicates edges on flat surface on the outer circumference.



The curve part indicates edges on side of the tray.



For division number and offset for each edge, refer to the following values.


| Tot division number and offset for each eage, refer to the following values: |               |    |          |       |          |       |          |       |          |       |
|------------------------------------------------------------------------------|---------------|----|----------|-------|----------|-------|----------|-------|----------|-------|
| Edge number                                                                  |               | 1  | 2        | 3     | 4        | 5     | 6        | 7     | 8        |       |
|                                                                              | Type          |    | Straight | Curve | Straight | Curve | Straight | Curve | Straight | Curve |
| Div                                                                          | vision number |    | 0        | 2     | 0        | 2     | 0        | 2     | 0        | 2     |
|                                                                              | Position (mm) | X  | 0        | 0     | 0        | 0     | 0        | 0     | 0        | 0     |
|                                                                              |               | Y  | 0        | 0     | 0        | 0     | 0        | 0     | 0        | 0     |
| Offset                                                                       |               | Z  | 0        | 0     | 0        | 0     | 0        | 0     | 0        | 0     |
| Offset                                                                       | Orientation   | Rx | 20       | 290   | 20       | 290   | 20       | -70   | 20       | 110   |
|                                                                              |               | Ry | 0        | 0     | 0        | 0     | 0        | 0     | 0        | 180   |
| (deg)                                                                        | Rz            | 0  | 0        | 270   | 0        | 180   | 90       | 90    | 0        |       |



The arrow direction of edges indicates direction of start and end point of generating point.

Click the <Reverse | Reverse | Support Support

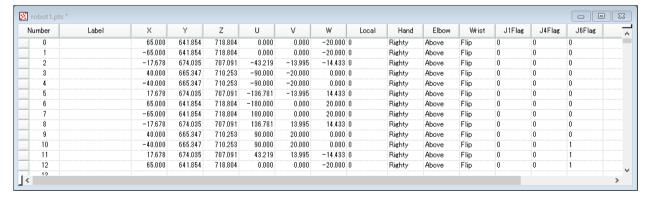
When all edges are set properly, it will be as follows.



# 5. Output as point data

Click the <Export Points button of the [CAD to Point (ECP support)] dialog to display the [Export Points] dialog.




Click the <OK button to output the point data to No.0-12 of the point file "robot1.pts".

#### 6. Create a program

(1) Set the proper robot orientation for the point data.

Open the point file "robot1.pts" from the layout objects and perform the following.

Wrist orientation (Wrist) of output point No.0-12 : NoFlip  $\rightarrow$  Flip J6Flag of point No. 10-12 :  $0 \rightarrow 1$ 



(2) Create the following program in Main.prg program.

```
Function main
 Motor On
 Power High
 Tool 1
 ECP 1
 Go PO
 Move P1 ECP CP
 Arc3 P2, P3 ECP CP
 Move P4 CP
 Arc3 P5, P6 ECP CP
 Move P7 CP
 Arc3 P8, P9 ECP CP
 Move P10 CP
 Arc3 P11, P12 ECP CP
 Pulse 0, 0, 0, 0, 0
 Motor Off
Fend
```

(3) Click the <Build> button on the toolbar. Build the program.

When the build is complete normally, the message "Build complete, no errors" appears in the [Status] window.

- 7. Execute the program and move the robot
- (1) Click the <Run> window button on the tool bar to display the Run window.
- (2) Click the <Start> button. When the message "Are you ready to start?" is appeared, click the <Yes>.
- (3) Confirm that the program is executed and follow an outer circumference of grasped CAD object (tray) by the robot on the edge of fixed syringe to operate ECP motion.

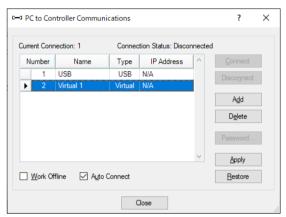
#### Functions of CAD to Point for ECP

Click the < CAD to Point for ECP button on the toolbar to display the [CAD to Point (ECP support)] dialog. For functions, refer to 8.3.5 CAD to Point - 7. Function of CAD to Point.

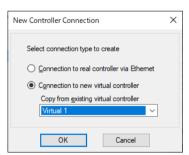
# 8.3.7 Virtual controller

To execute programs in the simulator, you need to create a virtual controller with defined robot and layout.

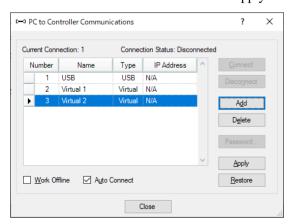
Robot settings and layout settings for the 3D display are saved for each virtual controller. If you want to transfer the robot or layout data, you can copy and transfer the data.


The virtual controller created by the EPSON RC+ 7.0 Ver. 7.3.0 cannot be used in lower versions of EPSON RC+.

#### Create a new virtual controller


Refer to 8.2.2 Working with the user created system.

# Copy the sample or configured virtual controller


(1) Click the EPSON RC+ 7.0 Tool bar-<Connection → > button. The [PC to Controller Communications] dialog appears.



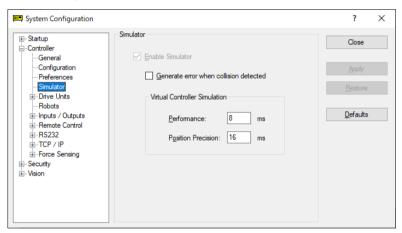
- (2) Click the <Add> button. The [New Controller Connection] dialog appears.
- (3) Select the <Connection to new virtual controller> option button and specify a virtual controller from the list box. Click the <OK> button.



(4) New "Virtual 2" is created. Click the <Apply> button.



- (5) Close the dialog and go back to the EPSON RC+ 7.0 main window.
- (6) Connect to "Virtual 2" and display the [Robot Simulator] window.


  The robot setting and layout setting of 3D display has been taken over from "Virtual 1".
- (7) When you want to change the robot type, use the [Change Robot] in the robot object property.

  For details, refer to 8.3.1 [Robot Simulator] layout (3) Property Grid.

#### Virtual controller configuration

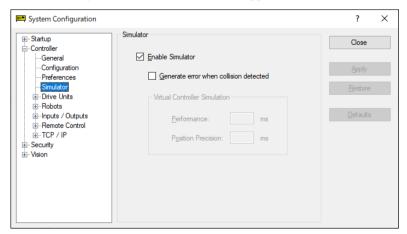
Normally you don't need to configure a virtual controller.

The configuration is available from the [Setup]-[System Configuration]-[Controller]-[Simulator] page.



[Performance] : You normally don't need to change the setting from 8 ms (default).

[Position Precision] : You normally don't need to change the setting from 16 ms (default).


The situations when you need to change these settings are described in 8.4 Simulator Specifications and Restrictions.

# 8.3.8 Connection with controller

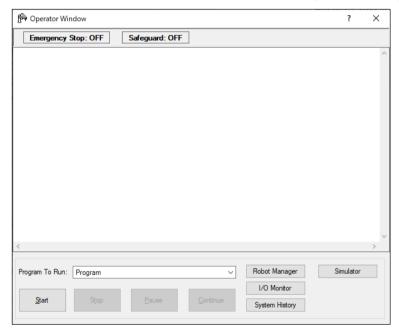
#### Enable the Simulator in controller

From the [Setup]-[System Configuration]-[Controller]-[Simulator], check the [Enable Simulator] check box to enable the simulator function.

After checking the check box, click the <Apply> button and then click the <Close> button.

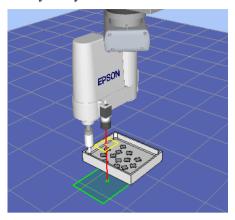


If collision with the simulator object is detected during a Jog motion or a robot motion command execution when the Simulator is enabled, the Manipulator stops operation and a Warning occurs.


To avoid collision with peripherals by using the Simulator, set 15 mm or greater margins to the simulator object.

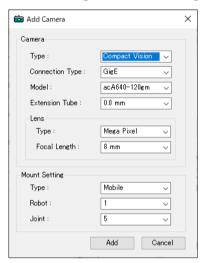
#### Function restrictions when connected with controller

- You cannot change the manipulator from the [Robot Simulator] window.
- You cannot select and move the manipulator arms in the [Robot Simulator] window, except during the controller Dry run.
- When the manipulator connected to the controller is not supported in the Simulator, the object list and the manipulator in 2D layout and 3D window are not displayed.
- The [Record/Playback] functions are not available.


# **Operator Window**

When you enable the Simulator, the <Simulator> button is added to the Operator Window. When you click on the <Simulator> button, the 3D display window appears.

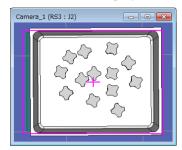



# 8.3.9 Virtual Camera Settings and Camera View Display

Virtual camera settings are function to select camera or lens, and install as the fixed camera or mount as the mobile camera to the robot. Display of the camera view is a function to display images of the set camera. You can select the camera or lens and verify the layout by the simulator.



#### Add virtual cameras


Click the <Camera button on the toolbar to display the [Add Cameras] dialog. After selecting devices and setting the mounting type, click the <Add> button.



If setting [Type] to "Mobile", right click on the camera object of the layout object to display the context menu. Select [Camera Mount Settings] to display the [Camera Mount Settings] dialog. Set the relative position to joints.

# Camera view display

By clicking the [Show Camera View] from the context menu of the camera objects, the camera view is displayed.

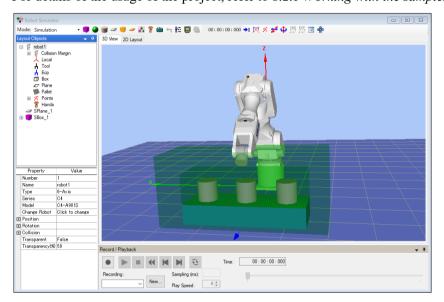




Depending on the combinations of the actual cameras and lens, mechanical vignetting occurs and the area around the image is captured black. The combinations that cause mechanical vignetting are shown below. Please be noted when using an actual camera.

| Camera model    | Lens type       | Focal length                |  |
|-----------------|-----------------|-----------------------------|--|
| acA1300-60gm    | Standard        | 12mm                        |  |
| acA2500-20gm/gc | Standard        | 8mm, 12mm, 16mm, 50mm       |  |
|                 | mega-pixel      | 8mm, 12mm, 16mm, 25mm, 50mm |  |
|                 | mega-pixel (HF) | 8mm, 12mm, 16mm, 25mm       |  |
| acA5472-5gm/gc  | Standard        | 8mm, 12mm, 16mm, 50mm       |  |
|                 | mega-pixel      | 8mm, 12mm, 16mm, 25mm, 50mm |  |
|                 | mega-pixel (HF) | 8mm, 12mm, 16mm, 25mm       |  |

# 8.3.10 Motion restriction by BOX


By using the BOX command together with the GetRobotInsideBox function or the OnErr command, robot power and motion can be restricted when the tool center point (TCP) enters the approach check area (BOX).

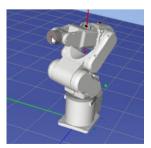
## Sample project using BOX

In the sample project, BOX2 is set outside BOX1. When the tool center point calculated based on the currently selected tool enters BOX2, the robot will stop temporarily. If the program execution is continued, the robot will resume operation in the restricted status (low speed, low power).

Then, when the robot enters BOX1 inside BOX2, the robot will abort operation.

Use the sample project to execute the motion restriction using BOX. The sample project is in \EpsonRC70\projects\SimulatorDemos\BOX\_sample. For details of the usage of the project, refer to 8.2.1 Working with the samples.




# 8.3.11 Virtual Direct Teaching

Virtual direct teaching is a function to perform a jog operation by dragging the robot. The operation simulates direct teaching.

#### How to use virtual direct teaching

- (1) Click EPSON RC + 7.0 Toolbar < Direct Teaching \*> button. When you mouse over the robot, the selected joint will appear in blue.
- (2) Click the robot.

  The mouse cursor matches TCP.



(3) Operate the robot by dragging.

The robot operates so that the mouse cursor matches TCP.

The robot operates with the arm orientation reflects the robot operation panel.

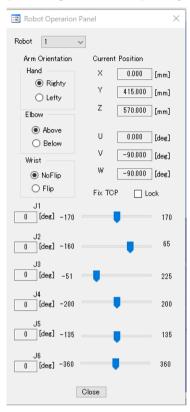
Virtual direct teaching can also be used in the following steps:

- (1) Click the robot while holding down the <Ctrl> key. The selected joint is displayed in blue.
- (2) Click the <Q> key. The mouse cursor matches TCP.
- (3) Operate the robot by dragging
  The robot operates so that the mouse cursor matches TCP.

# Virtual direct teaching restriction

When the mouse cursor is outside the robot operating range:

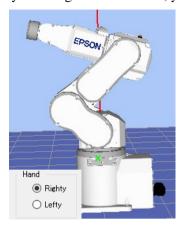
Mouse cursor does not match TCP. The robot will be elbow singularity.

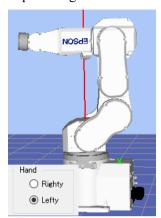



You can also rotate the object when the <Direct Teaching >> button is clicked. For details, refer to "8.3.1 (4) 3D Display Rotate the robot / layout object".

# 8.3.12 Jog Operation on the Robot Operation Panel

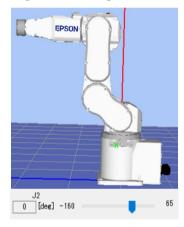
Robot operation panel supports jog operation.

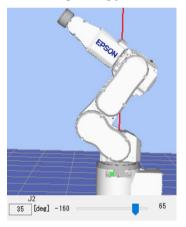

Click EPSON RC+ 7.0 Tool bar-<Robot Operation Panel ■ > button to display the [Robot Operation Panel] dialog.




| Function                | Description  Displays the number of the robot to be operated.  You can select the robot to be operated from the pull-down menu.           |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Robot                   |                                                                                                                                           |  |
| Arm Orientation         | Displays the orientation flag of the robot to be operated. Select the button to change the orientation flag.                              |  |
| Current Position        | Displays the coordinates (XYZ) and orientation (UVW) of the tool coordinate system selected in Robot Manager.                             |  |
| Fix TCP                 | Specify TCP to fix. You can use the TCP with the fixed orientation change.                                                                |  |
| Track bar for each axis | Displays the current value, maximum value, and minimum value of each axis.  When you operate the track bar, the corresponding joint move. |  |

# Changing point flag with radio button


By selecting the radio button, you can change the point flag of the robot to be operated.






# Joint operation by track bar

Drag the movable part of the track bar to move the corresponding joint.

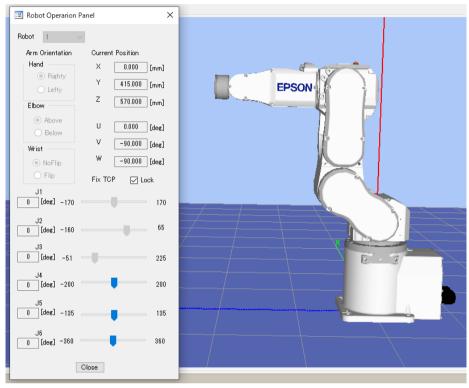




You can also operate the track bar in the following two ways:

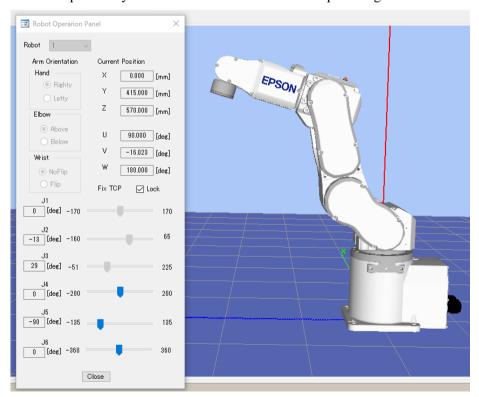
- (1) Click the track bar.Click the right side of the movable part of the track bar to change the value by +10.
- (2) Press the arrow keys.
   After selecting the track bar, press the <→> key to change the value by +1.
   After selecting the track bar, press the <←> key to change the value by -1.

Click the left side of the movable part of the track bar to change the value by -10.


## Changing orientation with fixed TCP

You can change the orientation of the robot with TCP fixed. However, this function fixes the origin position of the tool coordinate system 0. Follow the steps below.

(1) Check the [Robot Operation Panel] – [Lock] check box.


The TCP to be fixed is specified.

The track bars and point flags from J1 to J3 are disabled.



(2) Move the enabled track bar on [Robot Operation Panel].

The axis operated by the track bar moves with TCP and point flags held.



(3) Uncheck the [Robot Operation Panel] – [Lock] check box.

The <Lock> display becomes default and the function to fix TCP is completed.

The track bars for J1 to J3 are enabled.

In the following three cases, TCP cannot be used for changing the fixed orientation. The track bars for J1 to J3 are disabled.

- 1. The robot is singularity.
- 2. TCP is near the Z axis.
- 3. The current value of whichever J1 to J3 is the maximum or minimum value.

# 8.4 Simulator Specifications and Restrictions

This section describes the simulator specification, its restrictions, and precautionary statements

# 8.4.1 EPSON RC+ 7.0 package

EPSON RC+ 7.0 has two packages:

EPSON RC+ 7.0 : Standard package for developing the robot system

EPSON RC+ 7.0 Trial: Trial package for limited use (program execution on PC)

\* It cannot connect with a robot controller.

|                     | Program execution on PC | Connection with controller | Connection with controller + 3D display |
|---------------------|-------------------------|----------------------------|-----------------------------------------|
| EPSON RC+ 7.0       | OK *2                   | OK                         | OK *1                                   |
| EPSON RC+ 7.0 Trial | OK *2                   | -                          | -                                       |

- \*1 Requires the configuration to enable the simulator functions in EPSON RC+ 7.0. Refer to 8.3.8 Connection with controller for the detail information.
- \*2 Total execution time of program is limited.

# 8.4.2 Specifications and precautions for the 3D display

## Available robots for 3D display

In the future, we will add more robots for 3D display. Please contact the supplier of your region for the latest information.

Some robots cannot use this function. For more details on unsupported models, refer to *Appendix C: Simulator Functions List of Unsupported Manipulator Models*.



The flexible duct is displayed roughly.

- Check the dimensions in the manipulator manual.
- The duct actually vibrates while the manipulator is moving, the simulator doesn't display the vibration. Check how the duct vibrates with your real manipulator.

The bellow for Cleanroom or Protection model is displayed roughly

- Check the dimensions in the manipulator manual.

#### Available CAD data for 3D display

The following format is available for 3D display to show the robot hand and CAD object.

- VRML 2.0 Limits of reading: VRML2.0 prototype is not supported.
- STEP (AP203/AP214)
   Limits of reading: The file whose character code is only ASCII can be read. In addition, if Color is configured in Face, the specified Color is displayed.
- IGES
- DXF
  DXF Format (DXF R13, DXF R14, DXF 2000/2000i, DXF 2002 ) of AutoCAD ® software



The data file must be saved in the specified folder on the PC and not saved in EPSON RC+.

#### The character code of file path for CAD data

For CAD data file in VRML 2.0 format and IGES format, the data cannot be loaded when the character code which is different from the language in the operating environment is included in the file path (a file and folder name). Change the file and folder name to be the same character code as the language in operating environment.

# Memory usage of CAD data

The memory usage of 32 bit applications is limited to 2 GB. The CAD data cannot be loaded when the total of memory usage of the application and the CAD exceeds 2 GB. Therefore, the total number of polygons and polylines are limited to a million. When the error message appears, reduce the number of polygons and polylines.

#### CAD data setup orientation

Some CAD data coordinates may be different from those of the simulator.

Adjust the coordinates to the correct position by changing [Property]-[ Rotation] after loading the CAD data.

When loading CAD data as a hand, set the origin of the CAD data in the Tool0 position of the manipulator. Set the coordinates to the correct position by changing [Property]-[Position] after loading the CAD data.

# Number of available layout objects

You can create as many layout objects as you want.

However, when there are many objects to display, the display update interval becomes longer and the judgment of collision detection becomes rough. Especially for CAD data, displaying data that is too complicated is not recommended.

#### Shape of CAD object

The shape of objects may be displayed incorrectly (such as a clearance arises between the faces) depending on the CAD data. In such a case, the shape may be improved by converting the data to a different format.

#### Front-back relation of objects in semi-transparent display

The front-back relation of the objects may be incorrect when displaying the CAD and Hand objects in semi-transparent display.

#### Rendering speed

It may take a few seconds to render the objects depending on the display adapter, and operability such as in selecting the object may be decreased. It is recommended to update the driver to the latest version.

# 8.4.3 Specifications and precautions for Simulation (program execution on PC)

#### Overview

The Simulator produces the robot motions virtually on your PC.

It is designed to make the performance gap between the real system and the virtual system as small as possible. However, a few differences in the virtual system are inevitable. The operation time prediction and collision detection do not guarantee the precision.

Fully understand the contents in this chapter and check if the real system operates without any problems before you go to full-scale operation.

#### Operation time prediction

Operation time displayed in the [Robot Simulator] window is approximate time required for executing the program.

Time for the motion commands such as Go, Jump reflects the Speed and Accel values in the program. The operation time may vary when you operate the real robots from the displayed operation time according to conditions such as the Fine setting and servo delay.

In particular, when small ranges are used with the Fine instruction, the real robots need a longer operation time for accurate positioning.

The simulation cannot guarantee the precision but the margin of error in the operation time is within 10% when you execute motions with the standard cycle time (with the default Fine settings).

| Considered in the operation time prediction | Not considered in the operation time prediction |
|---------------------------------------------|-------------------------------------------------|
| Robot model                                 | Fine setting                                    |
| Speed settings (Speed, Speeds, etc.)        | Error within 10% from the default               |
| Acceleration settings (Accel, Accels,       | (Motions of standard cycle time)                |
| etc.)                                       | With larger setting than the default,           |
| Load (Weight, Inertia)                      | the operation time will be shorter.             |
| Others (ARCH, CP)                           | With smaller setting than the default,          |
|                                             | the operation time will be shorter.             |
|                                             | Servo delay                                     |
|                                             | With the real robots, the operation will be     |
|                                             | longer.                                         |

Time for the other commands than the motion commands is a virtually executed time on PC; therefore the actual time varies widely depending on the PC performance.

When measuring the motion time between two points, as simple program as possible is recommended. Refer to 8.2.2 Working with the user created system - 8. Measure the robot operation time.

#### Collision Detection Precision

The Simulator Collision Detection provides an indication whether robots collide with the peripheral equipment or not when the program is executed. It does not consider the error in path due to servo delay. Be aware that a margin is necessary for the real robot system.

The Simulator judges collisions more accurately when the robot motion speed is slow.

The judgment of collision detection during program execution is accomplished with the 3D display update. When your PC has high graphics performance, the collision judgment becomes more accurate.

In Playback mode, the Simulator judges collisions in all steps and is useful when you need accurate detection.

The Simulator cannot guarantee the precision but the margin of error in the collision detection is within 10 mm when you execute motions with Speed 100% on a PC of the recommended specifications.

# Motion duty and Overload error

In the Simulator, you cannot detect the overload error. Even when the motion duty is too high and the robot should have the overload error and stop, it keeps moving.

Duty 50% - As a measure of possible duty, the robot can really keep moving at duty 50% with the maximum acceleration/deceleration speed and without the overload error. However, it depends on the robot model type, load, points to go to, and acceleration/deceleration speed setting, etc.

## Time progress difference by PC condition

On a PC that meets the system condition, progress of the time in the Simulator and the real time (as you see on the watch) are almost the same (few percentages difference).



If you are running other applications such as Windows Media Player simultaneously, the time progress in the Simulator can widely vary from the real time. In this case, use the Simulator function while other applications are not running.

Also, on some PC models, the time progress in the Simulator may widely vary from the real time. In this case, set the [Performance] at 16 ms and the [Position Precision] at 20 ms, which may close the gap of the time progress.

#### Time confirmation program

(If the two printed times are within 27 to 33 seconds, there is no problem.)

```
Function main
Print Time$
Wait 30
Print Time$
Fend
```

#### Execution on PC that does not meet recommended system requirements

You can install the EPSON RC+ and use the Simulator functions on a PC that does not meet the recommended system requirements.

However, it doesn't guarantee the correct motions because the following may happen:

- Operation time prediction is not accurate
- Collision Detection has a large margin of error
- 3D display skips updates

# 8.4.4 Specifications and precautions of EPSON RC+

# Restriction on the controller settings

When you connect with a virtual controller, the following items are grayed and become unavailable to change.

- Setup: System Configuration: Controller: Configuration Page: IP Address, etc.
- Setup: System Configuration: Controller: Preference Page: Dry run, etc.

## Backup and restore of the controller setting

The setting data that you backup in the virtual controller can be restored in a controller. Also, the setting data that you backup in a controller can be restored in a virtual controller. However, there are restrictions. For more details, refer to 5.12.8 [Maintenance] (Tools menu)-[Backup Controller] and [Restore Controller].

# 8.4.5 Restriction on SPEL+ command execution

## (1) I/O operation and commands (On, Off, SW, Ctr, etc.)

All I/O including the option boards are available in a virtual controller. Operating I/O data is stored in the PC memory (virtual I/O mode). The I/O input status can be changed from the EPSON RC+ I/O Monitor window. Also, the I/O input status can be changed using the SetSw or SetIn statements in a SPEL<sup>+</sup> program.



Even if you specify an asynchronous On/Off command, the I/O status cannot be changed after the specified time and the Ctr function always returns 0.

# (2) Ethernet / RS-232C communication command (Print #, Input #, OpenCom, OpenNet, etc.)

All 16 Ethernet ports are available. However, an Ethernet port requires configuration of the IP address and TCP/IP port.

For RS-232C on the Controller, all 8 ports including the option RS-232C board are available.

#### NOTE

For RC700 series Controller and RC90 series Controller, up to 5 ports including the standard port and the option RC-232C board are available. T series and VT series Manipulator do not have RS-232C ports on the Controller. Be careful of the number of the ports when using the project created in the virtual controller to the Controller.

As a default, Ethernet / RS-232C communication commands do not perform actual communication.

To use the actual Ethernet/RC-232C ports, be sure to configure as described in (3).

Output data from Print #, etc. is saved in the communication output file. In the input by Input#, etc, the return value is 0 (numeric data) or blank (string). However, if you create a communication response file, the return value depends on the file content.

# Communication output file

When calling OpenCom or OpenNet command, a communication output file is created in the \EpsonRC70\Virtual\Mounted Volume\Project folder on the PC.

DummySend\*\*\*.dat : Communication output file (\*\*\* is the port number)

When a communication output file already exists, the previous output data is deleted. The file is deleted when you switch the project; save the file in a proper folder if you need.

When executing the following program,

```
OpenCom #1
Print #1, 123
Print #1, "TEST DATA"
CloseCom #1
```

the DummySend001.dat file will contain...

123 TEST DATA

#### Communication response file

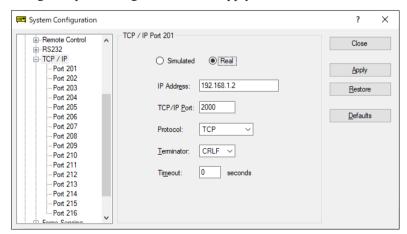
Copy the communication response file to the \EpsonRC70\Virtual\Mounted Volume\Project folder in before running a program. The file is deleted when you change the project; save the file in another folder if you need to keep it.

When calling OpenCom or OpenNet command, the communication response file is loaded.

DummyRead\*\*\*.dat : Communication response file (\*\*\* is a port number)

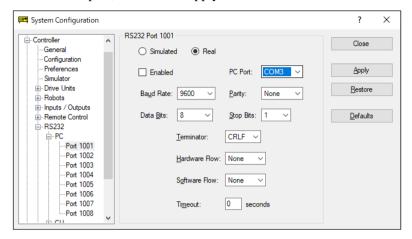
When the following DummyRead001.dat file is used,

321 Test Data


and the following program is executed,

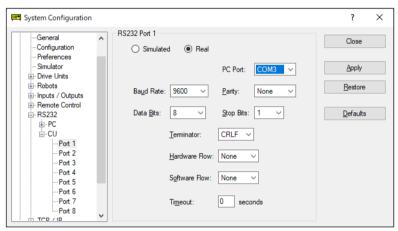
```
Integer i
String s$
OpenCom #1
Input #1, i
Input #1, s$
CloseCom #1
Print i
Print s$
```

the return values are i = 321 (numeric data), and s = "Test Data" (string).


(3) How to enable the actual ports of Ethernet/RS-232C in the virtual controller Actual ports become available when [Real] is selected in [Setup]-[System Configuration]-[Controller]-[TCP/IP].

Change the port settings, then click <Apply> and <Close>.




Actual ports become available when [Real] is selected in [Setup]-[System Configuration]-[Controller]-[RS-232] -[PC].

Select the PC port, then click <Apply> and <Close>.



Actual ports become available when [Real] is selected in [Setup]-[System Configuration]-[Controller]-[RS-232] -[Controller].

Select the PC port, then click <Apply> and <Close>.



To use the actual Ethernet/RC-232C ports, select the actual ports in the configuration dialog.

#### (4) Vision command (VRun, VGet, etc.)

For the vision-related commands, communication with the Compact Vision (CV1) is not performed. However, the commands can be executed with virtual camera function. Vision sequence can be executed with an image file set in ImageFile property as an input image. Also the result can be acquired by VGet. When the PC vision is set and the GigE camera is connected, vision commands such as VRun and VGet the can be executed using actual camera image. In this case, commands can be executed from the virtual camera function like the Compact Vision, when the GigE camera is not connected.

For the Vision Guide, refer to EPSON RC+ option Vision Guide 7.0.

# (5) Other restrictions

For the Wait command, the following syntax is not supported:

Wait InsideBox()
Wait InsidePlane()

For the Time and Date commands, the time can be displayed, but the time setting is not available.

For the SimSet commands, the motion of the parts that specify Pick or Place and movement or rotation of the objects that specify PositionX, PositionY, PositionZ, RotationX, RotationY, or RotationZ cannot be recorded and produced by the [Record/Playback] functions.

## (6) Program total execution time

In the virtual controller, the total execution time of programs is limited to one hour.

If total execution is over one hour, a warning message appears.

You can execute the program again after the warning is displayed, and the total execution timer will be reset.

# 8.4.6 Specifications and precautions of EPSON RC+ 7.0 Trial

Version upgrade from EPSON RC+ 7.0 Trial to EPSON RC+ 7.0

Follow the procedures in *Appendix B: EPSON RC+ 7.0 Software* to upgrade to EPSON RC+ 7.0. The EPSON RC+ 7.0 Trial version doesn't need to be uninstalled.



You can continue to use the projects and virtual controllers (layout) that you used in the EPSON RC+ 7.0 Trial in the EPSON RC+ 7.0 Standard version.

# 9. Motion System

EPSON RC+ supports the motion systems listed below.

- Standard Motion System
- PG Motion System

# 9.1 Standard Motion System

The standard motion system consists of the Control Units and the Drive Units (optional, up to three units).

You can connect one robot to the Control Unit directly. For details on the Robot Controller and maintenance, refer to the *Robot Controller* manual.

The Drive Units are automatically recognized at the startup of the Control Unit if they are connected to the system.

When addition and removal of the Drive Units are automatically recognized, the startup time becomes longer in order to reboot the Control Unit.

# 9.2 Drive Module Software Configuration

The drive module is configured at the factory before shipment. It is automatically recognized by the controller and you do not have to configure the settings.

Also, you do not have to configure the settings for the drive module in the Drive Unit which is automatically recognized.

# 9.3 PG Motion System

The PG (Pulse Generator) Motion System is an option.

When a PG board is installed in the controller, it is automatically recognized. You can select it in the robot configuration dialog.

For instructions on using the PG Motion System, refer to the *Robot Controller Option PG Motion System* manual.

# 10. Robot Configuration

This chapter contains information for adding robots and configuring additional axes.

- Robot Configuration

Adding a standard robot

- Additional axes Configuration

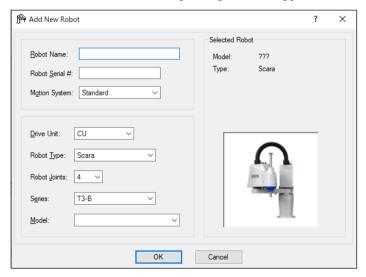
Adding a robot with additional axes

Robots are configured from the Robots folder on the [Setup]-[Controller] dialog tree.

# 10.1 Setting the Robot Model



■ Each robot is configured before shipment. Therefore, it is normally unnecessary to change the settings. If you change the settings, it may cause the robot to malfunction or perform unusual motion. This is extremely hazardous and you should be careful.


# 10.1.1 Adding a standard robot

If you have purchased the PG motion system Option, you can add user defined robots. Refer to the *Robot Controller Option PG Motion System* manual.

- 1. From the Setup Menu, select System Configuration.
- 2. Click [Robots] in the tree on the left.



3. Click <Add> and the following dialog box will appear.



- 4. Type in a name for the new manipulator and enter the serial number on the manipulator's nameplate. Any serial number can be used, but it is recommended that you use the number that is stamped on the manipulator.
- 5. Select a motion system to use from the [Motion System] dropdown list. If there are no other motion systems installed, then "Standard" will already be selected.
- 6. Select a Drive Unit for your manipulator from the [Drive Unit] dropdown list.
- 7. Select a manipulator type from the [Robot type] box.
- 8. Select a manipulator series from the [Series] dropdown list.
- 9. Select a manipulator model from the [Model] dropdown list.

  After you select a manipulator model, all manipulators available for the type of motor driver currently installed in the controller will be displayed. If you use [Dry run], all robots selected in step 8 will be shown.

10. Click <OK> and the controller will be rebooted.



For the Controller with Safety Board, assign a robot using the safety function to Robot 1.

# 10.1.2 Calibrating a standard robot

The calibration method differs according to the manipulator model.

For details, refer to the Manipulator manual: Maintenance section: Calibration.

# 10.1.3 Changing robot system parameters

The following system parameters for the robot can be changed from EPSON RC+ 7.0:

#### - Enable/Disable Joints

You can disable one or more joints from [Setup]-[System Configuration]-[Robots]-[Robot\*\*]-[Configuration]. On robots with a ball screw Z axis, you must disable both joints 3 and 4 together.

#### - Hofs

Hofs are the joint home offsets. You can view and edit the values from [System Configuration]-[Robots]-[Robot\*\*]-[Calibration]. However, it is recommended that you use the Robot Calibration wizard to set these values. These values are unique for each robot and are supplied from the factory. Hofs are especially important for SCARA robots because the values determine that both lefty and righty hand orientation will position the robot at the same point.

#### - CalPls

CalPls values are joint calibration offsets. You can view and edit the values from [System Configuration]-[Robots]-[Robot\*\*]-[Calibration]. However, it is recommended that you use the Robot Calibration wizard to set these values. These values are unique for each robot and are supplied from the factory. CalPls values are used to calibrate joint position after replacing a motor or encoder.

These are one-time settings for each robot. Additional robot parameters can be set from the Robot Manager.

To change robot parameters, follow these steps:

- 1. Select [System Configuration] from the [Setup Menu].
- 2. Under the [Robot] folder in the tree on the left, select [Robot\*\*]-[Calibration].
- 3. Execute the calibration wizard or change values for Hofs or CalPls.
- 4. Click <Apply> to make the changes permanent.

#### Saving robot calibration data

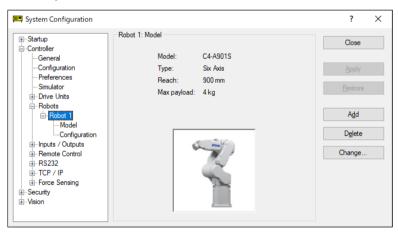
You can save and load individual robot calibration files. This is useful for moving a robot from one controller to another. When you save calibration data, a file is created with an MPD file extension. This file contains Hofs and CalPls values.

#### To save robot calibration data

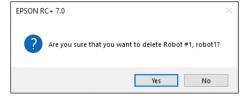
- 1. Select [System Configuration] from the [Setup] menu.
- 2. Under the [Robot] folder in the tree on the left, select [Robot\*\*]-[Calibration].
- 3. Ensure that the robot serial number is correct. The serial number will be used to create the default file name. It is recommended that the serial number be used.
- 4. Click the <Save Cal> button. Browse to a destination directory and click Save.

# Loading robot calibration data

#### To load robot calibration data


- 1. Select [System Configuration] from the [Setup] menu.
- 2. Under the Robot folder in the tree on the left, select [Robot\*\*]-[Calibration].
- 3. Click the <Load Cal> button.
- 4. Browse to the desired MPD file and click <Open>.

# 10.1.4 Deleting a standard robot


- 1. Select <System Configuration> from the <Setup> menu.
- 2. Under the [Robot] folder in the tree on the left, select [Robot\*\*].

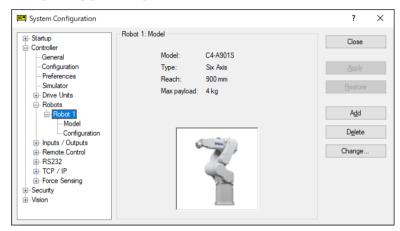


You can only delete the last robot.

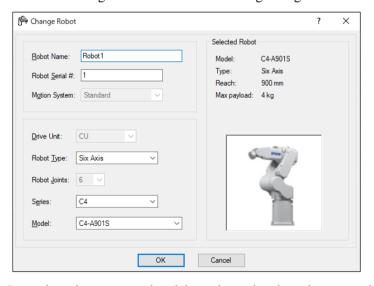


3. Click < Delete > and the next dialog will appear.




4. Click <Yes> and the controller will be rebooted.

If you delete only an additional axis from its installed robot, refer to 10.2.5 Deleting the additional axes.


# 10.1.5 Changing the Robot



- Changing the manipulator should be done with great caution. It initializes the robot calibration parameters (Hofs, CalPls), additional axis information, and PG parameter data. Before changing the robot, make sure to save the calibration data by following the procedure below.
  - 1. Select the EPSON RC+ 7.0 menu-[Setup]-[System Configuration].
  - 2. Select [Robot]-[Robot\*\*]-[Calibration] from the tree list. Then, click <Save>.
- 1. Select the EPSON RC+ 7.0 menu-[Setup]-[System Configuration].
- 2. Select [Robot]-[Robot\*\*] from the tree list.

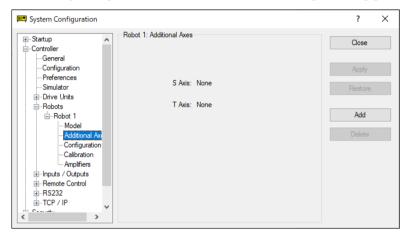


3. Click the <Change...> button. The following dialog box will be displayed.

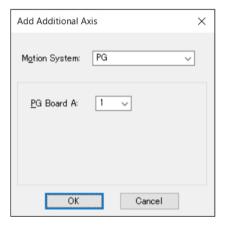


- 4. Input the robot name and serial number printed on the name plate of the manipulator. Any serial number can be entered. However, enter the number printed on the manipulator.
- 5. Select the robot type in the [Robot type] box.
- 6. Select the series name of the manipulator in the [Series] box.
- 7. Select the robot model in the [Model] box. Available robots will be displayed according to the format of the currently installed motor driver. When [Dry run] is used, all the manipulators of the series selected in Step 6 will be displayed.
- 8. Click the <OK> button. The controller will be restarted.




For the Controller with Safety Board, assign a robot using the safety function to Robot 1.

# 10.2 Configuration of Additional Axes


Using the additional axes feature, you can configure the axes that move with the manipulator. You can configure up to two additional axes (S and T).

# 10.2.1 Adding the additional S axis

- 1. Select [System Configuration] form the [Setup] menu.
- 2. Under the [Robot] folder in the tree on the left, select [Robot\*\*]-[Additional Axes].



3. Click <Add> and the next dialog will appear.



- 4. Select "PG" for a motion system.
- 5. Select a PG board A.
- 6. Click **OK** and the controller will be rebooted.

# 10.2.2 Adding the additional T axis



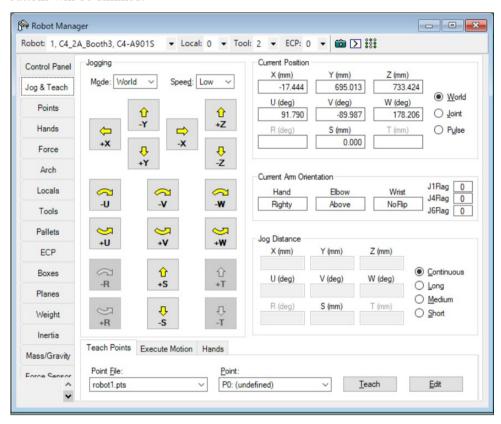
After the additional S axis has been added to the robot, you can add the additional T axis.

The procedure is the same as for the S axis. Refer to 10.2.1 Adding the additional S axis.

# 10.2.3 Changing the parameters of robot with additional axes installed

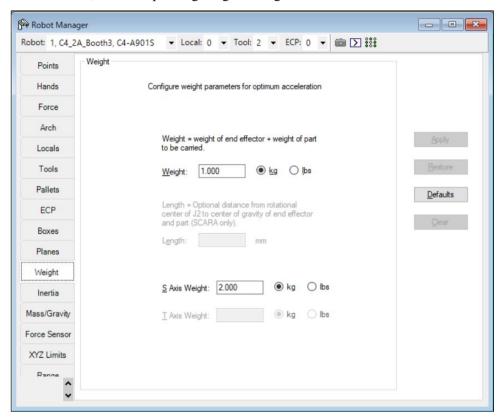
For details, refer to the Robot Controller Option PG Motion System manual.

# 10.2.4 Differences of the standard robot and robot with additional axes


The robot with additional axes installed has some parts which are different from the standard robot when using GUI and SPEL<sup>+</sup> commands.

For the SPEL<sup>+</sup> commands, refer to the SPEL<sup>+</sup> Language Reference manual.

The main differences in the EPSON RC+ 7.0 GUI are as below.


#### Tools: Robot Manager: Jog & Teach Page

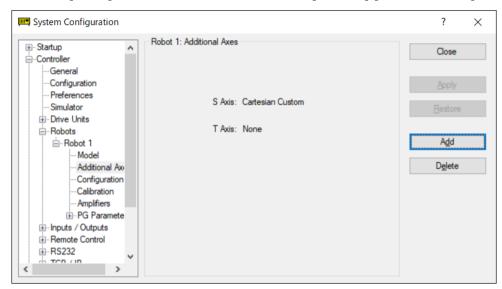
You can jog the additional S and T axes. When the additional T axis is not installed, the jog buttons will be dimmed.



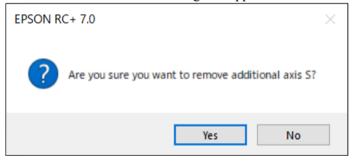
# Tools: Robot manager: Weight Page

This page is for changing the Weight parameters for the robot. When the additional T axis is not installed, the corresponding weight setting will be dimmed.




# 10.2.5 Deleting the additional axes




When the additional T axis is installed, delete it first.

When only the additional S axis is installed, delete it.

- 1. Select System Configuration from the Setup Menu.
- 2. Under the [Robot] folder in the tree on the left, select [Robot\*\*]-[Additional Axes].



3. Click <Delete> and the next dialog will appear.



4. Click <Yes> and the controller will be rebooted.

# 11. Inputs and Outputs

# 11.1 Overview

The controller I/O has the following types of I/O:

Standard I/O This digital I/O comes standard with the controller.

Expansion I/O This is optional digital I/O that can be added to the controller to

expand standard I/O. The boards with 24 inputs and 16 outputs can be added. (Boards cannot be added to T, VT series

Manipulator.)

Fieldbus master I/O An optional board for the controller to expand the standard I/O.

You can add one of the following boards which support the

fieldbus master board. (PC)

DeviceNet, EtherNet/IP, PROFIBUS-DP

Fieldbus slave I/O An optional board for the controller to expand the standard I/O.

You can add one of the following boards which support the Fieldbus slave mode. (Controller: RC700 series, RC90 series) You can add one of the following modules which support the

Fieldbus slave mode. (Manipulator: T, VT)

DeviceNet, EtherNet/IP, PROFIBUS-DP, CC-Link,

PROFINET, EtherCAT, Modbus

Hand I/O Standard digital I/O for T series.

Memory I/O This is built-in memory bits that can be used for inter-task

communications.

Analog I/O This is option to add analog input/output function to the controller.

(Boards cannot be added to T, VT series Manipulator.)

For Standard, Expansion, Fieldbus master, and Fieldbus slave I/O, there are input bits numbered starting with 0, and output bits numbered starting with 0.

For memory I/O, each memory bit is both an input and an output.

For specifications and instructions on wiring I/O, refer to the following manual.

Robot Controller manual: RC700 series, RC90 series

Manipulator manual: T,VT series

# 11.2 I/O Commands

The SPEL+ language has several commands for inputs and outputs listed below. For details on each command, see the SPEL+ Language Reference.

### **Input Commands**

In Reads one byte of input bits.

InBCD Reads one byte of input bits in Binary Coded Decimal format.

InW Reads one word of input bits.

Oport Reads one output bit. Sw Reads one input bit.

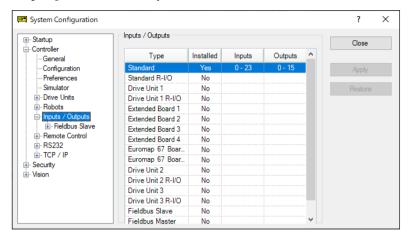
#### **Output Commands**

Off Turns off one output bit with optional time.
On Turns on one output bit with optional time.

OpBCD Sets one byte of output bits in Binary Coded Decimal format.

Out Sets / reads one byte of output bits.
OutW Sets / reads one word of output bits.

#### **Memory I/O Commands**


MemOff Turns off one memory bit.MemOn Turns on one memory bit.

MemOut Sets / reads one byte of memory bits.

MemSw Reads one bit of memory.

## 11.3 I/O Configuration

To view the current I/O configuration, select [Setup]-[System Configuration]-[Inputs / Outputs]. This will show you what I/O is installed on the controller.



#### Standard and expansion I/O

The board is automatically configured by the controller. To add expansion I/O boards, refer to *Robot Controller manual*.

The standard I/O in the Drive Unit automatically increases depending on the number of Drive Unit.

#### Fieldbus master I/O / Fieldbus slave I/O

For details on how to configure, add, check the boards, refer to the *Robot Controller Option Fieldbus I/O* manual.

#### Analog I/O

The board is automatically configured by the controller. To configure, add, or confirm the analog I/O boards, refer to *Robot Controller manual*.

## 11.4 Monitoring I/O

To monitor I/O, use the I/O Monitor tool by selecting [Tools]-[I/O Monitor]. From the I/O monitor, you can view inputs and outputs or memory I/O in bit, byte, and word formats.

For details on how to use the I/O Monitor tool, see 5.11.3 [I/O Monitor] Command.

### 11.5 Virtual I/O

The Controller supports virtual I/O. When enabled, virtual I/O allows you to simulate your hardwired I/O. You can turn on / off any input bit or output bit. Normally this is used when the controller is in Dry Run mode with no robot or I/O connected.

#### **Virtual I/O Commands**

SetIn Set the value of an 8 bit input port.

SetInW Set the value of a 16 bit input port.

SetSw Set the value of one input bit.

### 11.6 Fieldbus Master I/O

The Fieldbus master I/O is an option.

For details on how to use, refer to the Robot Controller Option Fieldbus I/O manual.

## 11.7 Fieldbus Slave I/O

The Fieldbus slave I/O includes the standard functions (Modbus RTU and Modbus TCP), and the options.

For types and usage of the optional Fieldbus slaves, refer to the *Robot Controller option Fieldbus I/O* manual.

#### 11.7.1 Modbus Slave

Modbus TCP and Modbus RTU can be used as the Fieldbus slave I/O as standard.



Modbus cannot be used when other Fieldbus slave boards are installed.

Modbus is a protocol which has a dialect. Although connection with the standard Modbus protocol has been confirmed, use the Modbus slave in the system after checking connectivity with equipment to be connected.

### 11.7.2 Supported Functions

The Controller supports following Modbus functions.

| Function code | Function name             | Description                                                                  |
|---------------|---------------------------|------------------------------------------------------------------------------|
| 1             | Read Coil Status          | Use this function to read the status of the input bit port.  No broadcast.   |
| 2             | Read Input Status         | Use this function to read the status of the output bit port.  No broadcast.  |
| 3             | Read Holding Registers    | Use this function to read the status of the input word port. No broadcast.   |
| 4             | Read Input Registers      | Use this function to read the status of the output word port.  No broadcast. |
| 5             | Force Single Coil         | Use this function to configure an input bit port.                            |
| 6             | Preset Single Register    | Use this function to configure an input word port.                           |
| 15            | Force Multiple Coils      | Use this function to configure several input bit ports.                      |
| 16            | Preset Multiple Registers | Use this function to configure several input word port.                      |

### 11.7.3 Address map

| Input I/O    |      |                    |      |   |             | Outn              | ut I/O             |       |
|--------------|------|--------------------|------|---|-------------|-------------------|--------------------|-------|
| Fieldbus I/0 |      | Modbus Addr        | 988  | ſ | Fieldhus I/ | Ουιρ<br>Ο Address | Modbus Add         | ress  |
| Word         | Bit  | Holding register   | Coil | - | Word        | Bit               | Holding register   | Coil  |
| Word         | 512  | Tiolaling register | 512  | - | Word        | 512               | riolaling register | 10512 |
|              | 513  |                    | 513  |   |             | 513               |                    | 10512 |
|              | 514  |                    | 514  |   |             | 514               |                    | 10514 |
|              | 515  |                    | 515  |   |             | 515               |                    | 10515 |
|              | 516  |                    | 516  |   |             | 516               |                    | 10516 |
|              | 517  |                    | 517  |   |             | 517               |                    | 10517 |
|              | 518  |                    | 518  |   |             | 518               |                    | 10517 |
|              | 519  |                    | 519  |   |             | 519               |                    | 10510 |
| 32           | 520  | 40032              | 520  |   | 32          | 520               | 30032              | 10519 |
|              | 521  |                    | 521  |   |             | 521               |                    | 10521 |
|              | 522  |                    | 522  |   |             | 522               |                    | 10521 |
|              | 523  |                    | 523  |   |             | 523               |                    | 10523 |
|              | 524  |                    | 524  |   |             | 524               |                    | 10524 |
|              | 525  |                    | 525  |   |             | 525               |                    | 10525 |
|              | 526  |                    | 526  |   |             | 526               |                    | 10526 |
|              | 527  |                    | 527  |   |             | 527               |                    | 10527 |
|              | 528  |                    | 528  | = |             | 528               |                    | 10528 |
|              | 529  |                    | 529  |   |             | 529               |                    | 10529 |
|              | 530  |                    | 530  |   |             | 530               |                    | 10530 |
|              | 531  |                    | 531  |   |             | 531               |                    | 10531 |
|              | 532  |                    | 532  |   |             | 532               |                    | 10532 |
|              | 533  |                    | 533  |   |             | 533               |                    | 10533 |
|              | 534  |                    | 534  |   |             | 534               |                    | 10534 |
|              | 535  | 40000              | 535  |   | 0.0         | 535               |                    | 10535 |
| 33           | 536  | 40033              | 536  |   | 33          | 536               | 30033              | 10536 |
|              | 537  |                    | 537  |   |             | 537               |                    | 10537 |
|              | 538  |                    | 538  |   |             | 538               |                    | 10538 |
|              | 539  |                    | 539  |   |             | 539               |                    | 10539 |
|              | 540  |                    | 540  |   |             | 540               |                    | 10540 |
|              | 541  |                    | 541  |   |             | 541               |                    | 10541 |
|              | 542  |                    | 542  |   |             | 542               |                    | 10542 |
|              | 543  |                    | 543  |   |             | 543               |                    | 10543 |
|              |      |                    |      |   |             |                   |                    |       |
|              | 2544 |                    | 2544 |   |             | 2544              |                    | 12544 |
|              | 2545 |                    | 2545 |   |             | 2545              |                    | 12545 |
|              | 2546 |                    | 2546 |   |             | 2546              |                    | 12546 |
|              | 2547 |                    | 2547 |   |             | 2547              |                    | 12547 |
|              | 2548 |                    | 2548 |   |             | 2548              |                    | 12548 |
|              | 2549 |                    | 2549 |   |             | 2549              |                    | 12549 |
|              | 2550 |                    | 2550 |   |             | 2550              |                    | 12550 |
| 159          | 2551 | 40159              | 2551 |   | 159         | 2551              | 30159              | 12551 |
| 100          | 2552 | 70100              | 2552 |   | 100         | 2552              | 00100              | 12552 |
|              | 2553 |                    | 2553 |   |             | 2553              |                    | 12553 |
|              | 2554 |                    | 2554 |   |             | 2554              |                    | 12554 |
|              | 2555 |                    | 2555 |   |             | 2555              |                    | 12555 |
|              | 2556 |                    | 2556 |   |             | 2556              |                    | 12556 |
|              | 2557 |                    | 2557 |   |             | 2557              |                    | 12557 |
|              | 2558 |                    | 2558 |   |             | 2558              |                    | 12558 |
|              | 2559 |                    | 2559 |   |             | 2559              |                    | 12559 |

NOTE

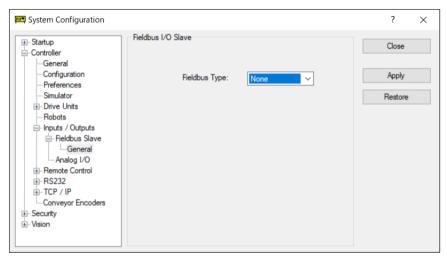
Note that the addresses are specified with the numbers fewer than the originals by 1.

The address to access to the input bit port 512 is 511.

#### 11.7.4 Modbus RTU

Modbus RTU is the Fieldbus which uses the serial communication. It can be used with the RS-232C port which is installed to the Controller as standard, and the optional extended RS-232C port.

#### 11.7.5 Modbus TCP


Modbus TCP is the Fieldbus which uses the Ethernet communication (socket communication). It can be used with the Ethernet installed to the Controller as standard.

### 11.7.6 How to Configure Modbus

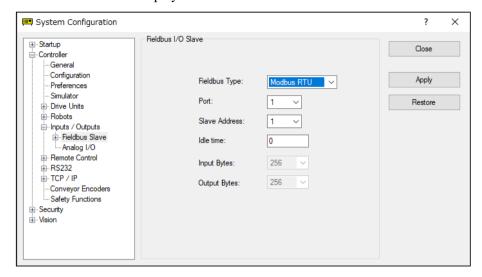
#### (1) Use of Modbus

Modbus can be enabled in the following dialog box. This dialog box appears when the optional Fieldbus slave board is not installed.

[System Configuration]-[Controller]-[Inputs / Outputs]-[Fieldbus Slave]-[General]



Select any of "Disable", "Modbus RTU", or "Modbus TCP" from the pull-down menu.






Modbus does not function if the Fieldbus slave board is installed while "Modbus RTU" or "Modbus TCP" is selected. However, setting will be held.

### (2) Modbus RTU detailed settings

If "Modbus RTU" is selected for the Fieldbus type, the detailed dialog box to enable Modbus RTU will be displayed. Set each item.



#### [Port]

Select the serial port number to be used.

Other settings such as the baud rate are done in the RS-232C configuration dialog box (other menu).



- If unused port number is selected, a controller error occurs after rebooting the Controller.
- To change the settings of the selected port such as a baud rate, disable Modbus in advance. Settings cannot be changed if the port is set to Modbus.

#### [Slave address]

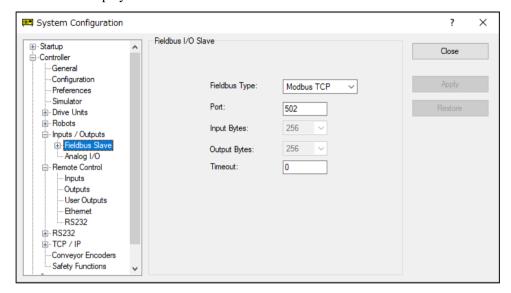
For the Modbus RTU slaves, the slave address set to the transmission frame is checked and the request for that address is only processed.

Set the desired address.



- Be careful not to conflict with other equipment.

#### [Idle time]


Set the idle time to be added to the sending frame specified by the Modbus RTU protocol. By the protocol specification, the time for 3.5 characters is defined before and after the sending frame.

The idle time can be set in units of 1ms. If "0" is specified for the setting value, the time for 3.5 characters will be set.

Set this item if the connected equipment cannot receive a response with the time for 3.5 characters.

### (3) Modbus TCP detailed settings

If "Modbus TCP" is selected for the [Fieldbus Type], the dialog box to enable Modbus TCP will be displayed. Set each item.



#### [Port]

Select the port number to be used. Default is "502".



- Set the port number not to conflict with other system.

#### [Timeout]

In [Timeout], set the time to automatically disconnect if there is no transmission or reception after the port is connected. If the connection is lost, connect again.

Set the time from 0 seconds to 60 seconds in increments of 1-second.



■ When you set the "0" to [Timeout], the timeout period is infinite. In this case, the task will continue to run even if it cannot communicate with the client while the task is running. The robot will continue to move and can cause unexpected harm. Allow the task to be stopped by means other than communication.



While connecting with ModBus TCP, the error 7103 "Fieldbus slave. Timeout error occurred during I/O data transform." could occur on the controller. The error may not be cleared when you reset it immediately after it occurs. After occurring the error, reset it after 10ms has passed.

## 12. Remote Control

By using Input/Output, Ethernet (TCP/IP), and RS-232C, the controller can control manipulators from an external device. The external device can execute several commands, including Motor On/Off, Start, Pause, Continue, and Stop.

For details on extended function of the remote I/O, refer to *EPSON RC*+ 7.0 Remote Control Reference manual.

### 12.1 Remote I/O

There are three basic steps required for remote control configuration:

- Configure Remote Control inputs and outputs using the [Remote Control] tab on the [Setup]-[System Configuration]-[Remote Control] page.
   In default, the remote function is assigned to Input #0 to 7 and Output #0 to 8 in advance. If you need to change it, please set it.
- 2. Set the control device to remote on the [Setup]-[System Configuration]-[Configuration] page.

To enable external remote inputs, assign the remote functions and also set the control device to remote. When control device setting is remote, the controller is only controllable from the remote device.

Remote control function can be used in the following systems.

Example: Control the robot from a PLC

Use remote control to control the robot (controller) from a PLC.

When using a PLC, you will need to be familiar with the handshake required to use remote inputs. See details below.

Example: Control the robot using a push button box with buttons and lights

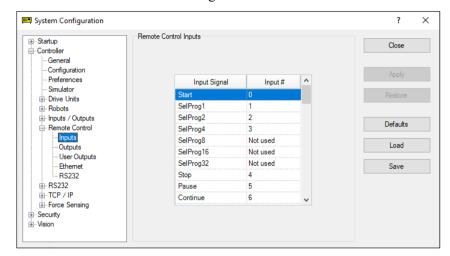
The lights are connected to remote control outputs on the controller to indicate status, such as AutoMode, MotorOn, Error, etc. The buttons are connected to remote inputs to control motor power and start programs.

For details of each I/O connection, refer to the following manuals:

Robot Controller Functions required for designing

I/O Connector

I/O Remote Settings


Expansion I/O Board

Robot Controller Option Fieldbus I/O

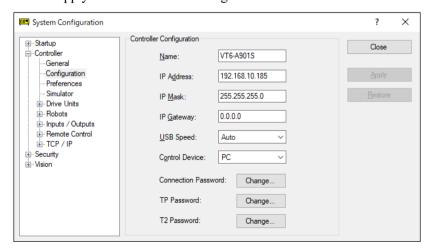
### 12.1.1 Remote Control Input Output Configuration

The following is the procedure to assign the remote control functions to the I/O system.

- 1. Select [System Configuration] from the [Setup] menu and select the [Remote Control Inputs] or [Remote Control Outputs] page.
- 2. For each input or output you want to use for remote control, click on the Input # or Output # cell for the desired signal, then click the dropdown arrow and select a bit number in the list.
- 3. Click <OK> to save the new settings.



For details using this dialog, refer to 5.12.2 [System Configuration] Command (Setup Menu).


### 12.1.2 Control Device Configuration

The following is the procedure to set the control device to "Remote I/O".

1. Select [System Configuration] from the [Setup] menu, and click on [SPEL Controller Board]-[Configuration] in the tree on the left.

Select "Remote" in the [Control Device] box.

2. Click <Apply> to save the new setting and the click <Close>.



For details on using this dialog, refer to 5.12.2 [System Configuration] Command (Setup Menu) – [Setup]-[System Configuration]-[Controller]-[Configuration].

#### 12.1.3 Auto Mode with Remote Control

To run in auto cycle with remote control

- 1. The host device (e.g. PLC) should wait for the AutoMode and Ready remote output to turn on before issuing remote commands.
- 2. Now the remote input commands will be accepted.

To monitor remote operation from the EPSON RC+ 7.0 Operator Window

- 1. Set the EPSON RC+ 7.0 Start Up Mode to "Auto". For details, refer to 4.2.3 Start Mode.
- 2. The PC should also be configured to automatically log into Windows and start EPSON RC+ 7.0 at Windows start. Refer to 4.2.7 Auto Start.

#### 12.1.4 Teach Mode with Remote Control

When using a remote control with Teach Mode ON, no remote input commands can be used. Remote status outputs will still operate.



Remote status outputs (such as MotorOn, Home, etc.) will operate when Teach Mode is ON, even when the enable switch (dead man's switch) is disengaged. Therefore, DO NOT use remote status outputs to drive any devices that cause motion or any other safety hazard.

You can monitor teach mode status using the TeachMode remote output.

### 12.1.5 Debugging Remote Control

You can debug programs using Remote Control from the EPSON RC+ 7.0 development environment.

To run programs by remote control for debugging:

- 1. Create a program (in the same manner as usual).
- 2. Open the Run Window and click Enable Remote I/O.
- 3. Now the remote commands will be accepted.

You can set breakpoints and print messages to the Run window.



If you cannot wire the I/O, use virtual I/O mode for debugging. Remote function is also available when virtual I/O is enabled.

### 12.1.6 Remote Inputs

Remote inputs are used to control the Manipulators and start programs. Certain conditions must be met before inputs are enabled, as shown in the table below.

To accept external remote inputs, assign the remote function and set remote to the control device. When external remote input is available, "AutoMode output" turns ON.

Except "SelProg", the signals execute each function when the signal starts in input acceptance condition. The function executes automatically. Therefore, no special programming is needed.



When an error occurs, you must execute a "Reset" to clear the error condition before any other remote input commands can be executed. Use the "Error output" and "Reset input" to monitor the error status and clear error conditions from the remote device.



If remote input commands do not meet the input acceptance condition, a CmdError signal outputs. The CmdError signal is not set to remote I/O output signal by default. When you use the remote function, set the CmdError signal to the remote I/O output signal.

| Name                                                           | Default | Description                                                                                                                                                                                                                                                                    | Input Acceptance<br>Condition (*1)                                                                                           |
|----------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Start                                                          | 0       | Executes function selected at SelProg. (*2) (*13)                                                                                                                                                                                                                              | Ready output ON Error output OFF EStopOn output OFF SafeguardOn output OFF EStopOff output ON Pause input OFF Stop input OFF |
| SelProg1                                                       | 1       |                                                                                                                                                                                                                                                                                | 1 1                                                                                                                          |
| SelProg2                                                       | 2       |                                                                                                                                                                                                                                                                                |                                                                                                                              |
| SelProg4                                                       | 3       | Specifies the executing Main function number.                                                                                                                                                                                                                                  |                                                                                                                              |
| SelProg8                                                       | Not Set | (*2)                                                                                                                                                                                                                                                                           |                                                                                                                              |
| SelProg16                                                      | Not Set |                                                                                                                                                                                                                                                                                |                                                                                                                              |
| SelProg32                                                      | Not Set |                                                                                                                                                                                                                                                                                |                                                                                                                              |
| Stop                                                           | 4       | All tasks and commands are stopped.                                                                                                                                                                                                                                            |                                                                                                                              |
| Pause                                                          | 5       | All tasks are paused. (*3)                                                                                                                                                                                                                                                     | Running output ON                                                                                                            |
| Continue                                                       | 6       | Continues the paused task.                                                                                                                                                                                                                                                     | Paused output ON Pause input OFF Stop input OFF                                                                              |
| Reset                                                          | 7       | Resets emergency stop and error. (*4)                                                                                                                                                                                                                                          | Ready output ON                                                                                                              |
| Shutdown                                                       | Not Set | Terminates the system                                                                                                                                                                                                                                                          |                                                                                                                              |
| ForcePowerLow                                                  | Not Set | Operates as the forced low power function.  The robot is operated in the low power mode.  Power High control from the command is not accepted.  Executes the following according to the controller preferences.  Stops or temporarily stops all the tasks and commands.  (*12) | Any time This input is acceptable even AutoMode output is OFF.                                                               |
| SelRobot                                                       | Not Set | Changes the output condition of MotorsOn,<br>AtHome, PowerHigh, and MCalReqd. (*9)                                                                                                                                                                                             |                                                                                                                              |
| SelRobot1<br>SelRobot2<br>SelRobot4<br>SelRobot8<br>SelRobot16 | Not Set | Specify the number of robot which executes a command. (*5)                                                                                                                                                                                                                     |                                                                                                                              |

| Name                                             | Default | Description                                                                                                                                                                                                                                           | Input Acceptance<br>Condition (*1)                                                                                                                  |
|--------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| SetMotorsOn                                      | Not Set | Turn ON robot motors. (*5) (*6)                                                                                                                                                                                                                       | Ready output ON EStopOn output OFF SafeguardOn output OFF EStopOff output ON SetMotorsOff input OFF                                                 |
| SetMotorsOff                                     | Not Set | Turn OFF robot motors. (*5)                                                                                                                                                                                                                           | Ready output ON                                                                                                                                     |
| SetPowerHigh                                     | Not Set | Set the robot power mode to High (*5)                                                                                                                                                                                                                 | Ready output ON EStopOn output OFF SafeguardOn output OFF EStopOff output ON SetPowerLow input OFF                                                  |
| SetPowerLow                                      | Not Set | Set the robot power mode to Low. (*5)                                                                                                                                                                                                                 | Ready output ON                                                                                                                                     |
| Home                                             | Not Set | Move the Robot Arm to the home position defined by the user.                                                                                                                                                                                          | Ready output ON Error output OFF EStopOn output OFF SafeguardOn output OFF EStopOff output ON MotorsOn output ON Pause input OFF Stop input OFF     |
| MCal                                             | Not Set | Execute MCal (*5) (*7)                                                                                                                                                                                                                                | Ready output ON Error output OFF EStopOn output OFF SafeguardOn output OFF EStopOff output ON MotorsOn output ON Pause input OFF Stop input OFF     |
| Recover                                          | Not Set | After the safeguard is closed, recover to the position where the safeguard was open.                                                                                                                                                                  | Paused output ON Error output OFF EStopOn output OFF SafeguardOn output OFF EStopOff output ON RecoverReqd output ON Pause input OFF Stop input OFF |
| ExtCmdSet                                        | Not Set | Commands for an extended remote IO.                                                                                                                                                                                                                   |                                                                                                                                                     |
| ExtRespGet                                       | Not Set | For details, refer to the following manual.                                                                                                                                                                                                           |                                                                                                                                                     |
| ExtCmdReset                                      | Not Set | Remote Control Reference 4. Remote I/O to Be Used                                                                                                                                                                                                     |                                                                                                                                                     |
| ResetAlarm                                       | Not Set | Cancel the alarm (*11)                                                                                                                                                                                                                                |                                                                                                                                                     |
| SelAlarm1<br>SelAlarm2<br>SelAlarm4<br>SelAlarm8 | Not Set | Specify the alarm number to cancel (*10)                                                                                                                                                                                                              |                                                                                                                                                     |
| ALIVE                                            | Not Set | Input signal for alive monitoring of the controller. Same signal as the input will be output to ALIVE output. The master equipment can perform alive monitoring of the controller by switching the input periodically and checking the output signal. |                                                                                                                                                     |

| Name          | Default | Description                                 | Input Acceptance<br>Condition (*1) |
|---------------|---------|---------------------------------------------|------------------------------------|
| ExtCmd_0-15   | Not Set |                                             |                                    |
| ExtCmd_16-31  | Not Set |                                             |                                    |
| ExtCmd_32-47  | Not Set | Commands for an extended remote IO.         |                                    |
| ExtCmd_48-63  | Not Set |                                             |                                    |
| ExtCmd_64-79  | Not Set | For details, refer to the following manual. |                                    |
| ExtCmd_80-95  | Not Set | Remote Control Reference                    |                                    |
| ExtCmd_96-111 | Not Set | 4. Remote I/O to Be Used                    |                                    |
| ExtCmd_112-   | Not Set |                                             |                                    |
| 127           | not set |                                             |                                    |

- (\*1) "AutoMode output" ON is omitted from the table. This is an input acceptance condition for all functions.
- (\*2) "Start input" executes Function specified by the following six bits: SelProg 1, 2, 4, 8, 16, and 32.

| Function | SelProg1 | SelProg2 | SelProg4 | SelProg8 | SelProg16 | SelProg32 |
|----------|----------|----------|----------|----------|-----------|-----------|
| Main     | 0        | 0        | 0        | 0        | 0         | 0         |
| Main1    | 1        | 0        | 0        | 0        | 0         | 0         |
| Main2    | 0        | 1        | 0        | 0        | 0         | 0         |
| Main3    | 1        | 1        | 0        | 0        | 0         | 0         |
|          |          |          | :        |          |           |           |
| Main60   | 0        | 0        | 1        | 1        | 1         | 1         |
| Main61   | 1        | 0        | 1        | 1        | 1         | 1         |
| Main62   | 0        | 1        | 1        | 1        | 1         | 1         |
| Main63   | 1        | 1        | 1        | 1        | 1         | 1         |

0=OFF, 1=ON

- (\*3) "NoPause task" and "NoEmgAbort task" do not pause. For details, refer to EPSON RC+ 7.0 Online Help or Pause in SPEL<sup>+</sup> Language Reference.
- (\*4) Turns OFF the I/O output and initializes the robot parameter.
  For details, refer to EPSON RC+ 7.0 Online Help or Reset in SPEL+ Language Reference.
- (\*5) The values specified by "SelRobot1, 2, 4, 8, and 16" correspond to the robot numbers, when multiple robots are connected to the controller.

| Robot<br>number | SelRobot1 | SelRobot2 | SelRobot4 | SelRobot8 | SelRobot16 |  |
|-----------------|-----------|-----------|-----------|-----------|------------|--|
| 0 (All)         | 0         | 0         | 0         | 0         | 0          |  |
| 1               | 1         | 0         | 0         | 0         | 0          |  |
| 2               | 0         | 1         | 0         | 0         | 0          |  |
| 3               | 1         | 1         | 0         | 0         | 0          |  |
|                 | ·         |           |           |           |            |  |
| 13              | 1         | 0         | 1         | 1         | 0          |  |
| 14              | 0         | 1         | 1         | 1         | 0          |  |
| 15              | 1         | 1         | 1         | 1         | 0          |  |
| 16              | 0         | 0         | 0         | 0         | 1          |  |

0=OFF, 1=ON

- (\*6) Initializes the robot parameter.
  - For details, refer to EPSON RC+ 7.0 Online Help or Motor in SPEL+ Language Reference.
- (\*7) For details, refer to EPSON RC+ 7.0 Online Help or MCal in SPEL+ Language Reference.
- (\*8) This is for experienced users only. Make sure that you fully understand the input specification before using.
  - CmdRunning output and CmdError output will not change for this input.
  - "NoEmgAbort task" will not stop by this input.
  - When the input changes from ON to OFF, all tasks and commands will stop.

(\*9) This function changes the output condition of MotorsOn, AtHome, PowerHigh, and MCalReqd.

By setting this signal with the condition selected using SelRobot1 - SelRobot16, you can switch the output condition.

Once you select the condition, it will be kept until you change it or turn off / restart the Controller. All manipulators are selected as default.

(\*10) The values specified by "SelAlarm1, 2, 4, and 8" correspond to the alarm numbers.

| Alarm # | Target                                | SelAlarm1 | SelAlarm2 | SelAlarm4 | SelAlarm8 |
|---------|---------------------------------------|-----------|-----------|-----------|-----------|
| 1       | Controller battery                    | 1         | 0         | 0         | 0         |
| 2       | Battery of the robot connected to CU  | 0         | 1         | 0         | 0         |
| 3       | Grease of the robot connected to CU   | 1         | 1         | 0         | 0         |
| 4       | Battery of the robot connected to DU1 | 0         | 0         | 1         | 0         |
| 5       | Grease of the robot connected to DU1  | 1         | 0         | 1         | 0         |
| 6       | Battery of the robot connected to DU2 | 0         | 1         | 1         | 0         |
| 7       | Grease of the robot connected to DU2  | 1         | 1         | 1         | 0         |
| 8       | Battery of the robot connected to DU3 | 0         | 0         | 0         | 1         |
| 9       | Grease of the robot connected to DU3  | 1         | 0         | 0         | 1         |

0=OFF, 1=ON

The following parts are subject to grease up.

6-axis robot: Bevel gear on the Joint #6

SCARA, RS series: Ball screw spline unit on the Joint #3

- (\*11) The specified alarm can be canceled by selecting the conditions using SelAlarm1-SelAlarm8 and setting this signal.
- (\*12) Operation of all tasks and commands, power mode of the robot, and PowerHigh command are executed by the setting value of the controller preferences.

Preferences (1): "Motor power low when ForcePowerLow signal OFF"

Preferences (2): "ForcePowerLow signal change pauses all tasks"

For details of the controller preferences, refer to [Setup]-[System Configuration]-[Controller]-[Preferences] in 5.12.2 [System Configuration] Command (Setup Menu).

| Preferences (1) | Preferences (2) | ForcePowerLow | All tasks and commands | Power mode | PowerHigh  |
|-----------------|-----------------|---------------|------------------------|------------|------------|
| 0               | 0               | 1→0           | Stop                   | Low only   | Accept     |
| 0               | 0               | 0→1           | Stop                   | Low only   | Not accept |
| 0               | 1               | 1→0           | Continue               | High/Low   | Accept     |
| 0               | 1               | 0→1           | Temp. stop             | Low only   | Not accept |
| 1               | 0               | 1→0           | Stop                   | Low only   | Not accept |
| 1               | 0               | 0→1           | Stop                   | Low only   | Accept     |
| 1               | 1               | 1→0           | Temp. stop             | Low only   | Not accept |
| 1               | 1               | 0→1           | Continue               | High/Low   | Accept     |

(\*13)Do not execute the Restart command of the SPEL+ program and the Start signal of the remote input at the same time. Error 2503 may occur when the programs are executed at the same time.

## 12.1.7 Remote Outputs

Remote outputs provide status for the Manipulator(s) and Controller.

Remote outputs provide the assigned function used with any control device. The outputs execute automatically. Therefore, no special programming is needed.

| Name                                                                         | Default            | Description                                                                                                                                                |
|------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ready                                                                        | 0                  | Turns ON when the controller startup completes and no task is running.                                                                                     |
| Running                                                                      | 1                  | Turns ON when task is running. However, turns OFF when "Paused output" is ON.                                                                              |
| Paused                                                                       | 2                  | Turns ON when pause task exists.                                                                                                                           |
| Error                                                                        | 3                  | Turns ON when an error occurs. Use "Reset input" to recover from the error. (*14)                                                                          |
| EStopOn                                                                      | Not set            | Turns OFF except in Emergency Stop. Turns ON in Emergency Stop. Turns OFF when the controller power is OFF. (*11) (*12)                                    |
| SafeguardOn                                                                  | 5                  | Turns ON when the safeguard is open.                                                                                                                       |
| SError                                                                       | 6                  | Turns ON when critical error occurs.  When a critical error occurs, "Reset input" does not function Reboot the controller to recover.  (*14)               |
| Warning                                                                      | 7                  | Turns ON when warning occurs.  The task runs as normal with the warning. However, be sure to eliminate the cause of the warning as soon as possible. (*14) |
| EStopOff                                                                     | 8                  | Turns ON except in Emergency Stop. Turns OFF in Emergency Stop. Turns OFF when the controller power is OFF. (*12)                                          |
| MotorsOn                                                                     | Not set            | Turns ON when the robot motor is ON. (*5)                                                                                                                  |
| AtHome                                                                       | Not set            | Turns ON when the robot is in the home position. (*5)                                                                                                      |
| PowerHigh<br>MCalReqd                                                        | Not set<br>Not set | Turns ON when the robot's power mode is High. (*5) Turns ON when the robot hasn't executed MCal. (*5)                                                      |
| RecoverReqd                                                                  | Not set            | Turns ON when at least one robot is waiting for Recover after the safeguard is closed.                                                                     |
| RecoverInCycle                                                               | Not set            | Turns ON when at least one robot is executing Recover.                                                                                                     |
| WaitingRC                                                                    | Not set            | Turns ON when the Controller is waiting to connect with RC+                                                                                                |
| CmdRunning                                                                   | Not set            | Turns ON when an input command is executing.                                                                                                               |
| CmdError                                                                     | Not set            | Turns ON when an input command cannot be accepted.                                                                                                         |
| CurrProg1<br>CurrProg2<br>CurrProg4<br>CurrProg8<br>CurrProg16<br>CurrProg32 | Not set            | Indicates the running or the last main function number (*1)                                                                                                |
| AutoMode                                                                     | Not set            | Turns ON in remote input acceptable status. (*2)                                                                                                           |
| TeachMode                                                                    | Not set            | Turns ON in TEACH mode. (*12)                                                                                                                              |
| TestMode                                                                     | Not set            | Turns ON in TEST mode.                                                                                                                                     |
| EnableOn                                                                     | Not set            | Turns ON when the enable switch is ON. (*12)                                                                                                               |
| ErrorCode1<br>:<br>ErrorCode8192                                             | Not set            | Indicates the error number.                                                                                                                                |
| 2.11010000172                                                                |                    |                                                                                                                                                            |

| Name               | Default | Description                                                                                                                                                                                                                                   |
|--------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InsideBox15        |         |                                                                                                                                                                                                                                               |
| InsidePlane1       |         |                                                                                                                                                                                                                                               |
| :<br>InsidePlane15 | Not set | Turns ON when a robot is on the approach plane area. (*4)                                                                                                                                                                                     |
| Alarm              | Not set | Turns ON when any of the alarms is occurring. (*9)                                                                                                                                                                                            |
| Alarm1             | Not set | Turns ON when a battery alarm of the controller is occurring.  (*13)                                                                                                                                                                          |
|                    |         | Turns ON when a battery alarm of the robot connected to CU                                                                                                                                                                                    |
| Alarm2             | Not set | is occurring. (*13)                                                                                                                                                                                                                           |
| Alarm3             | Not set | Turns ON when a grease alarm of the robot connected to CU is occurring. (*10) (*13)                                                                                                                                                           |
| Alarm4             | Not set | Turns ON when a battery alarm of the robot connected to DU1 is occurring. (*13)                                                                                                                                                               |
| Alarm5             | Not set | Turns ON when a grease alarm of the robot connected to DU1 is occurring. (*10) (*13)                                                                                                                                                          |
| Alarm6             | Not set | Turns ON when a battery alarm of the robot connected to DU2 is occurring. (*13)                                                                                                                                                               |
| Alarm7             | Not set | Turns ON when a grease alarm of the robot connected to DU2 is occurring. (*10) (*13)                                                                                                                                                          |
| Alarm8             | Not set | Turns ON when a battery alarm of the robot connected to DU3 is occurring. (*13)                                                                                                                                                               |
| Alarm9             | Not set | Turns ON when a grease alarm of the robot connected to DU3                                                                                                                                                                                    |
| PositionX          | Not set | is occurring. (*10) (*13)  Outputs current X coordinate in the World coordinate system                                                                                                                                                        |
| PositionY          | Not set | (*6) (*7) Outputs current Y coordinate in the World coordinate system                                                                                                                                                                         |
| PositionZ          | Not set | (*6) (*7) Outputs current Z coordinate in the World coordinate system                                                                                                                                                                         |
| PositionU          | Not set | (*6) (*7) Outputs current U coordinate in the World coordinate system (*6) (*7)                                                                                                                                                               |
| PositionV          | Not set | Outputs current V coordinate in the World coordinate system (*6) (*7)                                                                                                                                                                         |
| PositionW          | Not set | Outputs current W coordinate in the World coordinate system (*6) (*7)                                                                                                                                                                         |
| Torque1            | Not set | Outputs the current torque value of Joint #1 (*6) (*7)                                                                                                                                                                                        |
| Torque2            | Not set | Outputs the current torque value of Joint #2 (*6) (*7)                                                                                                                                                                                        |
| Torque3            | Not set | Outputs the current torque value of Joint #3 (*6) (*7)                                                                                                                                                                                        |
| Torque4            | Not set | Outputs the current torque value of Joint #4 (*6) (*7)                                                                                                                                                                                        |
| Torque5            | Not set | Outputs the current torque value of Joint #5 (*6) (*7)                                                                                                                                                                                        |
| Torque6            | Not set | Outputs the current torque value of Joint #6 (*6) (*7)                                                                                                                                                                                        |
| CPU                | Not set | Outputs the CPU load factor of the user program (*8)                                                                                                                                                                                          |
| ESTOP              | Not set | Outputs how many times emergency stops have been executed.                                                                                                                                                                                    |
| ALIVE              | Not set | Output signal for alive monitoring of the controller. The signal input by ALIVE input will be output. The master equipment can perform alive monitoring of the controller by switching the input periodically and checking the output signal. |
| ForceControlOn     | Not set | Turns ON when the robot is executing the force control function. (*5)                                                                                                                                                                         |
| ExtCmdGet          | Not set |                                                                                                                                                                                                                                               |
| ExtRespSet         | Not set | Commands for an extended remote IO.                                                                                                                                                                                                           |
| ExtCmdResult       | Not set | For details, refer to the following manual.                                                                                                                                                                                                   |
| ExtError           | Not set | Remote Control Reference                                                                                                                                                                                                                      |

| Name          | Default | Description                                 |
|---------------|---------|---------------------------------------------|
| ExtResp 0-15  | Not set | 4. Remote I/O to Be Used                    |
| ExtResp 16-31 | Not set |                                             |
| ExtResp_32-47 | Not set |                                             |
| ExtResp 48-63 | Not set |                                             |
| ExtResp_64-79 | Not set |                                             |
| ExtResp_80-95 | Not set |                                             |
| ExtResp_96-   | Not set | Commands for an extended remote IO.         |
| 111           | Not set | For details, refer to the following manual. |
| ExtResp 112-  | NT 4    | Remote Control Reference                    |
| 127           | Not set | 4. Remote I/O to Be Used                    |

(\*1) Outputs the current or the last function number of CurrProg1, 2, 4, 8, 16, or 32.

| Function name | CurrProg1 | CurrProg2 | CurrProg4 | CurrProg8 | CurrProg16 | CurrProg32 |
|---------------|-----------|-----------|-----------|-----------|------------|------------|
| Main          | 0         | 0         | 0         | 0         | 0          | 0          |
| Main1         | 1         | 0         | 0         | 0         | 0          | 0          |
| Main2         | 0         | 1         | 0         | 0         | 0          | 0          |
| Main3         | 1         | 1         | 0         | 0         | 0          | 0          |
|               |           |           |           |           |            |            |
| Main60        | 0         | 0         | 1         | 1         | 1          | 1          |
| Main61        | 1         | 0         | 1         | 1         | 1          | 1          |
| Main62        | 0         | 1         | 1         | 1         | 1          | 1          |
| Main63        | 1         | 1         | 1         | 1         | 1          | 1          |

0=OFF, 1=ON

- (\*2) Remote function is available in the following conditions.
  - The setting is Auto mode and the control device is remote.
  - The setting is Program mode and Remote I/O is enabled.
- (\*3) For details, refer to EPSON RC+ 7.0 Online Help or Box in SPEL+ Language Reference.
- (\*4) For details, refer to EPSON RC+ 7.0 Online Help or Plane in SPEL+ Language Reference.
- (\*5) Manipulator status is output as follows, according to the condition selected in SelRobot.

Wait at least 40 ms before inputting the signal after changing the condition in SelRobot.

| Name           | (SelRobot1- SelRobot16) condition when inputting SelRobot |                                             |  |  |
|----------------|-----------------------------------------------------------|---------------------------------------------|--|--|
| ivame          | 0: All robots are selected                                | 1 - 16: Particular robot number is selected |  |  |
| MatanaOn       | Turns ON when at least one motor is                       | Turns ON when the motor of the selected     |  |  |
| MotorsOn       | ON.                                                       | robot is ON.                                |  |  |
| AtHome         | Turns ON when all robots are in the                       | Turns ON when the selected robot is in the  |  |  |
| Athome         | home position.                                            | home position.                              |  |  |
| PowerHigh      | Turns ON when at least one robot's                        | Turns ON when the selected robot's power    |  |  |
|                | power mode is High.                                       | mode is High.                               |  |  |
| MCalReqd       | Turns ON when at least one robot                          | Turns ON when the selected robot hasn't     |  |  |
| MCainequ       | hasn't executed MCal.                                     | executed MCal.                              |  |  |
| ForceControlOn | Turns ON when at least one robot is                       | Turns ON when the selected robot is         |  |  |
|                | executing the force control function.                     | executing the force control function.       |  |  |

- (\*6) Outputs information of the selected robot when SelRobot1, SelRobot2, SelRobot4, SelRobot8, and SelRobot16 are set. If not, information of Robot 1 will be output.
- (\*7) Outputs information in Real format.
- (\*8) Outputs the total load factor of the user created tasks. For details on the CPU load factor, refer to the task manager.

- (\*9) The signal turns on when the alarm occurs either in the controller alarm information or the robot alarm information.
- (\*10) For details about the target of grease up, refer to each manipulator manuals.
- (\*11) EStopOn is not recommended because the output in the emergency stop state and the controller power off state do not match. Assign EStopOff to output the emergency stop status.
- (\*12) Do not use the following signals for safety-related functions. The signals do not meet Cat 3&PLd.

**EStopOn** 

**EStopOff** 

TeachMode

EnableOn

(\*13) The occurrence of battery alarm and grease alarm are monitored every 5 minutes. The alarm occurrence and output timing on the controller are different.

It may be output up to 5 minutes after the alarm is occurred on the controller.

"Alarm" will on when battery alarm or grease alarm of Controller or Manipulator occurs with "Robot maintenance" enabled. For details of Robot maintenance, refer to "Alarm" section of each Controller maintenance manual.

(\*14) Following shows status number/error number of output (Error, SError, Warning).

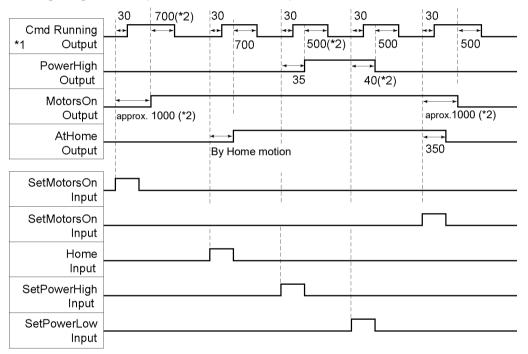
| Name    | Error Number  |
|---------|---------------|
| Error   | 1000 to 8000s |
| SError  | 9000s         |
| Warning | 410 to 900s   |

For more information of status number/error number, refer to following manual.

<sup>&</sup>quot;Status Code / Error Code List" manual

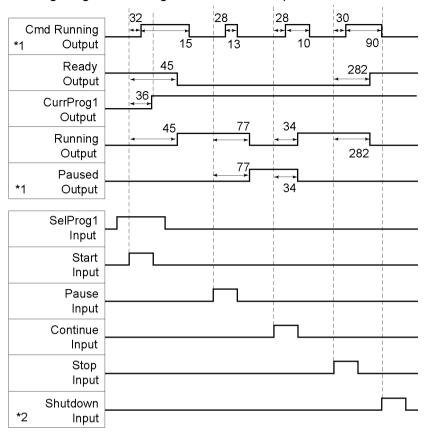
### 12.1.8 Remote Input Handshake Timing

The following charts indicate the timing sequences for the primary operations of the Controller.


The indicated time lapses (time durations) should be referred to only as reference values since the actual timing values vary depending on some factors such as the numbers of manipulators and running tasks. Check carefully and refer to the following charts for the timing interrelation when you enter an input signal.

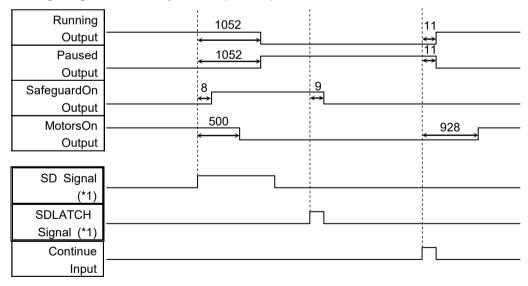
During system design, make sure that you actuate only one remote input operation at a time, otherwise an error will occur.

The pulse width of an input signal must be 25 or more milliseconds to be detected.


[Unit: msec]

#### Timing Diagram for Operation Execution Sequence

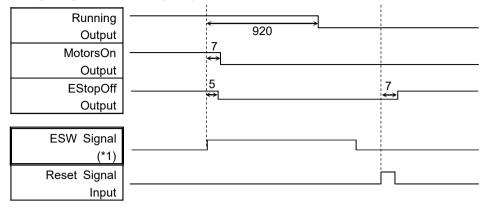



- \*1 The motion of the CmdRunnig can be different from this figure according to the condition.
- \*2 Refer to only as reference value for a robot. It can be different according to the number of robots.

### Timing Diagram for Program Execution Sequence



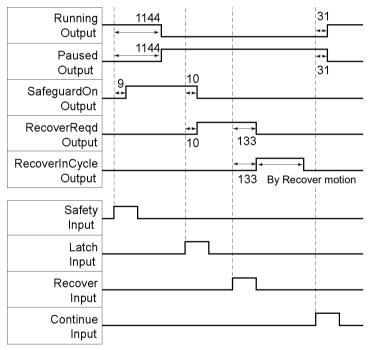
- \*1 Differs according to the setting condition of Quick Pause and the program running condition when the PAUSE is input.
- \*2 Shutdown input can be accepted when the Ready output is ON.


### Timing Diagram for Safety Door Input Sequence



[Unit: msec]

(\*1) A logical signal to explain the timing of internal processing of the controller. For details about input signals name and operating conditions, refer to the *Controller manual 11.3 Pin Assignments*.


### Timing Diagram for Emergency Stop Sequence



[Unit: msec]

(\*1) A logical signal to explain the timing of internal processing of the controller. For details about input signals name and operating conditions, refer to the *Controller manual 11.3 Pin Assignments*.

### Timing Diagram for Recover Sequence



### 12.2 Remote Ethernet

Remote Ethernet makes it possible to control the robot and controller from external equipment by sending the remote commands through Ethernet (TCP/IP).



From the following firmware version password authentication is required when connecting Controllers and PCs to a global accessible network.

F/W: Ver.7.4.8.x (except T series Manipulator / VT series Manipulator) Ver.7.4.58.x (T series Manipulator / VT series Manipulator)

For details, refer to the following section.

1.9 Security for Controller Ethernet Connection

1.10 Security for Compact Vision CV2-A Ethernet Connection

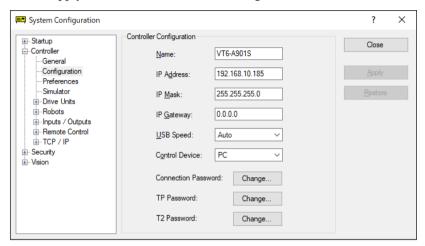
### 12.2.1 Remote Ethernet Configuration

To set the remote Ethernet functions valid, follow the procedures below to configure the parameter.

- (1) Select [System Configuration] from the [Setup] menu and select the [Remote Control]-[Ethernet] page.
- (2) Configure the necessary items for the remote Ethernet control.
- (3) Click <Apply> to save the new setting and click <Close>.



For the details of the dialog setting, refer to the section 5.13.2 [System Configuration] Command (Setup menu)—[Setup]-[System Configuration]-[Remote].


Following setting for the control device is not necessary when you select "Use only for monitoring", and only acquire the value using the Remote Ethernet control.

### 12.2.2 Control Device Configuration

Set the control device to "Remote Ethernet" by the following procedure.

- (1) Select [System Configuration] from the [Setup] menu and select [Controller Configuration] page.

  Select "Remote Ethernet" in the [Controller device] box.
- (2) Click < Apply> button to save the new settings, click < Close>.



For the details of the dialog setting, refer to the section 5.13.2 [System Configuration] Command (Setup menu) – [Setup]-[System Configuration]-[Setup].

#### 12.2.3 Remote Ethernet Control Execution

Set the remote control available by the following procedure.

- (1) Connect from client equipment to the specified port in the Remote Ethernet of the Controller.
- (2) Specify the password set in the Remote Ethernet to the parameter and send the Login command.
- (3) Client equipment has to wait until Auto (GetStatus command response) is ON, before execution of remote command.
- (4) Now remote command will be accepted.

  Each command executes the function the input acceptance condition.

#### 12.2.4 Debugging Remote Ethernet Control

Program debug from EPSON RC+ 7.0 development environment is capable as follows.

- (1) Build a program as usual.
- (2) Open the Run window and click the <Ethernet Enable>button.

When you only acquire the value using the Remote Ethernet control, the <Ethernet Enable> button is not displayed. Click the <Start> button of the device specified as the control device.

(3) Now remote command will be accepted.

Breakpoint setting and output to the Run window is available.



If not Login within 5 minutes from external equipment, the connection will be cut down automatically. After Login, if no command is sent within the timeout duration of the remote Ethernet, connection will be cut down. In this case, establish the connection again.

If error occurs execute the Reset command to clear the error condition before executing the operation command. To clear the error condition from external equipment by monitoring, use the "GetStatus" and "Reset" command.



■ If you set "0" in the [Timeout] box, time out duration is infinite. In this case, the task continues to execute even without the communication from client. This means the robot may keep moving and cause unexpected damage. Ensure the ways other than the communication to stop the task.

#### 12.2.5 Remote Ethernet Command

Format: \$ remote command {, parameter....} terminator

Note: Remote command with parameters uses ( , ) (comma) to separate \$ remote command and parameters. Do not put a space before and after the comma separated character and the parameter.

| Remote command | Parameter    | Contents                                                                                                                                                          | Input acceptance condition (*1)                    |
|----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Login          | Password     | Start the Controller Remote Ethernet function Authentication by password Execute Login correctly, commands execution is enabled until Logout                      | Available any time (*2)                            |
| Logout         |              | Exit Controller Remote Ethernet function After Logout, execute the Login command to start remote Ethernet function. Logout during task execution causes an error. | Available any time (*2)                            |
| Start          | Function No. | Execute the function of specified number (*3)(*11)                                                                                                                | Auto ON Ready ON Error OFF EStop OFF Safeguard ON  |
| Stop           |              | Stop all tasks and commands                                                                                                                                       | Auto ON                                            |
| Pause          |              | Pause all tasks (*4)                                                                                                                                              | Auto ON<br>Running ON                              |
| Continue       |              | Continue paused tasks                                                                                                                                             | Auto ON<br>Paused ON                               |
| Reset          |              | Clear emergency stop and error (*5)                                                                                                                               | Auto ON<br>Ready ON                                |
| SetMotorsOn    | Robot number | Turn ON the robot motor (*6)(*7)                                                                                                                                  | Auto ON<br>Ready ON<br>EStop OFF<br>Safeguard OFF  |
| SetMotorsOff   | Robot number | Turn OFF the robot motor (*7)                                                                                                                                     | Auto ON<br>Ready ON                                |
| SetCurRobot    | Robot number | Select the manipulator                                                                                                                                            | Auto ON<br>Ready ON                                |
| GetCurRobot    |              | Acquires the current manipulator number                                                                                                                           | Available any time (*2)                            |
| Home           | Robot number | Move the arm to home position defined by user                                                                                                                     | Auto ON Ready ON Error OFF EStop OFF Safeguard OFF |

| Remote command | Parameter                                                                                             | Contents                                                                                                                         | Input acceptance condition (*1)                    |
|----------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| GetIO          | I/O bit No.                                                                                           | Acquire the specified I/O bit                                                                                                    | Available any time (*2)                            |
| SetIO          | I/O bit No. & value                                                                                   | Set the I/O specified bit 1: Turn ON the bit 0: Turn OFF the bit                                                                 | Ready ON                                           |
| GetIOByte      | I/O port No.                                                                                          | Acquire the specified I/O port (8 bit)                                                                                           | Available any time (*1)                            |
| SetIOByte      | I/O port No. & value                                                                                  | Set the I/O specified port (8 bit)                                                                                               | Ready ON                                           |
| GetIOWord      | I/O word port No.                                                                                     | Acquire the specified I/O word port (16 bit)                                                                                     | Available any time (*2)                            |
| SetIOWord      | I/O word port No. & value                                                                             | Set the I/O specified word port (8 bit)                                                                                          | Auto ON<br>Ready ON                                |
| GetMemIO       | Memory I/O bit No.                                                                                    | Acquire the specified memory I/O bit                                                                                             | Available any time (*2)                            |
| SetMemIO       | Memory I/O bit No. & value                                                                            | Set the specified memory I/O bit 1: Turn ON the bit 0: Turn OFF the bit                                                          | Auto ON<br>Ready ON                                |
| GetMemIOByte   | Memory I/O port<br>No.                                                                                | Acquire the specified memory I/O port                                                                                            | Available any time (*2)                            |
| SetMemIOByte   | Memory I/O port<br>No. & value                                                                        | Set the specified memory I/O port (8 bit)                                                                                        | Auto ON<br>Ready ON                                |
| GetMemIOWord   | Memory I/O word port No.                                                                              | Acquire the specified memory I/O word port (16 bit)                                                                              | Available any time (*2)                            |
| SetMemIOWord   | Memory I/O word port No. & value                                                                      | Set the specified memory I/O word port (16 bit)                                                                                  | Auto ON<br>Ready ON                                |
| GetVariable    | Parameter name {, type}  [Parameter name] (Array element), [Parameter name type], [Number to acquire] | Acquire the value of backup (Global Preserve) parameter (*8)  Acquire the value of backup (Global Preserve) array parameter (*9) | Available any time (*2)                            |
| SetVariable    | Parameter name & value {, type}                                                                       | Set the value in the backup (Global Preserve) parameter (*8)                                                                     | Auto ON<br>Ready ON                                |
| GetStatus      |                                                                                                       | Acquire the Controller state                                                                                                     | Available any time (*1)                            |
| Execute        | Command string                                                                                        | Execute the command (*10) (*11)                                                                                                  | Auto ON Ready ON Error OFF EStop OFF Safeguard OFF |
| Abort          |                                                                                                       | Abort the command execution                                                                                                      | Auto ON                                            |
| GetAlm         |                                                                                                       | Acquire the alarm state (*12)                                                                                                    | Available any time (*2)                            |
| ResetAlm       | Alarm number                                                                                          | Reset the alarm of the specified alarm number (*12)                                                                              | Auto ON<br>Ready ON                                |

- (\*1) The Controller state bit from GetStatus.
- (\*2) "Available any time" is applicable if the following conditions are met.

When "Remote Ethernet" is set as the control device, or,

"Remote Ethernet" is not set as the control device, but set to be used for monitoring.

(\*3) Execute the function specified in the Main[Function No.].

| Function Name | Function No. |
|---------------|--------------|
| Main          | 0            |
| Main1         | 1            |
| Main2         | 2            |
| Main3         | 3            |
| Main4         | 4            |
| Main5         | 5            |
| Main6         | 6            |
| Main7         | 7            |
| :             | :            |
| Main63        | 63           |

- (\*4) Pause command is not available for "NoPause task" and "NoEmgAbort task". For the details, refer to the help or the section "Pause" in the EPSON RC+7.0 Language reference manual.
- (\*5) I/O output will be turned OFF and the robot parameter will be initialized. For the details, refer to the help or the section "*Reset*" in the EPSON RC+7.0 Language reference manual.
- (\*6) The robot parameter will be initialized. For the details, refer to the help or the section "*Motor*" in the EPSON RC+7.0 Language reference manual.
- (\*7) When "0" is specified for the manipulator number, all the manipulator will be operated If you wish to operate particular manipulator, specify the manipulator number (1 to 16) of the target manipulators.
- (\*8) Parameter type means {Boolean | Byte | Double | Integer | Long | Real | String | Short | UByte | UShort | Int32 | UInt32 | Int64 | UInt64}.

Type specified: for the backup parameters when the parameter name and type are same.

Type not specified: for the backup parameters when the parameter names are same.

(\*9) For the array element, specify an element you acquire as the following:

You need to specify an element if when acquiring from the head of the array.

| 1D array | Parameter name (0)              | Acquire from the head.                     |
|----------|---------------------------------|--------------------------------------------|
|          | Parameter name (Element number) | Acquire from the specified element number. |
| 2D array | Parameter name (0,0)            | Acquire from the head.                     |
|          | Parameter name                  | Acquire from the specified element number. |
|          | (Element number 1, 2)           |                                            |
| 3D array | Parameter name (0,0,0)          | Acquire from the head.                     |
|          | Parameter name                  | Acquire from the specified element number. |
|          | (Element number 1, 2, 3)        |                                            |

You cannot omit the parameter type and number to acquire.

You cannot specify a string for the parameter type.

Available number to acquire is up to 100. If you specify a number over the number of array elements, you have an error.

e.g.) "\$GetVariable,gby2(3,0),Byte,3"

It acquires values of gby2(3,0), gby2(3,1), gby2(3,2) of Byte type 2D array parameter gby2.

(\*10) Specify the command and parameters in the double quotation marks.

Command string to be executed are restricted to 256 bytes, and execution result string are restricted to 4060 bytes.

Robot motion command will be executed to the selected manipulator. Check which robot is selected by using GetCurRobot before command execution.

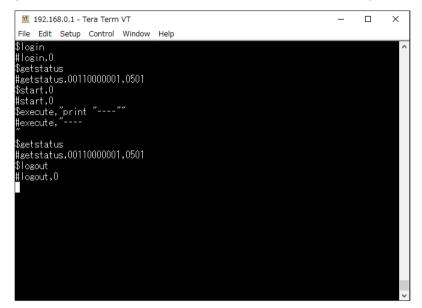
Following commands are available while Execute is running.

#### Commands available while Execute is running

| Remote Command |
|----------------|
| Abort          |
| GetStatus      |
| SetIO          |
| SetIOByte      |
| SetIOWord      |
| SetMemIO       |
| SetMemIOByte   |
| SetMemIOWord   |

When the commands specified in (SetIO, SetIOByte, SetIOWord, SetMemIO, SetMemIOByte, SetMemIOWord) are the same and executed at the same time, the command executed later will result in error. Make sure to check the execution result by using GetStatus after the execution of Execute command and output command which the Execute command is being executed.

- (\*11) To execute commands including PC function (PC file, PC RS-232C, Database access, DLL calling), be sure to execute while the EPSON RC+ 7.0 is connected. If the EPSON RC+ 7.0 is not connected, command execution will result in error.
- (\*12) For details of the alarms, refer to the following manuals. *Robot Controller RC700 series Maintenance Manual 6. Alarm*


Robot Controller RC700-D Manual Regular Inspection 3. Alarm

Robot Controller RC700-E Manual 5.3 Alarm Function

(\*13) "Command string" parameter of Execute command encloses in ("") (double quotation marks). If the parameter includes (""), refer to the following execution example. In SPEL+ language, Chr\$(34) is used for ("") (double quotation marks). Refer to *Print#* in *SPEL+ Language Reference*.

Example: TeraTerm

(New-line Receive: AUTO, Transmit: CR+LF, Local echo: ON)



## 12.2.6 Monitoring command

When the Remote Ethernet control is not set as the control device but set to be used for monitoring, following commands are only available to be executed.

| Remote Command |
|----------------|
| Login          |
| Logout         |
| GetIO          |
| GetIOByte      |
| GetIOWord      |
| GetMemIO       |
| GetMemIOByte   |
| GetMemIOWord   |
| GetVariable    |
| GetStatus      |
| GetCurRobot    |
| GetAlm         |

### 12.2.7 Response

When the Controller receives the command correctly, the response in the following format is shown in the executing command.

| Command                                                                        | Format                                                                                                                                                                       |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote command that acquire the value Except GetIO, GetVariable, and GetStatus | #[Remote command],[0] terminator                                                                                                                                             |
| GetIO                                                                          | #GetIO,[0   1] terminator *1                                                                                                                                                 |
| GetMemIO                                                                       | #GetMemIO,[0   1] terminator *1                                                                                                                                              |
| GetIOByte                                                                      | #GetIOByte,[ Hex string (00 to FF) of Byte (8Bit)] terminator                                                                                                                |
| GetMemIOByte                                                                   | #GetMemIOByte,[ Hex string (00 to FF) of Byte (8Bit)] terminator                                                                                                             |
| GetIOWord                                                                      | #GetIOWord,[ Hex string (0000 to FFFF) of Word (16Bit)] terminator                                                                                                           |
| GetIOMemWord                                                                   | #GetMemIOWord,[ Hex string (0000 to FFFF) of Word (16Bit)] terminator                                                                                                        |
| GetVariable                                                                    | # GetVariable,[Parameter value] terminator                                                                                                                                   |
| GetVariable (in case of array)                                                 | # GetVariable,[ Parameter value 1],[ Parameter value 2],,terminator *4                                                                                                       |
| GetStatus                                                                      | #GetStatus,[Status],[Error, Warning code] terminator Example) #GetStatus,aaaaaaaaaaaa,bbbb *2 *3                                                                             |
| Execute                                                                        | If the value is returned as a result of command execution                                                                                                                    |
|                                                                                | #Execute,"[Execution result]" terminator                                                                                                                                     |
| GetAlm                                                                         | # GetAlm,[number of alarms],[alarm number]terminator e.g.) When no alarm is occurring # GetAlm,0 terminator e.g.) When Alarm 1 and 9 are occurring # GetAlm,2,1,9 terminator |

<sup>\*1 [0 | 1]</sup> I/O bit ON: 1/ OFF: 0

#### \*2 Status

In the example above, 11 digits "aaaaaaaaaaa" is for the following 11 flags. Test/Teach/Auto/Warning/SError/Safeguard/EStop/Error/Paused/Running/Ready ON: 1/ OFF: 0

If Ready and Auto are ON, it is "00100000001".

#### \*3 Error / Warning code

It is indicated in 4 digits. If there is no error and warning, it is 0000.

### e.g.)1: #GetStatus,0100000001,0000

The bits for Auto and Ready are ON (1).

This means that AutoMode is ON and be in Ready state. You can execute the command.

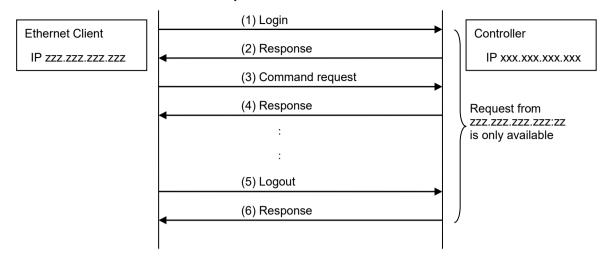
#### e.g.)2: #GetStatus,0110000010,0517

This means the warning occurs during the operation. Take appropriate action for the warning code. (In this case, warning code is 0517)

| Flag      | Contents                                                                 |
|-----------|--------------------------------------------------------------------------|
| Test      | Turn ON in the TEST mode                                                 |
| Teach     | Turn ON in the TEACH mode                                                |
| Auto      | Turn ON in the remote input acceptance condition                         |
|           | Turn ON in the warning condition                                         |
| Warning   | Task can be executed as usual even in a warning condition. However, take |
|           | action for the warnings as soon as possible.                             |
|           | Turn ON in the serious error condition                                   |
| SError    | When a serious error occurs, reboot the Controller to recover from the   |
|           | error condition. "Reset input" is not available.                         |
| Safeguard | Turn ON with safety door open                                            |
| EStop     | Turn ON in the emergency condition                                       |
| Error     | Turn ON in the error condition                                           |
| Elloi     | Use "Reset input" to recover from the error condition.                   |
| Paused    | Turn ON with paused task                                                 |
| Running   | Turn ON with task executing                                              |
| Kummig    | Turn OFF when "Paused output" is ON                                      |
| Ready     | Turn ON with the Controller completed the startup and no task executing  |

<sup>\*4</sup> It returns values of specified number in the Number to acquire.

### **Error response**


When the Controller cannot receive the remote command correctly, the error response is shown in the following format.

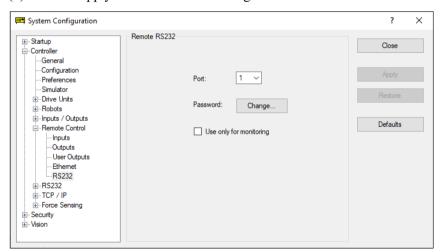
Format: ![Remote command],[Error code] terminator

| Error code | Contents                                                         |
|------------|------------------------------------------------------------------|
| 10         | Remote command does not begin with \$                            |
| 11         | Remote command is wrong                                          |
| 11         | Login is not executed                                            |
| 12         | Remote command format is wrong                                   |
| 13         | Login command password is wrong                                  |
|            | Specified number to acquire is out of range                      |
| 14         | (1 or more and 100 or less)                                      |
|            | Number to acquire is omitted                                     |
|            | Specified a string parameter                                     |
|            | Parameter is not existed                                         |
| 15         | Dimension of parameter is wrong                                  |
|            | Element out of range is called                                   |
| 19         | Request time out                                                 |
| 20         | Controller is not ready                                          |
| 21         | Cannot execute since the Execute is running                      |
| 98         | Password is required for Login when using the global IP address. |
| 99         | System error                                                     |
| 77         | Communication error                                              |

### 12.2.8 Response timing of Remote Ethernet control

#### **Communication sequence**




### 12.3 Remote RS232

Remote RS232 makes it possible to control the robot and controller from external equipment by sending the remote commands through RS-232C.

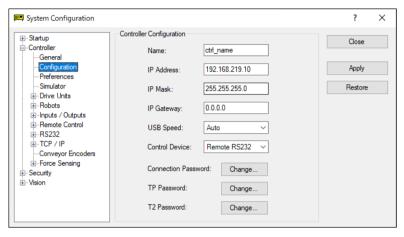
### 12.3.1 Remote RS232 setting

To set the remote RS232 functions valid, follow the procedures below to configure the remote RS232.

- (1) Select [Controller] from the [Setup] menu-[System Configuration] and display the [System Configuration] dialog box. Select [RS232] from the tree structure-[Controller]-[Remote].
- (2) Configure the necessary items for the remote RS232 control.
- (3) Click < Apply> to save the new setting and click < Close>.



For the details of the dialog setting, refer to the section 5.13.2 [System Configuration] (Setup menu) – [Setup]-[System Configuration]-[Remote].


When you only acquire the value using the Remote RS232 control, the RS232 Enable button is not displayed. Click the Start button of the device specified as the control device. Following setting for the control device is not necessary when you select "Use only for monitoring", and only acquire the value using the remote RS232 control.

### 12.3.2 Control device setting

Set the control device to "Remote RS232" by the following procedure.

- (1) Select Controller from the [Setup] menu and select [System Configuration] to display the [System Configuration] dialog box.

  Select "Remote RS232" in the [Control Device] box.
- (2) Click <Apply> to save the new settings, and then click <Close>.



For the details of the dialog setting, refer to the section 5.13.2 [System Configuration] (Setup menu) – [Setup]-[System Configuration]-[Controller]-[Configuration].

#### 12.3.3 Execution of remote RS232 control

Set the remote RS232 control available by the following procedure.

- (1) Open RS-232C port that is connected from client equipment to the specified port in the Remote RS232 of the Controller, using the communication parameter specified in the RS-232C port setting.
- (2) Send the remote start command (EOT).
- (3) Specify the password set in the Remote RS232 to the parameter and send the Login command.
- (4) Client equipment has to wait until Auto (GetStatus command response) is ON, before execution of remote command.
- (5) Now remote command will be accepted.

  Each command executes the function when the input acceptance condition is satisfied.

### 12.3.4 Debugging remote RS232 control

Program debug from EPSON RC+ 7.0 development environment is capable as follows.

- (1) Build a program as usual.
- (2) Open the Run window and click the <RS232 Enable> button.

When you only acquire the value using the Remote RS232 control, the <RS232 Enable> button is not displayed. Click the Start button of the device specified as the control device.

(3) Now remote command will be accepted.

Breakpoint setting and output to the Run window is available.



After Login, if no command is sent within the timeout duration of the RS-232C, the timeout error will be returned. In this case, re-execute from sending remote start command.

If error occurs, execute the Reset command to clear the error condition before executing the operation command. To clear the error condition from external equipment by monitoring, use the "GetStatus" and "Reset" command.



■ If you set "0" in the [Timeout] box, time out duration is infinite. In this case, the task continues to execute even without the communication from client. This means the robot may keep moving and cause unexpected damage. Ensure the ways other than the communication to stop the task.

#### 12.3.5 Remote RS232 Command

#### Remote start

Start the Remote RS232 function of the Controller.

EOT 1byte

EOT: &H04(&H is hexadecimal)

#### Request format

| STX   | Command | Data     | ETX   | BCC   |
|-------|---------|----------|-------|-------|
| 1byte | 1Byte   | Variable | 1Byte | 1Byte |

STX: &H02 ETX: &H03

BCC: Checksum of sent and received data

XOR value from the command to ETX per 1Byte

| Remote<br>Command | Send<br>command | Data                                              | Description                                                                                                                                  | Input Acceptance Condition (*1)                               |
|-------------------|-----------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Login             | 'L'<br>&H4C     | Password                                          | Authentication by password Execute Login correctly, commands execution is                                                                    | Available any time                                            |
| Logout            | '1'<br>&H6C     |                                                   | enabled until Logout  After Logout, execute the Login command to start remote RS232 function.  Logout during task execution causes an error. | (*2) Available any time (*2)                                  |
| Start             | 'G'<br>&H47     | Function<br>No.<br>(1Byte)                        | Execute the function of specified number  (*3)(*11)  Example) Execute 'main'  &H02&H47&H00&H03&H44                                           | Auto ON<br>Ready ON<br>Error OFF<br>EStop OFF<br>Safeguard ON |
| Stop              | 'Q'<br>&H51     |                                                   | Stop all tasks and commands                                                                                                                  | Auto ON                                                       |
| Pause             | 'P'<br>&H50     |                                                   | Pause all tasks (*4)                                                                                                                         | Auto ON<br>Running ON                                         |
| Continue          | 'С'<br>&Н43     |                                                   | Continue paused tasks                                                                                                                        | Auto ON<br>Paused ON                                          |
| Reset             | 'R'<br>&H52     |                                                   | Clear emergency stop and error (*5)                                                                                                          | Auto ON<br>Ready ON                                           |
| SetMotorsOn       | 'M'<br>&H4D     | Robot<br>number<br>(1Byte)                        | Turn ON the robot motor (*6)(*7)                                                                                                             | Auto ON<br>Ready ON<br>EStop OFF<br>Safeguard OFF             |
| SetMotorsOff      | 'N'<br>&H4E     | Robot<br>number<br>(1Byte)                        | Turn OFF the robot motor (*7)                                                                                                                | Auto ON<br>Ready ON                                           |
| SetCurRobot       | 'Y'<br>&H59     | Robot<br>number<br>(1Byte)                        | Select the robot                                                                                                                             | Auto ON<br>Ready ON                                           |
| GetCurRobot       | 'у'<br>&Н79     |                                                   | Acquire the current robot number                                                                                                             | Available any time (*2)                                       |
| Home              | 'H'<br>&H48     | Robot<br>number<br>(1Byte)                        | Move the arm to home position defined by user                                                                                                | Auto ON Ready ON Error OFF EStop OFF Safeguard OFF            |
| GetIO             | 'i'<br>&H69     | I/O bit No<br>(2Byte)                             | Acquire the specified I/O bit Example) Acquire the I/O bit 1 &H02&H69&H0001&H03&H6B                                                          | Available any time (*2)                                       |
| SetIO             | 'I'<br>&H49     | [I/O bit<br>No.]<br>(2Byte)<br>[value]<br>(1Byte) | Set the I/O specified bit &H01: Turn ON the bit &H00: Turn OFF the bit Example) Turn ON the I/O bit 1 &H02&H49&H0001&H01&H03&H4A             | Auto ON<br>Ready ON                                           |
| GetIOByte         | 'b'<br>&Н62     | I/O port No. (1Byte)                              | Acquire the specified I/O port (8 bit) (*8) Example) Acquire the I/O port 1 &H02&H62&H01&H03&H60                                             | Available any time (*2)                                       |

| Remote<br>Command | Send<br>command | Data                                                    | Description                                                                                                                                  | Input<br>Acceptance<br>Condition (*1) |
|-------------------|-----------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| SetIOByte         | 'В'<br>&Н42     | [I/O port<br>No.](1Byt<br>e)[value]<br>(1Byte)          | Set the I/O specified port (8 bit) (*8) Example) Set &H0F to the I/O port 1 &H02&H42&H01&H0F&H03&H4F                                         | Auto ON<br>Ready ON                   |
| GetIOWord         | 'w'<br>&H77     | I/O word port No. (1Byte)                               | Acquire the specified I/O word port (16 bit) (*8) Example) Acquire the I/O word port 1 &H02&H77&H01&H03&H75                                  | Available any time (*2)               |
| SetIOWord         | 'W'<br>&H57     | [I/O word<br>port No.]<br>(1Byte)<br>[value]<br>(2Byte) | Set the I/O specified word port (16 bit) (*8)<br>Example) Set &H010F to the I/O word port 1<br>&H02&H57&H01&H010F&H03&H5B                    | Auto ON<br>Ready ON                   |
| GetMemIO          | ʻoʻ<br>&H6F     | Memory I/O bit No. (2Byte)                              | Acquire the specified memory I/O bit (*8) Example) Acquire memory I/O bit 1 &H02&H6F&H0001&H03&H6D                                           | Available any time (*2)               |
| SetMemIO          | 'O'<br>&Н4F     | [Memory I/O bit No.] (2Byte) [value] (1Byte)            | Set the I/O specified bit (*8) &H01: Turn ON the bit &H00: Turn OFF the bit Example) Turn ON the memory I/O bit 1 &H02&H4F&H0001&H01&H03&H4C | Auto ON<br>Ready ON                   |
| GetMemIOByte      | ʻt'<br>&H74     | Memory I/O port No. (1Byte)                             | Acquire the specified memory I/O port (8 bit) (*8) Example) Acquire the memory I/O port 1 &H02&H74&H01&H03&H76                               | Available any time (*2)               |
| SetMemIOByte      | 'T'<br>&H54     | [Memory I/O port No.] (1Byte) [value] (1Byte)           | Set the I/O specified port (8 bit) (*8)<br>Example) Set &H0F to the memory I/O port 1<br>&H02&H54&H01&H0F&H03&H59                            | Auto ON<br>Ready ON                   |
| GetMemIOWord      | ʻu'<br>&H75     | Memory I/O word port No. (1Byte)                        | Acquire the specified memory I/O word port (16 bit) (*8) Example) Acquire the memory I/O word port 1 &H02&H75&H01&H03&H77                    | Available any time (*2)               |
| SetMemIOWord      | 'U'<br>&H55     | [Memory I/O word port No.] (1Byte) [value] (1Byte)      | Set the I/O specified word port (16 bit) (*8)<br>Example) Set &H010F to the memory I/O word<br>port 1<br>&H02&H55&H01&H010F&H03&H59          | Auto ON<br>Ready ON                   |

| Remote<br>Command | Send<br>command                                                                                                                                                                                                          | Data                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                           | Input<br>Acceptance<br>Condition (*1) |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                   | 'v' [Parameter Acquire the value of backup (Global Preserve)  &H76 name],(& parameter (*8)  H2C) Example) Acquire the Global Integer g_Status  [type] &H02&H76&H67&H5F&H53&H74&H61&H74  (1Byte) &H75&H73&H2C&H03&H03&H56 |                                                                                                              | Available any time (*2)                                                                                                                                                                                                                                                                                                                                                               |                                       |
| GetVariable       |                                                                                                                                                                                                                          | [Parameter name] (&H2C) (Array element) (&H2C), [Parameter type] (1Byte), (&H2C) [Number to acquire] (2Byte) | array parameter (*9) Example) Acquire all of Global Integer g_intArray(10) &H02&H76&H67&H5F&H69&H6E&H74&H41 &H72&H72&H61&H79&H2C  er &H0000&H2C&H03&H2C&H000A&H03&H42E Example) Acquire 10 elements from elements (3,5,0) of Global Integer g_int3Array(10,10,10) &H02&H76&H67&H5F&H69&H6E&H74&H33 &H41&H72&H72&H61&H79&H2C  e] &H0003&H2C&H0005&H2C&H0000&H2C&H0 3&H2C&H000A&H03&H77 |                                       |
| SetVariable       | 'V'<br>&H56                                                                                                                                                                                                              | [Parameter name], (&H2C) [value] (type size) (&H2C), [type] (1Byte)                                          | Set the value in the backup (Global Preserve) parameter (*8) Example) Set &H0 to Global Integer g_Status &H02&H56&H67&H5F&H53&H74&H61&H74 &H75&H73&H2C&H0000&H2C&H03&H03&H 5A                                                                                                                                                                                                         |                                       |
| GetStatus         | 'S'<br>&H53                                                                                                                                                                                                              |                                                                                                              | Acquire the Controller state                                                                                                                                                                                                                                                                                                                                                          | Available any time (*10)              |
| Execute           | 'X'<br>&H58                                                                                                                                                                                                              | Command string                                                                                               | Execute the command (*10) (*11) Auto ON Example) Execute 'print here' Ready ON &H02&H58&H22&H70&H72&H69&H6E&H74 &H20&H68&H65&H72&H65&H22&H03&H10 EStop OFF Safeguard OF                                                                                                                                                                                                               |                                       |
| Abort             | 'A'<br>&H41                                                                                                                                                                                                              |                                                                                                              | Abort the command execution (*10) Auto ON                                                                                                                                                                                                                                                                                                                                             |                                       |
| GetAlm            | ʻz'<br>&H7A                                                                                                                                                                                                              |                                                                                                              | Acquire the alarm state  Available any time (*2)                                                                                                                                                                                                                                                                                                                                      |                                       |
| ResetAlm          | 'Z'<br>&H5A                                                                                                                                                                                                              | Alarm<br>number<br>(1 Byte)                                                                                  | Reset the alarm of the specified alarm number e.g.) When resetting the Alarm 5 &H02&H5A&H05&H03&H5C  Auto ON Ready ON                                                                                                                                                                                                                                                                 |                                       |

<sup>(\*1)</sup> The Controller state bit from GetStatus.

When "Remote Ethernet" is set as the control device, or,

<sup>(\*2) &</sup>quot;Available any time" is applicable if the following conditions are met.

<sup>&</sup>quot;Remote Ethernet" is not set as the control device, but set to be used for monitoring.

(\*3) Execute the function specified in the Main[Function No.].

| Function Name | Function No. |
|---------------|--------------|
| Main          | 0            |
| Main1         | 1            |
| Main2         | 2            |
| Main3         | 3            |
| Main4         | 4            |
| Main5         | 5            |
| Main6         | 6            |
| Main7         | 7            |
| :             | :            |
| Main63        | 63           |

- (\*4) Pause command is not available for "NoPause task" and "NoEmgAbort task". For the details, refer to the help or the section "*Pause*" in the EPSON RC+7.0 Language reference manual.
- (\*5) I/O output will be turned OFF and the robot parameter will be initialized.

  For the details, refer to the help or the section "*Reset*" in the EPSON RC+7.0 Language reference manual.
- (\*6) The robot parameter will be initialized. For the details, refer to the help or the section "*Motor*" in the EPSON RC+7.0 Language reference manual.
- (\*7) When "0" is specified for the manipulator number, all the manipulator will be operated If you wish to operate particular manipulator, specify the manipulator number (1 to 16) of the target manipulators.

### (\*8) Parameter type

| Parameter type | Type value(1Byte) |
|----------------|-------------------|
| Boolean        | &H00              |
| Byte           | &H01              |
| Double         | &H02              |
| Integer        | &H03              |
| Long           | &H04              |
| Real           | &H05              |
| String         | &H06              |
| UByte          | &H07              |
| Short          | &H08              |
| UShort         | &H09              |
| Int32          | &H0A              |
| UInt32         | &H0B              |
| Int64          | &H0C              |
| UInt64         | &H0D              |

For the backup parameters when the parameter name and type are same.

(\*9) For the array element, specify an element you acquire as the following:

You need to specify an element when acquiring from the head of the array.

Specify the array element in 2Byte value.

| 1D array | Parameter name&H2C&H0000                                             | Acquire from the head.                     |
|----------|----------------------------------------------------------------------|--------------------------------------------|
|          | Parameter name, element number.                                      | Acquire from the specified element number. |
| 2D array | Parameter name &H2C&H0000&H2C&H0000                                  | Acquire from the head.                     |
|          | Parameter name, element number 1, element number 2                   | Acquire from the specified element number. |
| 3D array | Parameter name                                                       | Acquire from the head.                     |
|          | Parameter name, element number 1, element number 2, element number 3 | Acquire from the specified element number. |

You cannot specify a string for the parameter type.

Available number to acquire is up to 100. If you specify a number over the number of array elements, you have an error.

(\*10) Specify the command and parameters in the double quotation marks.

Command string to be executed are restricted to 256 bytes, and execution result string are restricted to 4060 bytes.

Robot motion command will be executed to the selected manipulator. Check which robot is selected by using GetCurRobot before command execution.

Following commands are available while Execute is running.

### Commands available while Execute is running

| Remote Command |
|----------------|
| Abort          |
| GetStatus      |
| SetIO          |
| SetIOByte      |
| SetIOWord      |
| SetMemIO       |
| SetMemIOByte   |
| SetMemIOWord   |

When the commands specified in (SetIO, SetIOByte, SetIOWord, SetMemIO, SetMemIOByte, SetMemIOWord) are the same and executed at the same time, the command executed later will result in error. Make sure to check the execution result by using GetStatus after the execution of Execute command and output command which the Execute command is being executed.

(\*11) To execute commands including PC function (PC file, PC RS-232C, Database access, DLL calling), be sure to execute while the EPSON RC+ 7.0 is connected. If the EPSON RC+ 7.0 is not connected, command execution will result in error.

# 12.3.6 Monitoring command

When the remote RS232 control is not set as the control device but set to be used for monitoring, following commands are only available to be executed.

| Remote Command |
|----------------|
| Login          |
| Logout         |
| GetIO          |
| GetIOByte      |
| GetIOWord      |
| GetMemIO       |
| GetMemIOByte   |
| GetMemIOWord   |
| GetVariable    |
| GetStatus      |
| GetCurRobot    |
| GetAlm         |
|                |

# 12.3.7 Response

When the Controller receives the command correctly, the response in the following format is shown in the executing command.

### Response Format

| ACK   | Command | Data     | ETX   | BCC   |
|-------|---------|----------|-------|-------|
| 1Byte | 1Byte   | Variable | 1Byte | 1Byte |

ACK: &H06 ETX: &H03

BCC: Checksum of sent and received data

XOR value from the command to ETX per 1Byte

| Command                                                             | Format                                                     |  |
|---------------------------------------------------------------------|------------------------------------------------------------|--|
| Remote command that acquire the value Except the following commands | [ACK][Command](1Byte)[ETX][BCC]                            |  |
| GetCurRobot                                                         | [ACK]'y'[Robot number] [ETX][BCC]                          |  |
| GetIO                                                               | [ACK] 'i'[&H00   &H01] [ETX][BCC] *1                       |  |
| GetMemIO                                                            | [ACK] 'o'[&H00   &H01] [ETX][BCC] *1                       |  |
| GetIOByte                                                           | [ACK] 'b'[ Byte value (8Bit) (&H00 to &HFF)]<br>[ETX][BCC] |  |

| Command                        | Format                                                                                                                                                                         |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GetMemIOByte                   | [ACK] 't'[ Byte value (8Bit) (&H00 to &HFF)]<br>[ETX][BCC]                                                                                                                     |  |
| GetIOWord                      | [ACK] 'w'[Word value (16Bit) (&H0000 to &HFFFF)] [ETX][BCC]                                                                                                                    |  |
| GetIOMemWord                   | [ACK] 'u'[Word value (16Bit) (&H0000 to &HFFFF)] [ETX][BCC]                                                                                                                    |  |
| GetVariable                    | [ACK] 'v'[Parameter value]*5 [ETX][BCC]                                                                                                                                        |  |
| GetVariable (in case of array) | [ACK] 'v'[Parameter value 1] *5 [Parameter value 2] *5 [ETX][BCC] *4                                                                                                           |  |
| GetStatus                      | [ACK] 'S'[Status][Error, Warning code] [ETX][BCC] e.g: [ACK] 'S'[aaaaaaaaaaaa][bbbb][ETX][BCC] *2 *3                                                                           |  |
| Execute                        | If the value is returned as a result of command execution  [ACK] 'X'"[Execution result]" [ETX][BCC]                                                                            |  |
| GetAlm                         | [ACK] 'z' [number of alarms][alarm number] [ETX][BCC] e.g) When no alarm is occurring &H06&H7A&H00&H03&H79 e.g.) When Alarm 1 and 9 are occurring &H06&H7A&H02&H01&H09&H03&H73 |  |

<sup>\*1 [&</sup>amp;H00 | &H01] I/O bit ON: &H01/ OFF: &H00

# \*2 Status

In the example above, 11 digits [aaaaaaaaaaa] is for the following 11 flags. Test/Teach/Auto/Warning/SError/Safeguard/EStop/Error/Paused/Running/Ready &H01 is ON /&H00 is OFF

If Ready and Auto are ON, it is

[&H00&H00&H01&H00&H00&H00&H00&H00&H00&H01].

### \*3 Error / Warning code

It is indicated in 4 digits. If there is no error and warning, it is "0000"(&H30&H30&H30&h30).

### e.g.)1: [ACK]

'S[&H00&H00&H01&H00&H00&H00&H00&H00&H00&H01][ &H30& H30&H30&h30]

The bits for Auto and Ready are &H01.

This means that AutoMode is ON and in Ready state. You can execute the command.

### e.g.)2: [ACK]

'S[&H00&H00&H01&H01&H00&H00&H00&H00&H01&H00][ &H30& H35&H31&h37]

This means the warning occurs during the operation. Take appropriate action according to the warning code. (In this case, warning code is 0517)

| Flag      | Contents                                                                |  |  |
|-----------|-------------------------------------------------------------------------|--|--|
| Test      | Turn ON in the TEST mode                                                |  |  |
| Teach     | Turn ON in the TEACH mode                                               |  |  |
| Auto      | Turn ON in the remote input acceptance condition                        |  |  |
|           | Turn ON in the warning condition                                        |  |  |
| Warning   | Task can be executed as usual even a warning condition. However, take   |  |  |
|           | action for the warning as soon as possible.                             |  |  |
|           | Turn ON in the serious error condition                                  |  |  |
| SError    | When a serious error occurs, Reboot the Controller to recover from the  |  |  |
|           | error condition. "Reset input" is not available.                        |  |  |
| Safeguard | Turn ON with safety door open                                           |  |  |
| EStop     | Turn ON in the emergency condition                                      |  |  |
| Error     | Turn ON in the error condition                                          |  |  |
| LITOI     | Use "Reset input" to recover from the error condition.                  |  |  |
| Paused    | Turn ON with paused task                                                |  |  |
| Running   | Turn ON with task executing                                             |  |  |
| Kuiiiiiig | Turn OFF when "Paused output" is ON                                     |  |  |
| Ready     | Turn ON with the Controller completed the startup and no task executing |  |  |

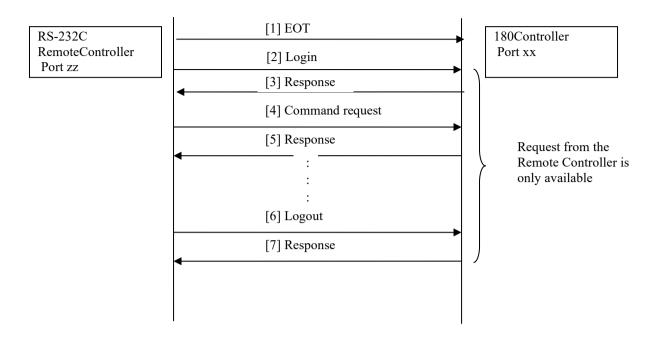
<sup>\*4</sup> It returns values of specified number in the Number to acquire.

## **Error response**

When the Controller cannot receive the remote command correctly, the error response is shown in the following format.

| NAK   | Command | Error code | ETX   | BCC   |
|-------|---------|------------|-------|-------|
| 1Byte | 1Byte   | 2Byte      | 1Byte | 1Byte |

NAK: &H15 ETX: &H03


BCC: Checksum of sent and received data

XOR value from the command to ETX per 1Byte

| Error code | Contents                                    |  |
|------------|---------------------------------------------|--|
| 10         | Remote command does not begin with \$       |  |
| 11         | Remote command is wrong                     |  |
|            | Login is not executed                       |  |
| 12         | Remote command format is wrong              |  |
| 13         | Login command password is wrong             |  |
| 14         | Specified number to acquire is out of range |  |
|            | (Less than 1 or more than 100)              |  |
|            | Number to acquire is omitted                |  |
|            | Specified a string parameter                |  |
| 15         | Parameter is not existed                    |  |
|            | Dimension of parameter is wrong             |  |
|            | Element out of range is called              |  |
| 16         | BCC is wrong                                |  |
| 19         | Request time out                            |  |
| 20         | Controller is not ready                     |  |
| 21         | Cannot execute since the Execute is running |  |
| 99         | System error                                |  |
|            | Communication error                         |  |

<sup>\*5</sup> Binary data. If you convert it to the specified data type after acquisition, conversion process is required.

# 12.3.8 Response timing of Remote Ethernet control



# 12.4 User-defined Remote Output I/O

### 12.4.1 What is user-defined remote output I/O?

User-defined remote output I/O is the remote output I/O that the user arbitrarily sets the output conditions.

Output to the I/O without creating dedicated tasks to the user program is possible.

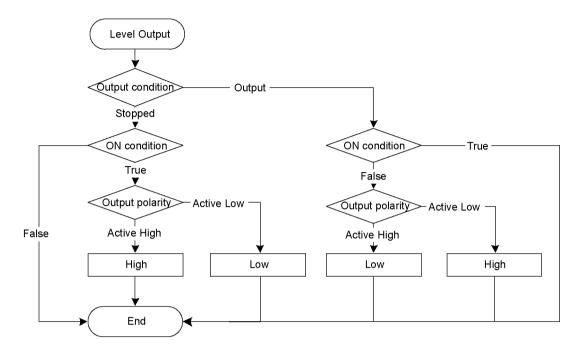
- 8 user-defined remote output I/O are available.
- Output condition is specified by the condition expression of the SPEL language.
- Evaluation of output conditions are performed in 30 ms periods.
- Output method when condition is met can be selected from Level, Pulse, and Latch.
- Output polarity (active low/ active high) when condition is met can be selected.

### 12.4.2 Output conditions

Output conditions consist of the ON and OFF conditions. The OFF condition is set only when the output method is "Latch".

[ON condition]

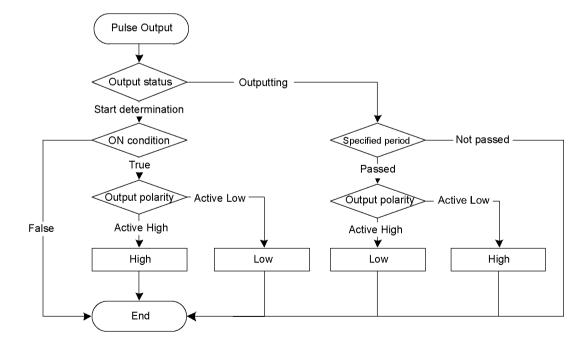
Set the condition expression to start output.


[OFF condition]

Set the condition expression to terminate the latch output.

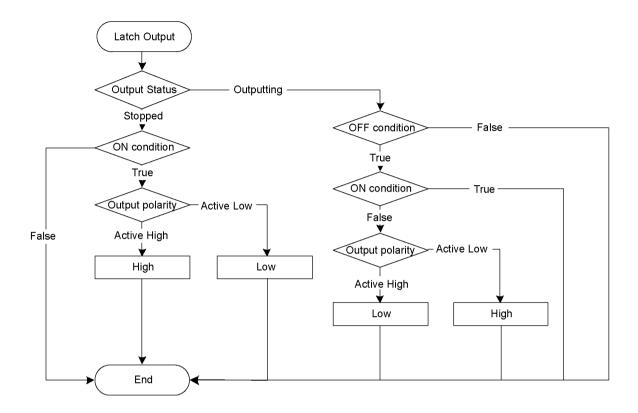
# 12.4.3 Output

### Level output


It outputs with the selected polarity while the ON condition is met. Output terminates when the ON condition is not met.



### Pulse output


It outputs with the selected polarity for the specified time (10 ms unit) after the ON condition is met.

Output terminates when the specified time elapses.



### Latch output

Output starts with the selected polarity when ON condition is met. Output terminates when OFF condition is met and ON condition is not met at the same time.



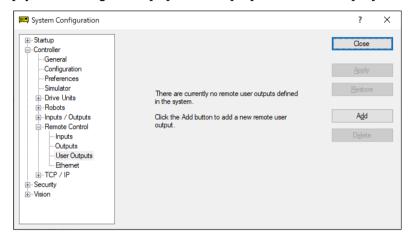
### 12.4.4 Restrictions

Condition expressions of the SPEL language are used to specify conditions. However, they have following restrictions.

- Variables cannot be used.
- Labels cannot be used.
- Available functions are limited.

### Available Functions

| Α | Abs               | Acos                | Agl         | And         |
|---|-------------------|---------------------|-------------|-------------|
|   | Arm<br>Atan       | ArmDef<br>Atan2     | Asc         | Asin        |
| В | BClr              | BClr64              | BoxDef      | BSet        |
|   | BSet64            | BTst                | BTst64      |             |
| С | Cos               | CR                  | CS          | CT          |
|   | CtrlDev           | CtrlInfo            | CU          | CurPos      |
|   | CV<br>CZ          | CW                  | CX          | CY          |
| D | DegToRad          | DispDev             | Dist        |             |
| Ε | ECP               | ECPDef              | ECPSet      | ElapsedTime |
|   | Era               | Errb                | ErrorOn     | Ert         |
|   | EStopOn           |                     |             |             |
| F | Fine              | Fix                 |             |             |
| G | GetRobotInsideBox | GetRobotInsidePlane |             |             |
| Н | Hand              | Hofs                | HomeDef     | Hour        |
| I | In                | InBCD               | Inertia     | InPos       |
|   | InReal            | InsideBox           | InsidePlane | InW         |
| J | J1Angle           | J1Flag              | J4Flag      | J6Flag      |
|   | JRange            |                     |             |             |
| L | LatchState        | LimitTorque         | LimZMargin  | Local       |
|   | LocalDef          | LShift              | LShift64    |             |
| М | MCalComplete      | MemIn               | MemInW      | MemSw       |
|   | Motor             |                     |             |             |
| 0 | OLRate            | Oport               |             |             |


| Р | PAgl<br>Plane<br>PPls                                            | PauseOn<br>PlaneDef<br>Power                    | PDef<br>PLocal<br>PTPBoost                             | PG_Lspeed<br>Pls                             |
|---|------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------------------------------|
| Q | QPDecelR                                                         | QPDecelS                                        |                                                        |                                              |
| R | RadToDeg<br>RecoverPos<br>RShift                                 | RealAccel<br>Rnd<br>RShift64                    | RealPls<br>RobotInfo                                   | RealPos<br>RobotType                         |
| S | SafetyOn<br>SF_GetStatus<br>SF_PeakSpeedS<br>SpeedFactor<br>Stat | Sgn SF_LimitSPeedS SF_PealSpeedSClear SpeedR Sw | SF_GetParam SF_LimitSpeedSEnable Sin SpeedS SyncRobots | SF_GetParam\$ SF_RealSpeedS Speed Sqr SysErr |
| Т | Tan<br>TCLim<br>TLDef                                            | TaskDone<br>TcSpeed<br>TLSet                    | TaskInfo<br>TeachOn<br>Tool                            | TaskState<br>Time                            |
| ٧ | Val                                                              |                                                 |                                                        |                                              |
| W | Weight                                                           |                                                 |                                                        |                                              |
| X | XY                                                               | XYLimDef                                        |                                                        |                                              |

### 12.4.5 How to set the user-defined output remote I/O

### (1) Add the use-defined output remote I/O

The user-defined output remote I/O are not defined as default. To use them, add the output remote I/O in the configuration dialog box and configure the output condition. The added I/O will be available in the remote output setting.

[System Configuration] - [Controller] - [Remote Control] - [User Outputs]



Click the <Add> button. The following dialog box will appear.

Select the items and set the condition expressions. Then, click the <Apply> button.



### [Name]

Set the name of the signal. Default is "UseroutputX".

#### X = I/O number

The name specified here is displayed in the remote output setting and the I/O monitor.

#### [Type]

Select the output type.

#### [Polarity]

Select the polarity to output when the condition is met.

Active high: High Active low: Low

### [On Condition]

Set the condition to start output. Setting is required for all output types.

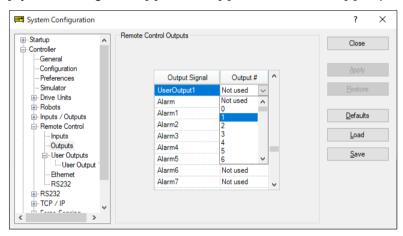
#### [Off Condition]

Setting is required if the Latch output is selected.

#### [Robot]

Setting is required if the expression related to the manipulator is used for On and Off conditions. The conditions for only one robot can be set.

This setting is not necessary if the manipulator-related condition is not used.

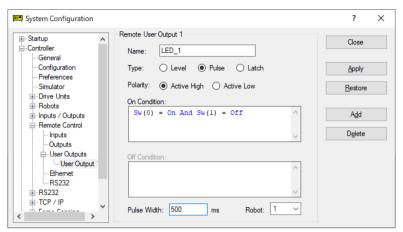



If unregistered robot number is specified, an initialization error occurs at the Controller restart.

### (2) Setting of remote outputs

To enable the added I/O outputs, assign the registered user definition to the target I/O. Assignment is done by the remote output.

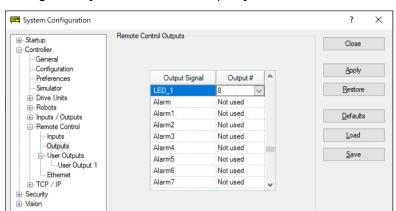
### [System Configuration]-[Controller]-[Remote Controller]-[Outputs]




The names of the added signals appear in [Output Signal]. Select the bit to output.

### 12.4.6 Usage example

If you want to turn ON the bit port 8 of the standard I/O for 500 ms when the bit port 0 of the standard I/O input is ON and the bit port 1 is OFF:


#### (1) User definition



- 1. Set "LED\_1" for the [Name] in this example. Change the setting if necessary.
- 2. Select "Pulse" for [Type].
- 3. Select [Active High] for [Polarity] in order to output ON.
- 4. Set the On condition. In this example, set the following condition expression.

$$Sw(0) = On And Sw(1) = Off$$

- 5. Set "500" for [Pulse Width].
- 6. Click the <Apply> button.



# (2) Setting in the [Remote Control Outputs]

- 1. Select the output bit "8" for the configured name (LED 1).
- 2. Click the <Apply> button.

Now, output to the I/O will be executed according to the condition expression after rebooting.

# 13. RS-232C Communications

The Robot Controller supports:

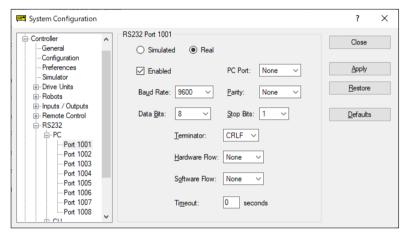
Windows part : Standard RS-232C port  $\times 2$ 

(Standard: Port 1001 only, High-speed: Port 1001, 1002)

Standard RS-232C : 1 port as standard

Expanded RS-232C : Option RS-232C port × 4 at maximum (2 ports per board)

However, RS-232C port  $\times$  2 at maximum when using Force Sensor I/F board with RC700 series. (For a board, one is the


maximum.)

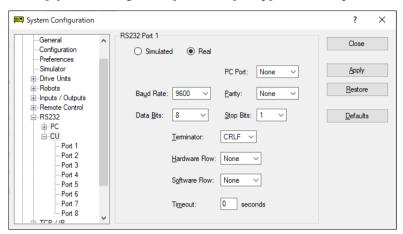
For instructions on how to install RS-232C boards, refer to the *Robot Controller* manual.

# 13.1 RS-232C Software Configuration

To configure a Windows Part RS-232C port

1. Select [System Configuration] from the [Setup] menu and open the dialog box.




- 2. Select [Controller]-[RS-232]-[PC] from the tree on the left.
- 3. Set the [Enabled] check box.
- 4. Change the settings as desired.
- 5. Click <Apply> to save the new settings.
- 6. Click <Close>.



If several ports are used for communication at one time with more than a 19200 baud rate, error 2929 or 2922 may occur. In this case, select a lower baud rate or avoid using several ports at one time.

### To configure a standard / option RS-232C port

1. Select [System Configuration] from the [Setup] menu and open the dialog box.



- 2. Select the [Controller]-[RS-232]-[CU] from the tree on the left.
- 3. Select a port to configure.
- 4. Change the settings as desired.
- 5. Click < Apply> to save the new settings.
- 6. Click <Close>.

# 13.2 RS-232C Commands

The following is a list of all of the commands associated with RS-232C communications. For details, please see the online help or *SPEL*<sup>+</sup> *Language Reference Manual*.

OpenCom Opens a communications port.

ChkCom Returns port status: the number of bytes waiting to be read or error

condition.

CloseCom Closes a communications port.

SetCom Sets communications port parameters at runtime or from the

Command window.

Print # Sends characters out of the port.

Input # Receives characters from the port into one or more variables.

Line Input # Receives one line characters from the port into one string variable.

Receives one or more characters from the port into one string variable.

ReadBin # Receives one or more bytes from the port.

Write # Sends characters out of the port.

WriteBin # Sends one or more bytes out of the port.

# 14. TCP/IP Communications

EPSON RC+ 7.0 supports 16 TCP/IP ports that allow peer to peer communications.

This chapter contains instructions on using TCP/IP, including IP addresses of LAN-1 port and Windows TCP/IP configuration.

■ LAN-2 is not available for pear to pear communications of EPSON RC+ 7.0. For details, refer to following.



Robot Controller RC700 series manual: Functions 9. LAN (Ethernet Communication)

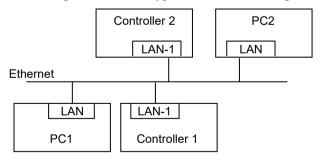
Robot Controller RC700-D manual: Functions 7. LAN (Ethernet Communication) Port

Robot Controller RC700-E manual: 4.7 LAN (Ethernet Communication) Port

# 14.1 TCP/IP Setup

Before you can use TCP/IP communications between PCs and controllers, you must configure your network. The following sections describe basic network configuration.

#### 14.1.1 Ethernet Hardware


The Controller includes a built in Ethernet interface with an RJ45 connector accessible from the controller front panel. It supports 10BaseT (10 Mbps) and 10BaseTX (100 Mbps).

Your PC will need a 10 BaseT 10/100 adapter to communicate with the Controller via Ethernet.

#### 14.1.2 IP Addresses

The controller has a fixed IP address that you can configure from EPSON RC+ 7.0. To configure the IP address, mask, and gateway for the controller, refer to 5.13.2 [System Configuration] Command (Setup Menu).

The following table shows a typical IP address configuration.



| Host Name   | IP Address  | Subnet    | Subnet Mask   |  |  |
|-------------|-------------|-----------|---------------|--|--|
| PC1         | 192.168.0.1 | 192.168.0 | 255.255.255.0 |  |  |
| PC2         | 192.168.0.2 | 192.168.0 | 255.255.255.0 |  |  |
| Controller1 | 192.168.0.3 | 192.168.0 | 255.255.255.0 |  |  |
| Controller2 | 192.168.0.4 | 192.168.0 | 255.255.255.0 |  |  |

In this example, the network address (subnet) is 192.168.0. With a subnet mask of 255.255.255.0, there can be 254 hosts on this subnet (0 and 255 cannot be used).

Refer to the Microsoft Windows operating system manual for instructions on setting the PC IP address.

### 14.1.3 IP Gateway

If you are connecting PCs and controllers on different networks, you will need to route traffic between the networks using one or more routers. Each device communicating via Ethernet will need to have their default gateway address set to the address of the router for its subnet.

To configure the gateway address for the controller, refer to 5.13.2 [System Configuration] Command (Setup Menu).

### 14.1.4 Testing Windows TCP/IP setup

Use the ping command from a Command Window to test communications.

First, do a loopback test to check if you can ping your own address by using the local IP address:

```
C:\>ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<10ms TTL=128
C:\>
```

### Ping your PC's IP address:

```
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<10ms TTL=128
C:\>
```

#### Now ping controller on the network. :

```
C:\>ping 192.168.0.3
Pinging pc2 [192.168.0.3] with 32 bytes of data:
Reply from 192.168.0.3: bytes=32 time<10ms TTL=128
C:\>
```

# 14.2 TCP/IP Software Configuration

You can configure TCP/IP settings for the controller in a SPEL<sup>+</sup> program using the SetNet command. You can also configure settings from the [TCP/IP] tab on the [Setup]-[System Configuration] dialog.



### To configure a TCP/IP port

- 1. Select the TCP/IP port you want to configure from [Setup]-[System Configuration]-[Controller]-[TCP/IP].
- 2. Enter the IP address for the controller or PC that you want this controller to communicate with.

The controller does not support DNS, so you must specify an IP address for the host you are communicating with. You cannot specify a name for the host.

- 3. Enter the TCP/IP port number. This must be the same port number that is used on the host device. It must be different from any of the other TCP/IP port numbers used for the other TCP/IP ports.
- 4. Change the other settings as desired.
- 5. Click <Apply> to save the new settings and click <Close>.

### 14.3 TCP/IP Commands

Here is a list of all of the commands associated with TCP/IP communications. For details, please see the online help or SPEL<sup>+</sup> Language Reference Manual.

| OpenNet     | Opens a TCP/IP port.                                                            |
|-------------|---------------------------------------------------------------------------------|
| ChkNet      | Returns port status: the number of bytes waiting to be read or error condition. |
| CloseNet    | Closes a TCP/IP port.                                                           |
| SetNet      | Sets communications port parameters at runtime or from the Command window.      |
| Print #     | Sends characters out of the port.                                               |
| Input #     | Receives characters from the port into one or more variables.                   |
| Line Input# | Receives one line characters from the port into one string variable.            |
| Read #      | Receives one or more characters from the port into one string variable.         |
| ReadBin #   | Receives one or more bytes from the port.                                       |
| Write #     | Sends characters out of the port.                                               |
| WriteBin#   | Sends one or more bytes out of the port.                                        |

# 15. Security

## 15.1 Overview

The Security function allows you to manage EPSON RC+ 7.0 users and also monitor usage.

The administrator and user to use the security function can be set by the customer.

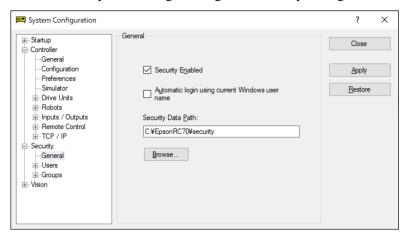
When the Security function is activated, administrators can add groups and users. Each group can have one or more rights associated with it. For example, you can create a group called Maintenance that has rights to edit robot points, use Jog & Teach, and enable you to use the Command Window. When a user attempts to do something that he/she does not have a right for, a message "Permission denied" will be displayed.

Each login session is recorded in a Microsoft Access compatible data base. Security Log Viewer is included that allows you to view each session's activity.

User can login to EPSON RC+ with a name and password. Optionally, EPSON RC+ can use the Windows user name to log in automatically.

# 15.2 Security Configuration

EPSON RC+ 7.0 requires a path for security files. If you have more than one system on a network, it is recommended that you setup the security files path for all systems to store the security logs in a server on the network.


To administer EPSON RC+ 7.0 security:

- 1. Start EPSON RC+ 7.0.
- 2. Select [Setup]-[System Configuration].
- 3. Click on the [Security] tree.
- 4. On the [General] tree, type in the path for your security files or click the <Browse> button.
- 5. Click on the [Users] tree.
- 6. For each user on your system, click <New> button.

  Each new user belongs to the Guest group by default. Click in the group field, then click the dropdown button to select the desired group.

# [General] Tab

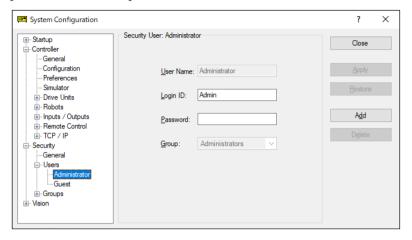
This tab allows you to configure the general security settings.



#### Automatic log in using current Windows user name

Check this box if you want EPSON RC+ 7.0 to use the current Windows login ID. When the Security function is active, you will not see a login dialog when EPSON RC+ starts, unless EPSON RC+ cannot find the user in the Security system.

### Security data path


This is the path where security files will be stored.

This path should be protected with Windows security rights so that only Administrators can delete the files in this path. All other EPSON RC+ users should have only read rights to the files in this path.

# Security User: Administrator

This page allows you to add and remove EPSON RC+ 7.0 users.

Two users are permanent: Administrator and Guest. Only the passwords can be changed for these users. You should always use a password for the Administrator, though no password is set at shipment time.



### To add a user

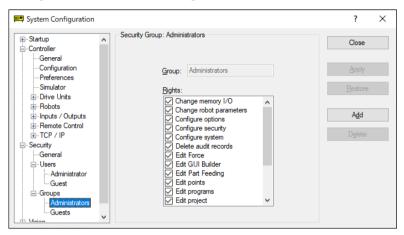
- 1. Click the <Add> button.
- 2. A new user will be added to the tree.
- 3. Click the [Group] tree for the new user.
- 4. Click the dropdown button and select the group for the user.

### To delete a user

- 1. Click the [User] you want to delete in the tree.
- 2. Click the <Delete> button.
- 3. A confirmation message to delete the user will appear.

### To change a user's group

- 1. Click the [Group] dropdown for the user you want to change.
- 2. Click a dropdown button in the field and select a new group.


### Editing Name, Login ID, and Password

- 1. Click a [User] you want to change.
- 2. Edit the field. All fields are not case sensitive.

### Security Group: Administrator

This page allows you to configure user groups. Every EPSON RC+ 7.0 user must belong to a group.

Two groups cannot be deleted or modified: Administrators and Guests. Administrators have full rights, and Guests have no rights.



### To add a group

- 1. Click the <Add> button.
- 2. Type in a name for the group.
- 3. Click the <Apply> button.

### To delete a group

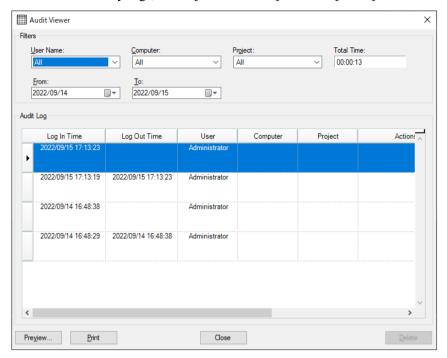
- 1. Select the group you want to delete.
- 2. Click the <Delete> button.
- 3. A confirmation message to delete the group will appear.

#### To change rights for groups

- Select the group you want to change rights for.
   Note that you cannot change rights for Administrators and Guests.
- 2. To add a right, set the checkbox(es) for the desired rights in the [Rights] checkbox list.
- 3. To remove rights, clear the checkbox(es) for the rights you want to remove in the [Right] checkbox list.

# **Group Rights**

The list below shows the rights that are available for user groups. Administrators have full rights, and Guests have no rights.


| Right                  | Description                                                           |  |  |  |
|------------------------|-----------------------------------------------------------------------|--|--|--|
| Edit GUI Builder       | Users can edit GUI Builder parameters.                                |  |  |  |
| Edit Part Feeding      | Users can edit Part Feeding parameters.                               |  |  |  |
| Configure options      | Users can change option settings in [Setup]-[Options].                |  |  |  |
| Use Command Window     | Users can open the command window and execute commands.               |  |  |  |
| Configure system       | Users can configure the entire EPSON RC+ system.                      |  |  |  |
| Jog                    | Users can open the [Jog & Teach] dialog and jog a robot.              |  |  |  |
| Configure security     | Users can change security settings.                                   |  |  |  |
| Check security log     | Users can see security logs.                                          |  |  |  |
| Delete security log    | Users can delete security logs in [Tools]-[Audit Viewer].             |  |  |  |
| Teach points           | Users can teach points and delete points from the Jog & Teach dialog. |  |  |  |
| Edit vision            | Users can edit vision parameters.                                     |  |  |  |
| Edit force             | Users can edit force parameters.                                      |  |  |  |
| Edit programs          | Users can edit program.                                               |  |  |  |
| Edit projects          | Users can edit projects.                                              |  |  |  |
| Edit points            | Users can change points.                                              |  |  |  |
| Change memory I/O      | Users can turn ON/OFF memory I/O bits.                                |  |  |  |
| Change robot parameter | Users can open the [Robot Manager] dialog and change the settings.    |  |  |  |
| Output port ON         | Users can turn ON/OFF outputs.                                        |  |  |  |

# 15.3 Security Audit Viewer

When the Security function is enabled, EPSON RC+ 7.0 will keep track of who logs into the system and actions performed.

Activity is stored to the security data path in the Microsoft Access compatible data base format.

To view the security logs, select [Audit Viewer] from the [Tools] menu.



# 15.4 SPEL<sup>+</sup> Security Command

Here are the SPEL<sup>+</sup> commands that are enabled with the Security function. For details, please see the *EPSON RC+ 7.0 Online Help* or *SPEL+ Language Reference manual*.

| Command                   | Description                                         |  |  |
|---------------------------|-----------------------------------------------------|--|--|
| LogIn Function            | Logs in the application as another user at runtime. |  |  |
| GetCurrentUser\$ Function | Returns the login ID of the current user.           |  |  |

# 16. Conveyor Tracking

# 16.1 Overview

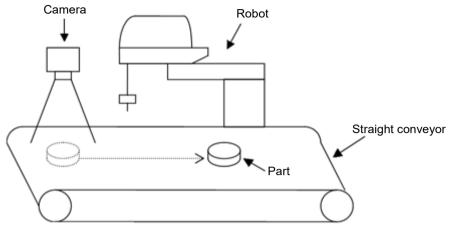
Conveyor Tracking is a process in which a robot picks up parts from a stationary or moving conveyor that are found by a vision system or sensor.

The EPSON RC+ 7.0 Conveyor Tracking option supports both tracking and indexed conveyor systems.

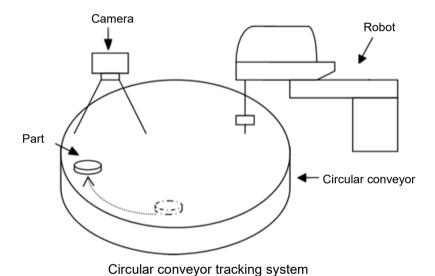
### Tracking conveyor system

Conveyor moves constantly. Vision system or sensor system finds the parts on it and robot picks them up as they move. During tracking, the robot can move along with the part as it picks up parts.

### • Indexed conveyor system


Conveyor moves a specified distance and then stops. The vision system finds the parts and robot picks up each part. After finding and picking up all parts, the conveyor moves again.

A total of 16 physical conveyors can be defined on each system. A physical conveyor has one encoder whose signals are received by an encoder board.

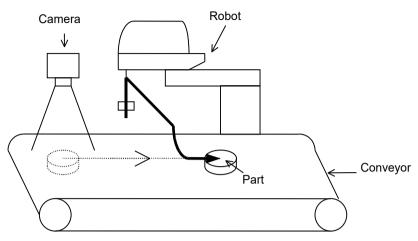

Up to 16 logical conveyors can be defined in each project. To define a logical conveyor, set a conveyor number, a robot number, encoder number and select vision or sensor.

Multiple conveyors and multiple-robot conveyors are supported.

The Conveyor Tracking option is available for straight conveyors and circular conveyors, as shown in the figures below. These conveyors have different calibration and programming methods.



Straight conveyor tracking system

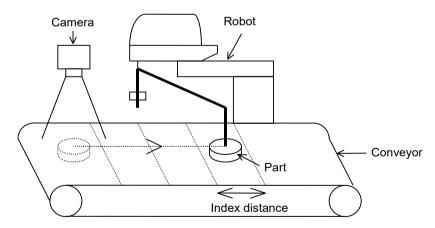



EPSON RC+ 7.0 (Ver.7.5) User's Guide Rev.10

# 16.2 Conveyor Tracking Processes

### Tracking conveyor system

- 1. Vision system or sensor system finds the parts on a continuously moving conveyor.
- 2. Robot picks up the parts on the conveyor as they move.




Configuration example of

Tracking Conveyor System (Vision System)

## Indexed conveyor system

- 1. Conveyor moves a specified distance.
- 2. Vision system or sensor system finds the parts on the conveyor when it stops.
- 3. Robot picks up the parts found by vision system.
- 4. After finding and picking up all parts, conveyor moves by the specified distance again.



Configuration example of

Indexed Conveyor System (Vision System)

# 16.3 System Structure

### Structure of Vision Conveyor Tracking System

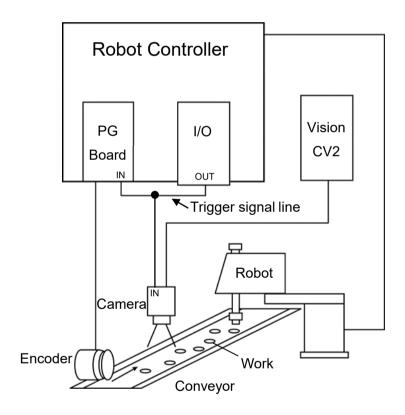
The structure of the vision conveyor tracking system is shown in the figures below.

Not to reduce the picking accuracy, you need to set the same timing for the camera to search for parts on the conveyor and for the encoder on the conveyor to latch position. It is also recommended to use a photoelectric sensor to match the timing of imaging a moving workpiece.

There are hardware trigger and software trigger as trigger methods for latching the camera image and encoder count.

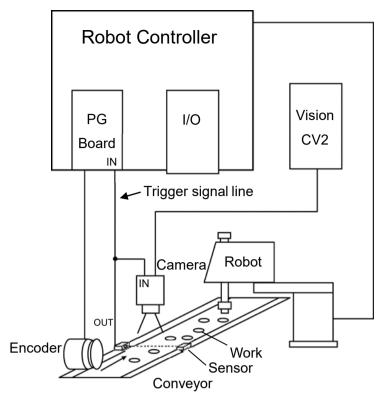
Hardware trigger: Structure that inputs from the photoelectric sensor or controller I/O

to the trigger terminal of the camera and the encoder latch terminal


of the PG board

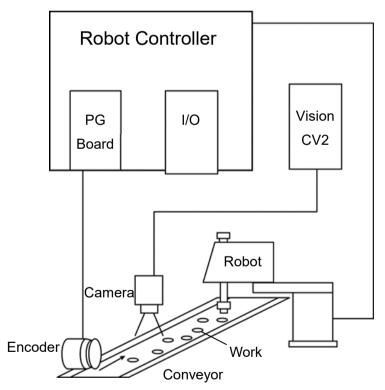
Asynchronous reset mode

Software trigger: Structure without trigger signal


The work is imaged by executing the vision sequence, and the SPEL

command that latches the encoder count is executed.



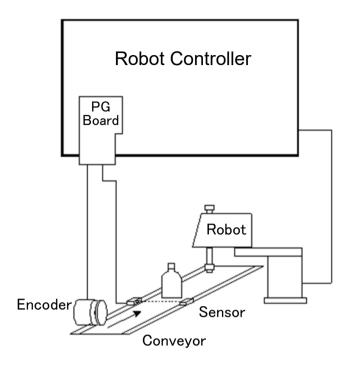

Vision Conveyor Tracking Structure Example (using a hardware trigger)

Trigger signal that latches the camera image and encoder count is output from the controller I/O



Vision Conveyor Tracking Structure Example 2 (using a hardware trigger)

Trigger signal that latches the camera image and encoder count is output from the photoelectric sensor




Vision Conveyor Tracking Structure Example 3 (using a software trigger)

Trigger signal is not be used.

# Structure of Sensor Conveyor Tracking System

The structure of the Sensor Conveyor Tracking System is shown in the figure below. This system uses a hardware trigger.



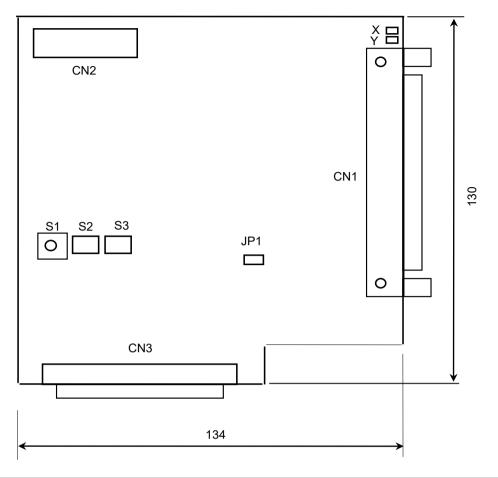
Sensor Conveyor Tracking Overview

# 16.4 Hardware Installation

To use conveyor tracking, you must install encoders for each physical conveyor on the system. Each encoder is wired to a single channel on a PG (Pulse Generator) board. Each board can accommodate up to 4 encoders. A trigger input is also provided for each encoder to latch position, such as when used with a vision camera with a strobe.

### PG board specifications

The table below shows the specification for the PG board.


| Board Name                 | H756                                                                                            |
|----------------------------|-------------------------------------------------------------------------------------------------|
| Compatible Controller      | RC700 series/ RC90 series (EPSON RC+ 7.0)                                                       |
| Board Extension Capability | 4 boards maximum                                                                                |
| Encoder channels           | 4 channels / board                                                                              |
| Encoder Type               | ABZ phase differential input (RS-422 line receiver)                                             |
| Input Pulse Rate           | Max. 5 MPPS                                                                                     |
| Input Signal               | Conveyor pulse latch input                                                                      |
| Board Address              | Set the DIP switch according the board number. (See DIP Switch Settings later in this chapter). |
| connector                  | DX10A - 100S (Hirose Electric Co.,Ltd.)                                                         |
| Power Supply               | 24V ±2V 200mA or under                                                                          |

The following encoder models have been tested:

OMRON E6B2-CWZ1X

TAMAGAWA TS5312N512-2000C/T

The figure below shows the layout of the PG board.



# **DIP** switch settings

The board address is set by DIP switch (S2, S3) on the PG Board according to the board number, as shown in the following table.

|         |         | S2         |            |            |            | S3         |            |           |           |
|---------|---------|------------|------------|------------|------------|------------|------------|-----------|-----------|
| Board # | Address | 1<br>(A15) | 2<br>(A14) | 3<br>(A13) | 4<br>(A12) | 1<br>(A11) | 2<br>(A10) | 3<br>(A9) | 4<br>(A8) |
| 1       | 1100h   | OFF        | OFF        | OFF        | ON         | OFF        | OFF        | OFF       | ON        |
| 2       | 1200h   | OFF        | OFF        | OFF        | ON         | OFF        | OFF        | ON        | OFF       |
| 3       | 1300h   | OFF        | OFF        | OFF        | ON         | OFF        | OFF        | ON        | ON        |
| 4       | 1400h   | OFF        | OFF        | OFF        | ON         | OFF        | ON         | OFF       | OFF       |

If you purchased the PG board separately, place the attached Board No. Label sticker on the board panel prior to installation of the board in the Control Unit and keep a written record of the address setting and the board number.

If you have purchased the PG Board with the Control Unit, the board address has been set properly before shipment and further settings should not be necessary.

# Jumper settings

The jumpers are reserved and should not be changed.

### Rotary switch settings

The rotary switch S1 is reserved and should not be changed.

S1: Position of 1

# **Signal Connections**

The table below lists the connectors on the PG board and the compatible connectors for wiring:

| Receptacle on the Board           |                                | DXA10A-100S<br>(manufacturer: Hirose Electric Co.,Ltd.) |
|-----------------------------------|--------------------------------|---------------------------------------------------------|
|                                   | Individually pressed-in type   | DX30-100P (for AWG#30)<br>DX30A-100P (for AWG#28)       |
| Wiring Plug<br>Connectors         | Pressed-in-as-a-<br>whole type | DX31-100P (for AWG#30)<br>DX31A-100P (for AWG#28)       |
|                                   | Soldered type                  | DX40-100P                                               |
| Connector for Wiring to the Cover |                                | DX-100-CV1                                              |

# Signal Assignments: PG board connector (DX10A-100S)

The signals on the PG board connector are assigned as shown in the table below.

| Pin | Dir | Signal | Description                             | Pin | Dir | Signal      | Description                                 |
|-----|-----|--------|-----------------------------------------|-----|-----|-------------|---------------------------------------------|
| 1   | -   | -      | Not used                                | 51  | -   | -           | Not used                                    |
| 2   | -   | -      | Not used                                | 52  | -   | -           | Not used                                    |
| 3   | -   | -      | Not used                                | 53  | -   | -           | Not used                                    |
| 4   | -   | -      | Not used                                | 54  | -   | -           | Not used                                    |
| 5   | -   | -      | Not used                                | 55  | -   | -           | Not used                                    |
| 6   | -   | -      | Not used                                | 56  | -   | -           | Not used                                    |
| 7   | -   | -      | Not used                                | 57  | -   | -           | Not used                                    |
| 8   | -   | -      | Not used                                | 58  | -   | -           | Not used                                    |
| 9   | -   | -      | Not used                                | 59  | -   | -           | Not used                                    |
| 10  | In  | TRG1   | Trigger input for Counter1              | 60  | -   | -           | Not used                                    |
| 11  | In  | TRG2   | Trigger input for Counter2              | 61  | -   | -           | Not used                                    |
| 12  | In  | TRG3   | Trigger input for Counter3              | 62  | -   | -           | Not used                                    |
| 13  | In  | TRG4   | Trigger input for Counter4              | 63  | -   | -           | Not used                                    |
| 14  | In  | EXTV   | External power supply for Input circuit | 64  | In  | EXTV<br>GND | External power supply GND for Input circuit |
| 15  | In  | EXTV   | External power supply for Input circuit | 65  | In  | EXTV<br>GND | External power supply GND for Input circuit |
| 16  | -   | -      | Not used                                | 66  | -   | -           | Not used                                    |
| 17  | -   | -      | Not used                                | 67  | -   | -           | Not used                                    |
| 18  | -   | -      | Not used                                | 68  | -   | -           | Not used                                    |
| 19  | -   | -      | Not used                                | 69  | -   | -           | Not used                                    |
| 20  | -   | -      | Not used                                | 70  | -   | -           | Not used                                    |
| 21  | -   | -      | Not used                                | 71  | -   | -           | Not used                                    |
| 22  | -   | -      | Not used                                | 72  | -   | -           | Not used                                    |
| 23  | -   | -      | Not used                                | 73  | -   | -           | Not used                                    |
| 24  | -   | -      | Not used                                | 74  | -   | -           | Not used                                    |

| Pin | Dir | Signal | Description                      | Pin | Dir | Signal | Description                      |
|-----|-----|--------|----------------------------------|-----|-----|--------|----------------------------------|
| 25  | In  | +A1    | Phase +A signal for<br>Counter 1 | 75  | In  | +A3    | Phase +A signal for<br>Counter 3 |
| 26  | In  | -A1    | Phase –A signal for<br>Counter 1 | 76  | In  | -A3    | Phase –A signal for<br>Counter 3 |
| 27  | In  | +B1    | Phase +B signal for<br>Counter 1 | 77  | In  | +B3    | Phase +B signal for<br>Counter 3 |
| 28  | In  | -B1    | Phase –B signal for<br>Counter 1 | 78  | In  | -В3    | Phase –B signal for Counter 3    |
| 29  | In  | +Z1    | Phase +Z signal for<br>Counter1  | 79  | In  | +Z3    | Phase +Z signal for<br>Counter 3 |
| 30  | In  | -Z1    | Phase –Z signal for<br>Counter 1 | 80  | In  | -Z3    | Phase –Z signal for Counter 3    |
| 31  | -   | -      | Not used                         | 81  | -   | -      | Not used                         |
| 32  | -   | -      | Not used                         | 82  | -   | -      | Not used                         |
| 33  | -   | -      | Not used                         | 83  | -   | -      | Not used                         |
| 34  | -   | -      | Not used                         | 84  | -   | -      | Not used                         |
| 35  | -   | -      | Not used                         | 85  | -   | -      | Not used                         |
| 36  | -   | -      | Not used                         | 86  | -   | -      | Not used                         |
| 37  | -   | -      | Not used                         | 87  | -   | -      | Not used                         |
| 38  | -   | -      | Not used                         | 88  | -   | -      | Not used                         |
| 39  | -   | -      | Not used                         | 89  | -   | -      | Not used                         |
| 40  | -   | -      | Not used                         | 90  | -   | -      | Not used                         |
| 41  | In  | +A2    | Phase +A signal for<br>Counter 2 | 91  | In  | +A4    | Phase +A signal for<br>Counter 4 |
| 42  | In  | -A2    | Phase –A signal for<br>Counter 2 | 92  | In  | -A4    | Phase –A signal for<br>Counter 4 |
| 43  | In  | +B2    | Phase +B signal for<br>Counter 2 | 93  | In  | +B4    | Phase +B signal for<br>Counter 4 |
| 44  | In  | -B2    | Phase –B signal for<br>Counter 2 | 94  | In  | -B4    | Phase –B signal for Counter4     |
| 45  | In  | +Z2    | Phase +Z signal for<br>Counter 2 | 95  | In  | +Z4    | Phase +Z signal for<br>Counter 4 |
| 46  | In  | -Z2    | Phase –Z signal for<br>Counter 2 | 96  | In  | -Z4    | Phase –Z signal for<br>Counter 4 |
| 47  | -   | -      | Not used                         | 97  | -   | -      | Not used                         |
| 48  | -   | -      | Not used                         | 98  | -   | -      | Not used                         |
| 49  | -   | -      | Not used                         | 99  | -   | -      | Not used                         |
| 50  | -   | GND    | GND                              | 100 | -   | GND    | GND                              |

## Pin # 25 to 30, 41 to 46, 75 to 80, 91 to 96

Connect the pin numbers shown above with encoder output (+A, -A, +B, -B, +Z, -Z).

### Pins # 10 to 13

When the conveyor pulse is latched by external signal, connect the pin numbers shown above with latch signal. Exactly when the signal is turned OFF to ON, the encoder pulse is latched.

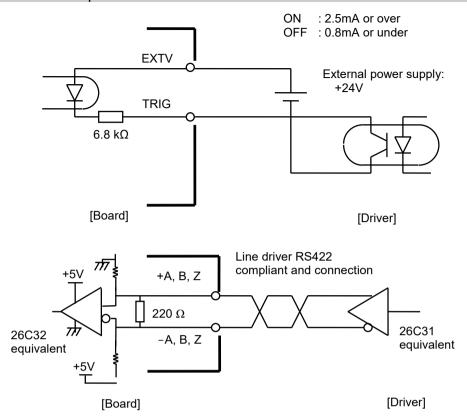
### Pins # 14, 15, 64 and 65

When using the pin # 10 to 13, connect external power with the pin numbers shown above.

When not using the pin # 10 to 13, it is not necessary to connect external power with the pin numbers shown above.

# Signal Assignments: PG board connector terminal block 1

The signals on the PG board connector terminal block #1 are assigned as shown in the table below. The pin numbers in parentheses are the pins on the PG board connector.

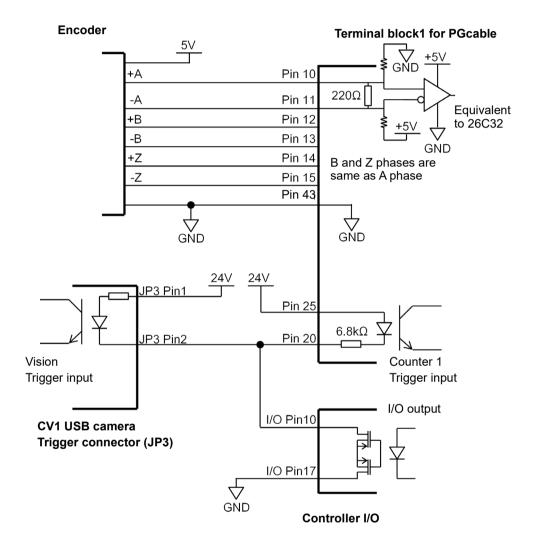

| Pin        | Signal | Description                      | Pin     | Signal      | Description                   |
|------------|--------|----------------------------------|---------|-------------|-------------------------------|
| 1 (16)     | -      | Not used                         | 26 (32) | -           | Not used                      |
| 2 (17)     | -      | Not used                         | 27 (33) | -           | Not used                      |
| 3 (18)     | -      | Not used                         | 28 (34) | -           | Not used                      |
| 4 (19)     | -      | Not used                         | 29 (35) | -           | Not used                      |
| 5 (20)     | -      | Not used                         | 30 (36) | -           | Not used                      |
| 6 (21)     | -      | Not used                         | 31 (37) | -           | Not used                      |
| 7 (22)     | -      | Not used                         | 32 (38) | -           | Not used                      |
| 8 (23)     | -      | Not used                         | 33 (39) | -           | Not used                      |
| 9 (24)     | -      | Not used                         | 34 (40) | -           | Not used                      |
| 10<br>(25) | +A1    | Phase +A signal for<br>Counter 1 | 35 (41) | +A2         | Phase +A signal for Counter 2 |
| 11<br>(26) | -A1    | Phase –A signal for Counter 1    | 36 (42) | -A2         | Phase –A signal for Counter 2 |
| 12<br>(27) | +B1    | Phase +B signal for<br>Counter 1 | 37 (43) | +B2         | Phase +B signal for Counter 2 |
| 13<br>(28) | -B1    | Phase –B signal for Counter 1    | 38 (44) | -B2         | Phase –B signal for Counter 2 |
| 14<br>(29) | +Z1    | Phase +Z signal for<br>Counter 1 | 39 (45) | +Z2         | Phase +Z signal for Counter 2 |
| 15<br>(30) | -Z1    | Phase –Z signal for Counter 1    | 40 (46) | -Z2         | Phase –Z signal for Counter 2 |
| 16<br>(31) | -      | Not used                         | 41 (47) | -           | Not used                      |
| 17<br>(48) | -      | Not used                         | 42 (49) | -           | Not used                      |
| 18 (9)     | -      | Not used                         | 43 (50) | GND         | Ground                        |
| 19<br>(60) | -      | Not used                         | 44 (61) | -           | Not used                      |
| 20 (10)    | TRG1   | Trigger input for Counter 1      | 45 (11) | TRG2        | Trigger input for Counter 2   |
| 21 (1)     | -      | Not used                         | 46 (5)  | -           | Not used                      |
| 22 (2)     | -      | Not used                         | 47 (6)  | -           | Not used                      |
| 23 (3)     | -      | Not used                         | 48 (7)  | -           | Not used                      |
| 24 (4)     | -      | Not used                         | 49 (8)  | -           | Not used                      |
| 25<br>(14) | EXTV   | External power supply            | 50 (64) | EXTV<br>GND | External power supply ground  |

## Signal Assignments: PG board connector terminal block 2

The signals on the PG board connector terminal block #2 are assigned as shown in the table below. The pin numbers in parentheses are the pins on the PG board connector.

| Pin        | Signal | Description                      | Pin         | Signal      | Description                   |
|------------|--------|----------------------------------|-------------|-------------|-------------------------------|
| 1 (66)     | -      | Not used                         | 26 (82)     | -           | Not used                      |
| 2 (67)     | -      | Not used                         | 27 (83)     | -           | Not used                      |
| 3 (68)     | -      | Not used                         | 28 (84)     | -           | Not used                      |
| 4 (69)     | -      | Not used                         | 29 (85)     | -           | Not used                      |
| 5 (70)     | -      | Not used                         | 30 (86)     | -           | Not used                      |
| 6 (71)     | -      | Not used                         | 31 (87)     | -           | Not used                      |
| 7 (72)     | -      | Not used                         | 32 (88)     | -           | Not used                      |
| 8 (73)     | -      | Not used                         | 33 (89)     | -           | Not used                      |
| 9 (74)     | -      | Not used                         | 34 (90)     | -           | Not used                      |
| 10<br>(75) | +A3    | Phase +A signal for Counter 3    | 35 (91)     | +A4         | Phase +A signal for Counter 4 |
| 11<br>(76) | -A3    | Phase –A signal for Counter 3    | 36 (92)     | -A4         | Phase –A signal for Counter 4 |
| 12<br>(77) | +B3    | Phase +B signal for Counter 3    | 37 (93)     | +B4         | Phase +B signal for Counter 4 |
| 13<br>(78) | -В3    | Phase –B signal for Counter 3    | 38 (94)     | -B4         | Phase –B signal for Counter 4 |
| 14<br>(79) | +Z3    | Phase +Z signal for<br>Counter 3 | 39 (95)     | +Z4         | Phase +Z signal for Counter 4 |
| 15<br>(80) | -Z3    | Phase –Z signal for Counter 3    | 40 (96)     | -Z4         | Phase –Z signal for Counter 4 |
| 16<br>(81) | -      | Not used                         | 41 (97)     | -           | Not used                      |
| 17<br>(98) | -      | Not used                         | 42 (99)     | -           | Not used                      |
| 18<br>(59) | -      | Not used                         | 43<br>(100) | GND         | Ground                        |
| 19<br>(62) | -      | Not used                         | 44 (63)     | -           | Not used                      |
| 20<br>(12) | TRG3   | Trigger input for Counter 3      | 45 (13)     | TRG4        | Trigger input for Counter 4   |
| 21<br>(51) | -      | Not used                         | 46 (55)     | -           | Not used                      |
| 22<br>(52) | -      | Not used                         | 47 (56)     | -           | Not used                      |
| 23<br>(53) | -      | Not used                         | 48 (57)     | -           | Not used                      |
| 24<br>(54) | -      | Not used                         | 49 (58)     | -           | Not used                      |
| 25<br>(15) | EXTV   | External power supply            | 50 (65)     | EXTV<br>GND | External power supply ground  |

# **Encoder Input Circuit**



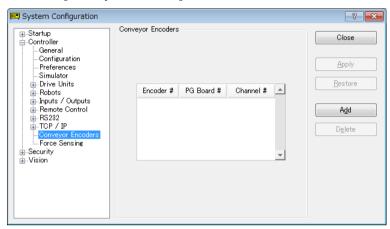

# 16.5 Wiring Example of Vision Conveyor Tracking System

## Example of Hardware Trigger (Asynchronous Reset Mode)

Wire the trigger terminal of the camera and the encoder latch terminal of the PG board to the I/O output of the controller. The PG board detects the trigger when the I/O output turns from OFF to ON. Set the camera so that it also detects the trigger when the I/O output turns from OFF to ON.

For software trigger, it is not necessary to connect the trigger terminal of the camera to the encoder latch terminal of the PG board.




Wiring example of the hardware conveyor trigger (CV1, Controller I/O output pin10 and Counter 1 are used)

## 16.6 Conveyor Encoder Configuration

Before you can create any conveyors in a project, you must first add conveyor encoders to the system. Each physical conveyor must have an encoder.

First, you must install one PG board for every four encoders in the PC Control Unit and wire the encoders to the board(s).

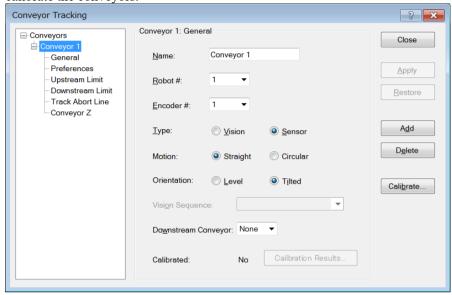
To define system encoders in EPSON RC+, select [Setup]-[System Configuration] and select the [Conveyor Encoders].



Click the <Add> button to add an encoder. Encoders are added in the order of Axis number.

You can delete the last encoder in the list. Select it, then click the <Delete> button.

## 16.7 Verifying Encoder Operation


After wiring the encoders and adding them to RC+ (as described in the previous section), follow these steps to verify operation.

- 1. Start RC+.
- 2. Create a new project called "TestCnv".
- 3. Refer to 16.11 Creating Conveyors in a Project and create a conveyor.

Conveyor 1: Encoder

Type: Sensor

Make sure to perform the calibration, otherwise the conveyor tracking system cannot work properly. When you only check the encoder operation, it is not necessary to calibrate the conveyors.



4. Now you can use the Cnv\_Pulse function to read pulses from Encoder 1 from a program or from the monitor window.

For example, execute this print statement from the monitor window to read the pulses from encoder 1. Then move the conveyor and execute the command again.

```
>print cnv_pulse(1)
```

You can also use a simple program as shown below. Start the program and move the conveyor. When the conveyor starts moving, the value of Cnv Pulse will be changed.

```
Function main

Do

Print Cnv_Pulse(1)

Wait .5

Loop

Fend
```

## 16.8 Verifying Hardware Conveyor Trigger / Vision Trigger

## Verifying the Hardware Conveyor Trigger

- 1. Move the conveyor and stop it.
- 2. Check the encoder pulse. Enter the following to the command window.
  - > Print Cnv Pulse (Conveyor number)
- 3. Turn ON the I/O output number which the trigger is wired to. Latch the encoder pulse.
- 4. Check the latch pulse. Enter the following to the command window.
  - > Print Cnv LPulse (Conveyor number)
  - If the same value as obtained in the Step 2 is latched, the verification is completed.
  - If not, check the hardware conveyor trigger wiring.

### Verifying the Vision Trigger

- 1. Set the RuntimeAcquire property of the vision sequence to "Strobed" and the TriggerMode property to "Leading".
- 2. Execute the vision sequence and put it into the trigger waiting state.
- 3. Turn ON the I/O output number which the trigger is wired to and release the shutter.
  - If the captured image is displayed on the VisionGuide window, the verification is completed.
  - If not, check the vision trigger wiring.

# 16.9 Key Terms

Here explains key terms used in this section.

| Queue                  | Waiting queue of the FIFO (First-In, First-Out) type for each conveyor.  With the queue, you can register the pose data of work pieces running on the conveyor and user data. When you add data, it will be registered to the end of the queue. When you delete data from the queue, the remaining data in the queue will be moved up automatically.                                                                                                                                                                                            |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Queue depth            | The number of data entries registered in a queue.  Maximum number of queue data is 1000.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Queue user             | Optional real value that can be registered in a queue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| data                   | You can store additional information such as sorted data or part type determined by the image processing.                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Downstream<br>Conveyor | Use this when using multiple conveyors and you run them continuously. By making an association (upstream/downstream) between conveyors, you can move a queue using the Cnv_QueMove command. "Multiple conveyors" is not necessarily more than one conveyor. You can use one long physical conveyor and set upstream side and downstream side as different logical conveyors. This enables the robots cooperative work, for instance, robot at the downstream side can pick up the work pieces that the robot at upstream fails to pick in time. |  |  |  |  |
| Upstream<br>Limit      | Dividing line in the upstream side of the Pickup Area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Downstream<br>Limit    | Dividing line in the downstream side of the Pickup Area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Pickup Area            | The area between the upstream limit and downstream limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                        | The robot picks parts which flow in the Pickup Area.  The robot starting pickup near the downstream limit continues its operation over the downstream limit.  Make sure that the Pickup Area covers the whole robot motion range.                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                        | For details, refer to 16.16 Pickup Area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

# 16.10 Conveyor Tracking Commands

All Conveyor Tracking commands begin with the same prefix: "Cnv\_". Here is a list of all of the commands. For details, please see the *EPSON RC+ Online Help* or *SPEL+ Language Reference manual*.

| Command                  | Description / Usage                                                                                                                                                  |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Cnv_AbortTrack           | Aborts a motion command to a conveyor queue point.                                                                                                                   |  |  |  |  |
| Cnv_Accel Function       | Sets/ returns acceleration and deceleration of the conveyor.                                                                                                         |  |  |  |  |
| Cnv_Accel                | Sets acceleration and deceleration of the conveyor.                                                                                                                  |  |  |  |  |
| Cnv_AccelLim             | Sets limit of acceleration and deceleration after the conveyor tracked.                                                                                              |  |  |  |  |
| Cnv_AccelLim Function    | Returns limit of acceleration and deceleration after the conveyor tracked.                                                                                           |  |  |  |  |
| Cnv_Adjust               | Sets whether to retrieve the tracking delay offset of the conveyor.                                                                                                  |  |  |  |  |
| Cnv_AdjustGet Function   | Returns the result of the operation of retrieving the tracking delay offset of the conveyor and the offset.                                                          |  |  |  |  |
| Cnv_AdjustClear          | Clears the tracking delay offset of the conveyor.                                                                                                                    |  |  |  |  |
| Cnv_AdjustSet            | Sets the tracking delay offset of the conveyor.                                                                                                                      |  |  |  |  |
| Cnv_DownStream Function  | Returns the downstream limit for the specified conveyor.                                                                                                             |  |  |  |  |
| Cnv_Downstream           | Sets the downstream limit of the conveyor.                                                                                                                           |  |  |  |  |
| Cnv_Fine Function        | Returns the setting of the range to judge if the tracking motion is completed or not for the specified conveyor.                                                     |  |  |  |  |
| Cnv_Fine                 | Sets / returns the value of Cnv_Fine for one conveyor.                                                                                                               |  |  |  |  |
| Cnv_Flag Function        | Returns the tracking state for the tracking abort line.                                                                                                              |  |  |  |  |
| Cnv_Mode Function        | Returns the conveyor mode setting value.                                                                                                                             |  |  |  |  |
| Cnv_Mode                 | Sets the conveyor mode setting value.                                                                                                                                |  |  |  |  |
| Cnv_LPulse Function      | Returns the pulse latched by a conveyor trigger.                                                                                                                     |  |  |  |  |
| Cnv_Name\$ Function      | Returns the name of the specified conveyor.                                                                                                                          |  |  |  |  |
| Cnv_Number Function      | Returns the number of a conveyor specified by name.                                                                                                                  |  |  |  |  |
| Cnv_OffsetAngle          | Sets the angle offset. Usage: This command is available only for the circular conveyor.                                                                              |  |  |  |  |
| Cnv_OffsetAngle Function | Returns the offset angle.                                                                                                                                            |  |  |  |  |
| Cnv_Point Function       | Returns a robot point in the specified conveyor's coordinate system derived from sensor coordinates. Usage: Use this function when registering a point in the queue. |  |  |  |  |
| Cnv_PosErr Function      | Returns deviation in current tracking position compared to tracking target.                                                                                          |  |  |  |  |
| Cnv_PosErrOffset         | Sets an offset value to correct the deviation in current tracking position compared to tracking target.                                                              |  |  |  |  |
| Cnv_Pulse Function       | Returns the current position of a conveyor in pulses.                                                                                                                |  |  |  |  |
| Cnv_QueAdd               | Adds a robot point to a conveyor queue. Usage: Use this command to register a point in the queue.                                                                    |  |  |  |  |
| Cnv_QueGet Function      | Returns a point from the specified conveyor's queue. Usage: Use this command for robot tracking motion.                                                              |  |  |  |  |

Cnv QueLen Function Returns the number of items in the specified conveyor's queue.

Usage: Use this command to keep the robot waiting until the part

(queue) enters the tracking area.

Cnv QueList Displays a list of items in the specified conveyor's queue.

Cnv QueMove Moves data from upstream conveyor queue to downstream conveyor

queue.

Usage: Use this command for the multi conveyor system.

Cnv QueReject Sets / displays the minimum distance to prevent the double conveyors

register.

For details, refer to Cnv QueReject.

Cnv QueReject Function Sets / returns and displays the queue reject distance for a conveyor.

Cnv\_QueRemove Removes items from a conveyor queue.

Cnv\_QueUserData Function Sets / returns and displays user data associated with a queue entry.

Cnv RobotConveyor Function Returns the conveyor being tracked by a robot.

Cnv\_Speed Function Returns the current speed of a conveyor.

Cnv Trigger Latches current conveyor position for the next Cnv QueAdd

statement.

Usage: Use this command when using the software trigger.

Cnv\_Upstream Function Returns the upstream limit for the specified conveyor.

Cnv\_Upstream Sets the upstream limit of the conveyor.



To track a part as the conveyor moves, you must use Cnv\_QueGet in a motion command statement. For example:

Jump Cnv QueGet (1) ' this tracks the part

You cannot assign the result from Cnv\_QueGet to a point and then track it by moving to the point.

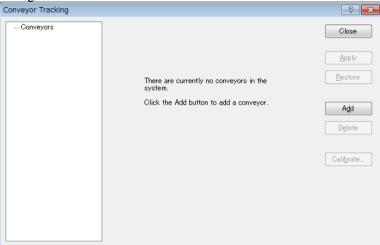
 $P1 = Cnv_QueGet(1)$ 

Jump P1 ' this does not track the part!

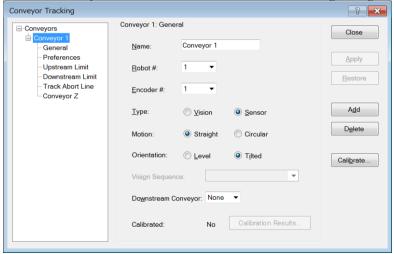
When you assign the result from Cnv\_QueGet to a point, the coordinate values correspond to the position of the part when the point assignment was executed.



After pausing the manipulator, the operation command of conveyor tracking cannot be continued. The error 4403 will occur.


## 16.11 Creating Conveyors in a Project

Conveyors are configured for each EPSON RC+ project. Up to 16 conveyors can be created per project. A conveyor is a logical entity that combines a robot with one or more conveyors.


There are two types of conveyors: vision and sensor. If you will be using a vision camera to find the parts on the conveyor, you must first create a vision sequence to find the parts. This vision sequence is required when you define the conveyor.

#### To add a conveyor to a project

1. Select [Tools]-[Conveyor Tracking] to open the [Conveyor Tracking] configuration dialog.



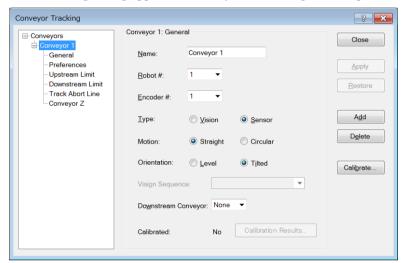
2. To add a conveyor, click the <Add> button. The following dialog will appear.

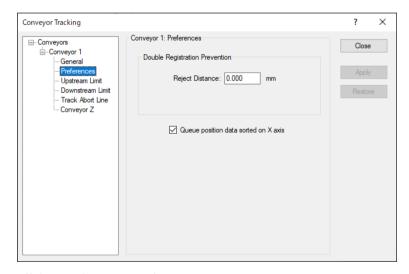


3. Enter a name for the conveyor, then specify the Robot #, Encoder #, Type, Motion, and Orientation.



- A default conveyor name is created automatically when a new conveyor is added. You can change the name as desired.
- When you use a straight conveyor, select "Line" for [Motion].
- When you use a circular conveyor, select "Circular" for [Motion].


## 16.12 Configuring Conveyors


After a conveyor has been created, you can set its parameters.

- 1. Select [Tools]-[Conveyor Tracking].
- 2. Click on the conveyor you want to change.
- 3. There are three setup pages shown in the tree under each conveyor: [General], [Preferences], [Upstream Limit], [Downstream Limit], and [Conveyor Z]. To change the [Upstream Limit] and [Downstream Limit], refer to 16.16 Pickup Area Changing the Upstream / Downstream limits positions.

  To change the settings of Reject Distance and queue position data sort, click on [Preferences].
  - To change other parameters, click on [General].
- 4. Click on [General] or [Preferences].

  The following dialog appears. Edit any of the configuration options.





5. Click < Apply> to save changes.

NOTE

If you changed Robot #, Encoder #, Orientation, Type, or Vision Sequence, then you need to calibrate the conveyor again.

The following table explains the parameters you can edit in the [General] and [Preferences] pages.

| Name                                       | You can name conveyors.                                                                                                                                    |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                            | There is a restriction on the number of characters to be input.  1-byte characters: up to 15 characters                                                    |  |  |  |
|                                            | 2-byte characters: up to 7 characters                                                                                                                      |  |  |  |
| Robot #                                    | You can select a robot number from the robots currently configured in the controller.                                                                      |  |  |  |
| Encoder #                                  | You can select an encoder number from the encoders currently configured in the controller.                                                                 |  |  |  |
| Туре                                       | Vision: Detects work pieces using vision search.                                                                                                           |  |  |  |
|                                            | Sensor: Detects work pieces using a sensor.                                                                                                                |  |  |  |
| Motion                                     | You can select the conveyor motion; Straight conveyor or Circular conveyor.                                                                                |  |  |  |
| Orientation                                | When you selected Straight conveyor, you can specify if the conveyor is level or tilted.                                                                   |  |  |  |
|                                            | <tilted> is selected by default and normally you don't have to<br/>change it.</tilted>                                                                     |  |  |  |
|                                            | Tilted: Conveyor slope is detected during the calibration.                                                                                                 |  |  |  |
|                                            | Level: Conveyor slope is not detected during the calibration. You need to observe the following: The conveyor must be level with the robot X and Y planes. |  |  |  |
| Vision Sequence                            | Select a vision sequence for the calibration.                                                                                                              |  |  |  |
|                                            | This is only necessary when using the vision type.                                                                                                         |  |  |  |
| Downstream<br>Conveyor                     | When two or more conveyors have been set, you can select a conveyor number for the downstream conveyor.                                                    |  |  |  |
| Calibrate                                  | Click this button to execute the calibration.                                                                                                              |  |  |  |
|                                            | The calibration procedure is different for each type and conveyor orientation.                                                                             |  |  |  |
| Adjust Z                                   | After the calibration is completed, you can calibrate the Z coordinate value of the conveyor again.                                                        |  |  |  |
| Reject Distance                            | You can set distance to prevent the duplicate registration of workpieces on conveyors.                                                                     |  |  |  |
|                                            | • The distance also can be set from the SPEL program using the Cnv_QueReject command.                                                                      |  |  |  |
|                                            | • If the distance is different from the one set by Cnv_QueReject command, the Cnv_QueReject command setting has precedence.                                |  |  |  |
| Queue position<br>data sorted on X<br>axis | You can select whether to sort the queue or not.                                                                                                           |  |  |  |



After the calibration, change the parameters for Robot #, Encoder #, Type, Motion, Orientation, Vision Sequence, Adjust Z, and Upstream/Downstream limit.

## 16.13 Vision Conveyors

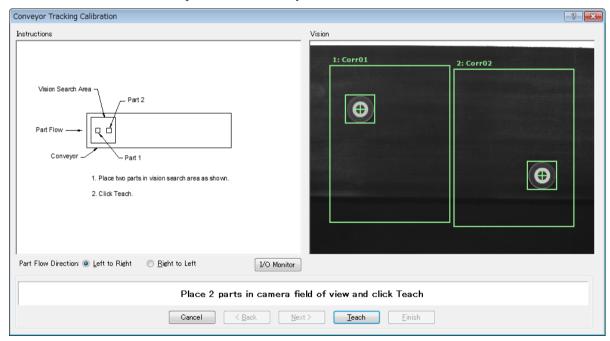
A vision conveyor uses a camera to locate parts that will be retrieved by one or more robots. In this section, instructions are provided for vision conveyor calibration.

The straight conveyor and the circular conveyor have different calibration methods.

## Vision conveyor camera and lighting

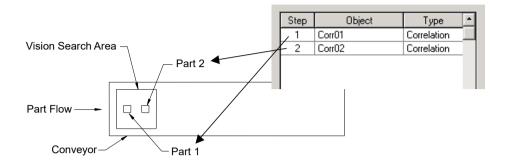
It is important to choose the correct camera and lighting for the vision conveyors used in your application.

For applications with a slow moving conveyor and non-critical pick up constraints, you may be able to use a Vision Guide camera and simple lighting with no strobe.


For applications with fast moving parts, you will need to use a camera that is capable of asynchronous reset along with a strobe lamp.

## Vision calibration sequence

Before you can calibrate a vision conveyor, you must first create a calibration sequence. This sequence is used by the system during the calibration process and must be linked to a camera calibration. The conveyor system commands use camera coordinates in millimeters. Although you can use any type of Vision Guide camera calibration, you only need to use a Standalone calibration.

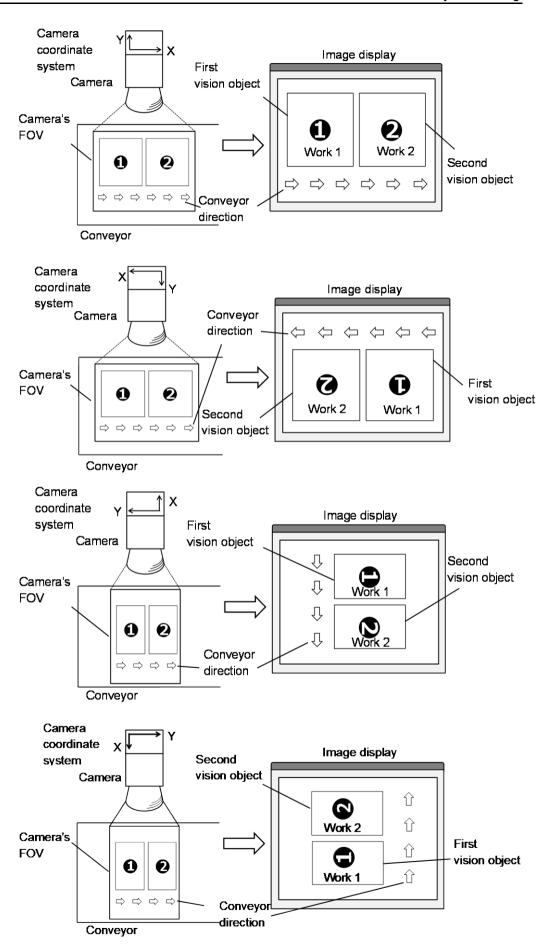

The calibration sequence needs a sequence that uses one object for each work piece.

Place two work pieces on the conveyor as shown below.



It is recommended to place the two parts diagonally in the field of view. Also, the first object of a sequence must be taught with the robot as Part 1. The second object of a sequence must be taught with the robot as Part 2.

Also, the two parts can be anywhere in the field of view. However, to make it as easy as possible for operators to calibrate the conveyor, the parts that will be found in the vision sequence should be located such that part 2 is after part 1 in the direction of part flow. In the figure below, object 1 in the vision sequence is Corr01, which locates Part 1. Object 2 is Corr02, which locates Part 2.

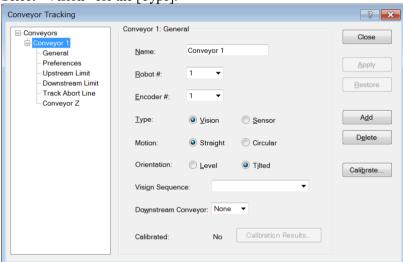





When calibrating the vision conveyor tracking, pay attention to the followings to calibrate properly.

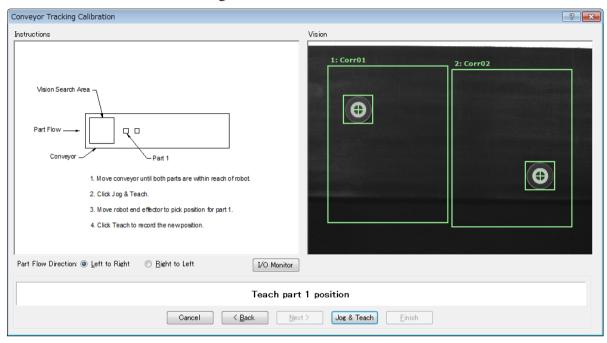
- Check the conveyor direction in the image display.
- In "teaching in the vision search area", place the work 1 on the upstream side and the work 2 on the downstream side.
- Set the objects for detecting the work 1 and 2 in numerical order in the calibration sequence.
- When you place something like letters or patterns around the workpiece to distinguish the workpiece 1 and 2, it will be easier to set the object order of the vision sequence.

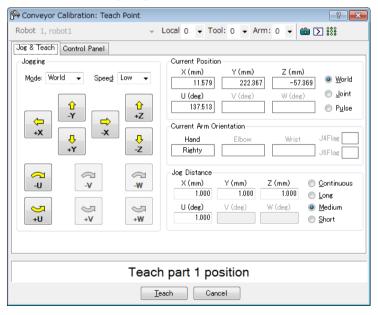
The orientation of the camera's FOV displayed in the image display may differ from it actually looks. See the illustrations below. When the camera's mounting direction is reversed, you need to pay attention to the positional relation of the work pieces and the vision objects.



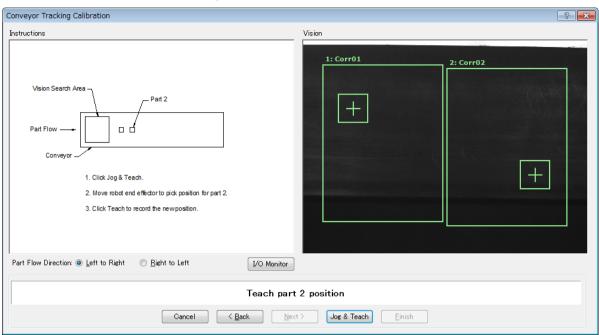

## Vision conveyor calibration (Straight conveyor)

Follow these steps to calibrate a straight vision conveyor:

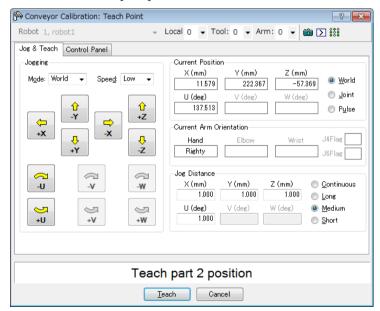




- When teaching part positions with the robot during calibration, it is important to position X, Y, and Z of each point accurately. The conveyor is calibrated in X, Y, Z, U, V, and W
- To perform the fine calibration, in the step 15 and 17, set as wide distance as possible between the upstream limit and downstream limit. After the calibration, adjust the Pickup Area by resetting the upstream / downstream limits.
- For the level orientation, it determines the conveyor height with the position of robot end effector taught in the step 12. It cannot be used for the tilted conveyor for it does not detect the conveyor slope. The steps 19 to 20 are not displayed.
- For the tilted orientation, it calibrates the conveyor slope with the position of robot end effector taught in the steps 12, 14, 16, 18, and 20.
  - 1. Select [Tools]-[Conveyor Tracking].
  - 2. Select the conveyor you want to calibrate.
  - 3. Select <Vision> for the [Type].

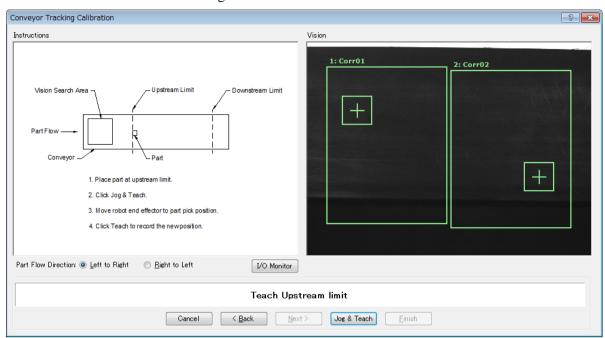



- 4. Set the [Vision Sequence].
- 5. Click the <Apply> button.
- 6. Click the <Calibrate> button. The [Conveyor Tracking Calibration] wizard will appear. Follow the instructions for each step. Before you can proceed to the next step, you must click the <Teach> button. You can go back to previous steps using the <Back> button.
- 7. Select the [Part Flow Direction] to best match the conveyor you are calibrating. The instruction pictures will change according to the setting. [Part Flow Direction] is only used to aid in the instructions. It has no effect on the calibration.
- 8. Place two parts on the conveyor as shown in the figure in the wizard.
- 9. Check the live video in [Vision]. The camera orientation may not be the same as the picture.

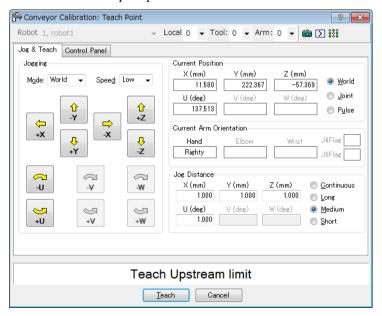
- 10. Arrange the parts to be inside the range correctly and click <Teach> button. Use the camera video to ensure that the parts are within the correct search area for each.
- 11. Move the conveyor until both parts are within reach of the robot. Do not move the parts, only the conveyor. Proper calibration cannot be performed unless the encoder pulse count value changes according to the workpiece position. Click the <Jog & Teach> button.



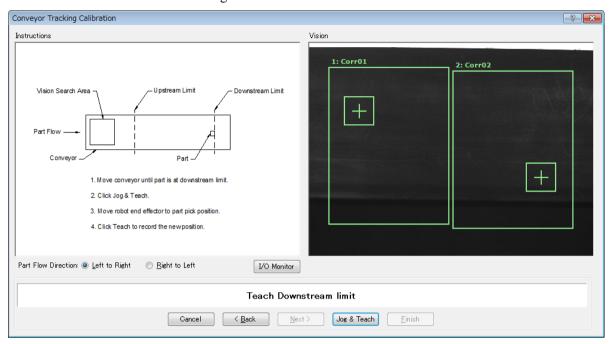




13. Click the <Jog & Teach> button.

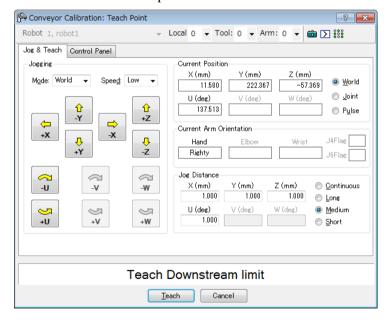



14. The [Jog & Teach] dialog will appear. Click the jog buttons to move the robot end effector to the pick position for Part 2. Click the <Teach> button.

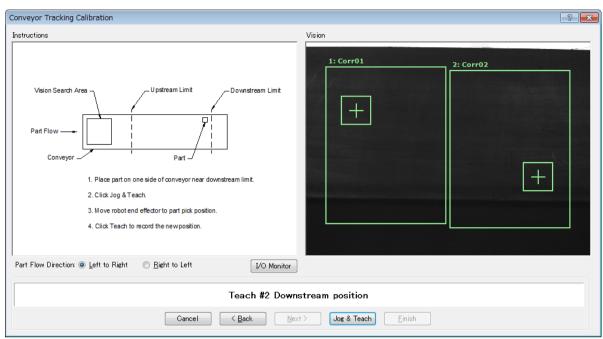



15. Now move or place the part at the upstream limit. The [Vision] image has not been updated from step 13. You can execute one work like [Instructions]. Click the <Jog & Teach> button.

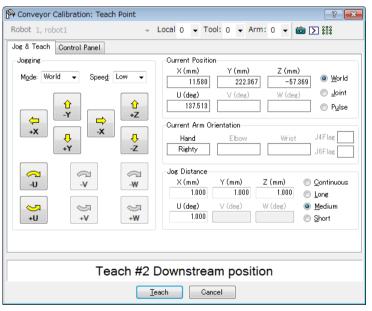


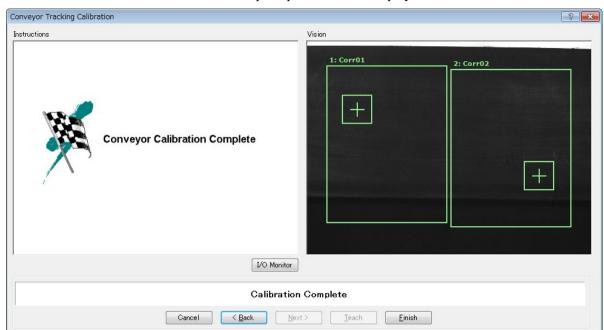

16. The [Jog & Teach] dialog will appear. Click the jog buttons to move the robot end effector to the pick position. Click the <Teach> button.




17. Move the conveyor so the part is at the downstream limit. Do not move the part, only the conveyor. Proper calibration cannot be performed unless the encoder pulse count value changes according to the workpiece position. Click the <Jog & Teach> button.




18. The [Jog & Teach] dialog will appear. Click the jog buttons to move the robot end effector towards the part. Click the <Teach> button.

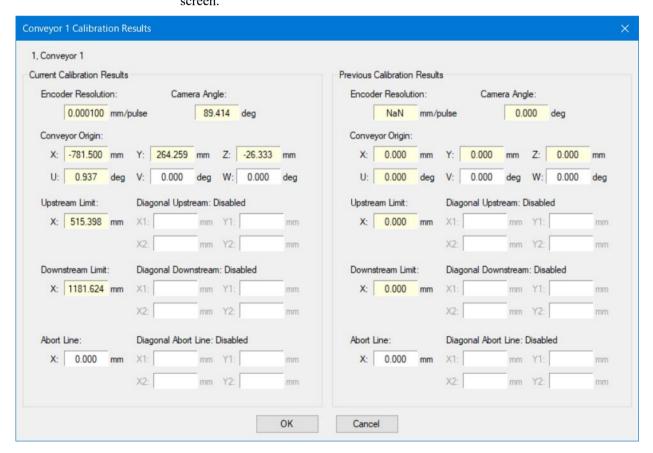



19. Place a part on one side of the conveyor near the downstream limit. This point is used to determine the tilt of the conveyor from side to side. Click the <Jog & Teach> button.



20. The [Jog & Teach] dialog will appear. Click the jog buttons to move the robot end effector to the part position. Click the <Teach> button.






21. The calibration complete picture will be displayed. Click the <Finish> button.

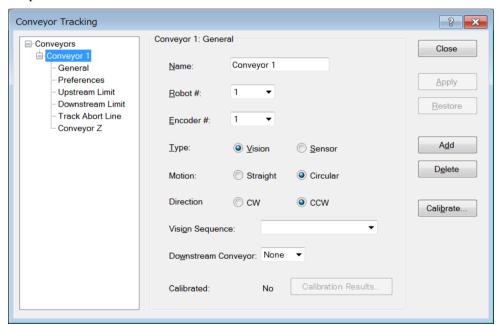
22. The Calibration Results screen is displayed.

Click the <OK> button to complete the calibration.

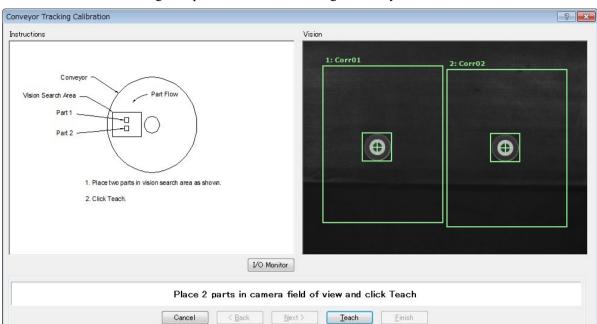
Click the <Cancel> button to return to the procedure 21. Calibration Complete screen.



## Vision conveyor calibration (Circular conveyor)

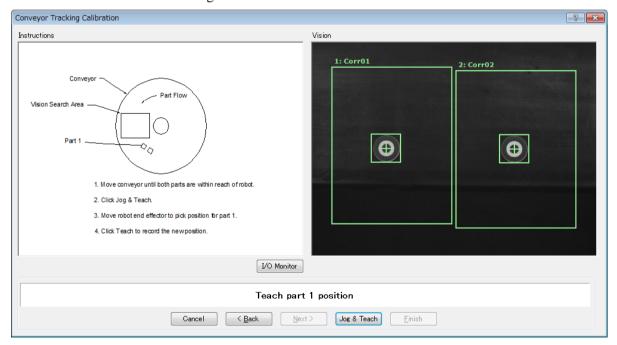

Follow these steps to calibrate a circular vision conveyor:

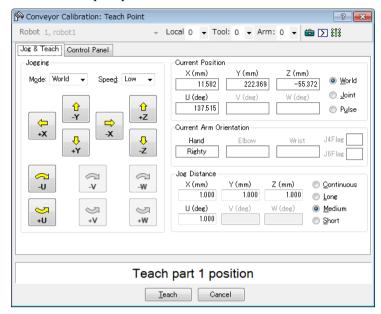



- When teaching part positions with the robot during calibration, it is important to position X, Y, and Z of each point accurately. The conveyor is calibrated in X, Y, Z, U, V, and W.
- To perform the fine calibration, in steps 13, 17, and 19, teach the position when the robot is directly above the parts 1 and set as wide a distance as possible between the points to be taught.
- 1. Select [Tools]-[Conveyor Tracking].
- 2. Select the conveyor you want to calibrate.
- 3. Select <Vision> for the [Type].
- 4. Select < Circular > for the [Motion].
- 5. Select the conveyor rotating direction for the [Direction].

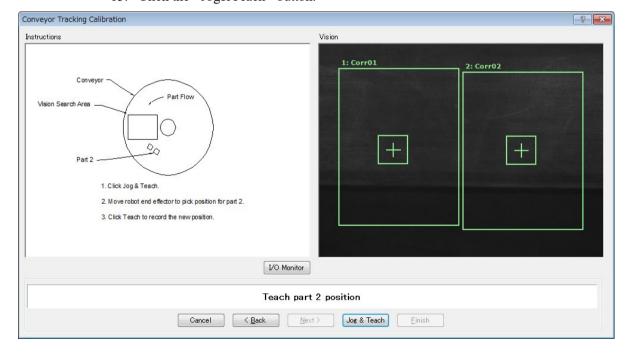


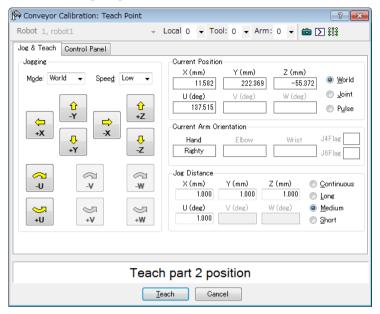
Be careful not to calibrate with a wrong direction, otherwise, the robot will not track the parts.



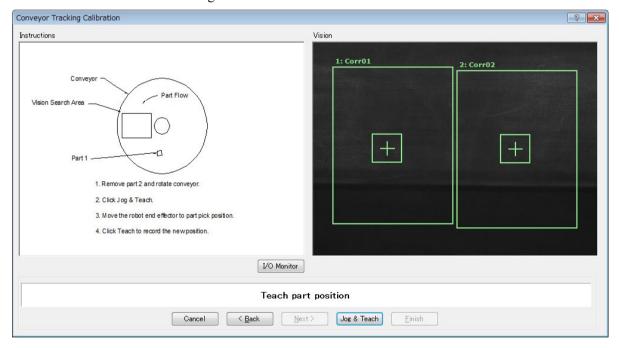


- 6. Select the [Vision Sequence].
- 7. Click the <Apply> button.
- 8. Click the <Calibrate> button. The [Conveyor Tracking Calibration] wizard will appear. Follow the instructions for each step. Before you can proceed to the next step, you must click the <Teach> button. You can go back to previous steps using the <Back> button.
- 9. Check if the conveyor direction shown in the wizard is the same as the conveyor you want to use.
- 10. Place two parts on the conveyor as shown in the figure in the wizard.
- 11. Select the [Vision] tab to see live video. The camera orientation may not be the same as the picture.

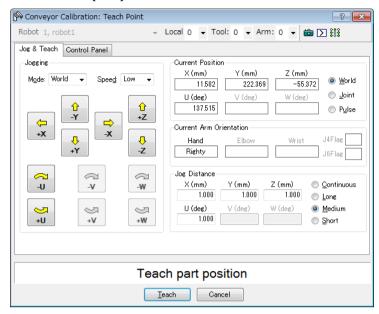



12. Arrange the parts to be inside the range correctly and click the <Teach> button.

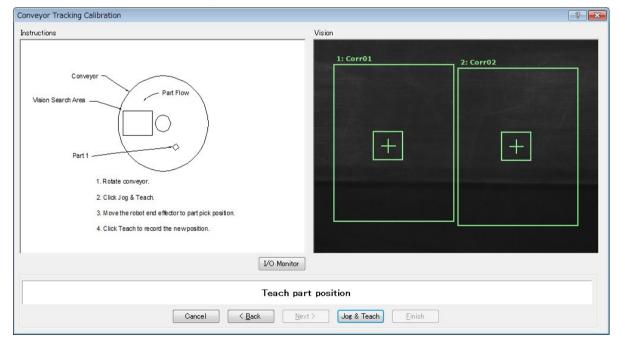

13. Move the conveyor until both parts are within reach of the robot. Do not move the parts, only the conveyor. Proper calibration cannot be performed unless the encoder pulse count value changes according to the workpiece position. Click the <Jog&Teach> button.

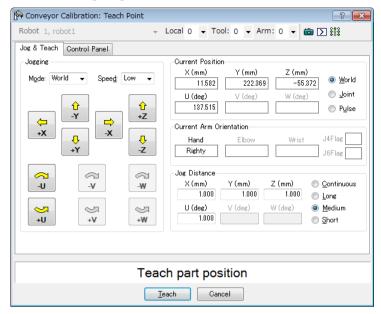




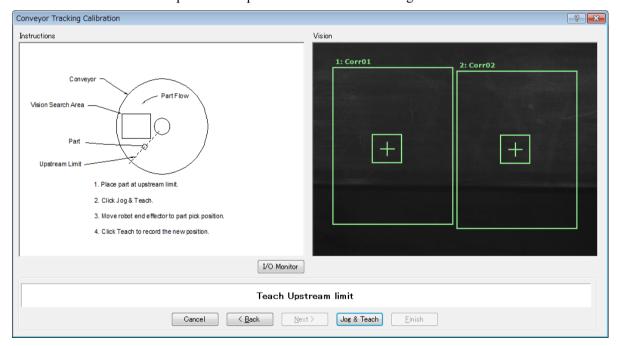


15. Click the <Jog&Teach> button.

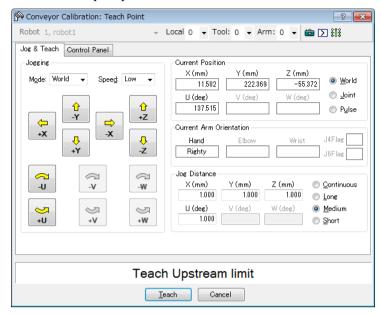




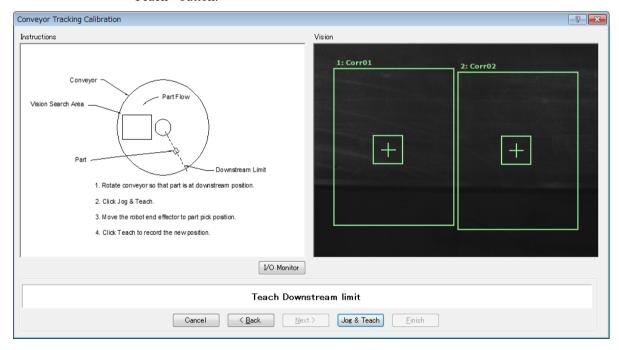


17. Remove Part 2. Move the conveyor to move Part 1. Click the <Jog&Teach> button.

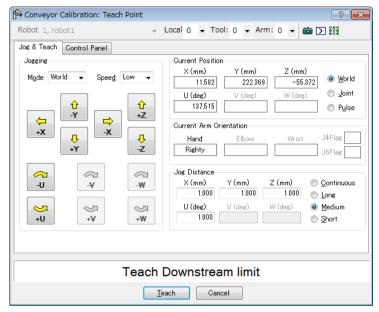




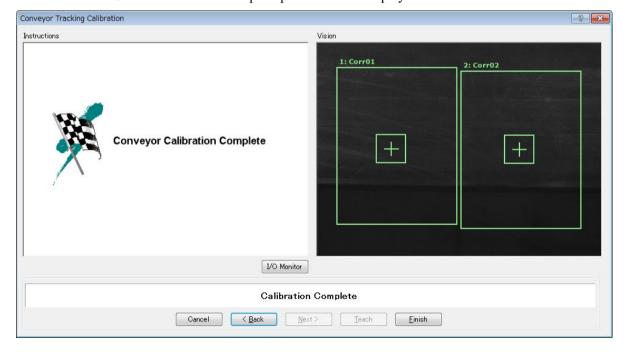


19. Move the conveyor by hand to move Part 1. Proper calibration cannot be performed unless the encoder pulse count value changes according to the workpiece position. Click the <Jog&Teach> button.



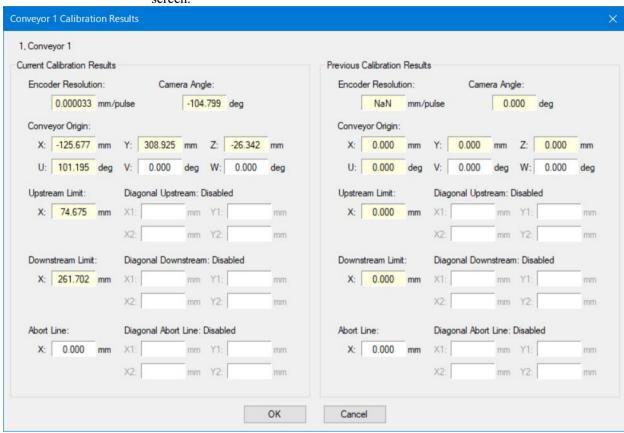




21. Place a part on the upstream limit. Click the <Jog & Teach> button.






23. Move the conveyor so the part is on the downstream limit. Click the <Jog & Teach> button.






25. The calibration complete picture will be displayed. Click the <Finish> button.



26. The Calibration Results screen is displayed. Click the <OK> button to complete the calibration. Click the <Cancel> button to return to the procedure 25. Calibration Complete screen.



### Vision conveyor operation check

After the calibration, we recommend that you check if the vision conveyor works properly.

Select the suitable method since the verification procedures vary depending on the system.

This section uses the program and the command window described in 16.20 Sample Program.

Method 1: When the conveyor can be stopped arbitrary and the conveyor speed can be 30 mm/sec or less

1. Clear the all queue data registered to the conveyor.

```
>Cnv QueRemove 1,all
```

- 2. Place the part in the vision search area.
- 3. Execute the program "ScanConveyorStrobed" to register a queue.
- 4. Halt the program "ScanConveyorStrobed" and move the conveyor until the part enters the Pickup Area.
- 5. Pick up the part.

When using the 6-axis robot, set U, V, and W values as follows.

When using the SCARA robot, setting of U, V, and W are not necessary.

```
>Go Cnv Queget(1,0):U(90):V(0):W(180)
```

- 6. Check if the robot end effector is above the center of the part.
- 7. Move the conveyor at 50mm/sec or less and check if the robot follows the part. At this point, the end effector will be off the center of part but this is no problem.
- 8. Stop the tracking motion of the robot.

```
>Cnv AbortTrack
```

In case the following symptoms occur with the above method, the Vision Guide or conveyor calibration was not executed properly. Perform the calibration again.

- In step (6), the robot end effector is more than 1 mm away from the center of the part.
- The robot cannot follow the part when the conveyor is moved in step (7).

Method 2: When the conveyor can be stopped arbitrary and the conveyor speed can be 100 mm/sec or less

1. Clear the all queue data registered to the conveyor.

```
>Cnv_QueRemove 1,all
```

- 2. Place the part in the vision search area.
- 3. Execute the program "ScanConveyorStrobed" to register a queue.
- 4. Halt the program "ScanConveyorStrobed" and move the conveyor until the part enters the Pickup Area.

5. Pick up the part.

When using the 6-axis robot, set U, V, and W values as follows.

When using the SCARA robot, setting of U, V, and W are not necessary.

```
>Go Cnv_Queget(1,0):U(90):V(0):W(180)
```

- 6. Check if the robot end effector is above the center of the part.
- 7. Change the mode to "High Power".

```
>Power High
```

- 8. Move the conveyor and check if the robot follows the part. At this point, the end effector will be off the center of the part but this is no problem.
- 9. Stop the tracking motion of the robot.

```
>Cnv AbortTrack
```

In case the following symptoms occur with the above method, the Vision Guide or conveyor calibration was not executed properly. Perform the calibration again.

- In step (6), the robot end effector is more than 2 mm away from the center of the part.
- The robot cannot follow the parts when the conveyor is moved in step (8).

### Method 3: When the conveyor can be stopped arbitrary

1. Clear the all queue data registered to the conveyor.

```
>Cnv_QueRemove 1,all
```

- 2. Place the part in the vision search area.
- 3. Execute the program "ScanConveyorStrobed" to register a queue.
- 4. Halt the program "ScanConveyorStrobed" and move the conveyor until the part enters the Pickup Area.
- 5. Pick up the part.

When using the 6-axis robot, set U, V, and W values as follows.

When using the SCARA robot, setting of U, V, and W are not necessary.

```
>Go Cnv_Queget(1,0):U(90):V(0):W(180)
```

- 6. Check if the robot end effector is above the center of the part.
- 7. Stop the tracking motion of the robot.

```
>Cnv_AbortTrack
```

8. Use the program "Main" to check if the robot follows the part. At this point, change the wait time after tracking to  $0.2 \sim 0.5$  in the sample program.

In case the following symptoms occur with the above method, the Vision Guide or conveyor calibration was not executed properly. Perform the calibration again.

- In step (6), the robot end effector is more than 1 mm away from the center of the part.
- The robot moves to different position from the parts in step (8).

Method 4: When the conveyor cannot be stopped and the speed cannot be changed arbitrary

- 1. Move the conveyor.
- 2. Change the sample program as follows.

Change the wait time after tracking to  $0.2 \sim 0.5$ 

Set the tracking mode to "0"

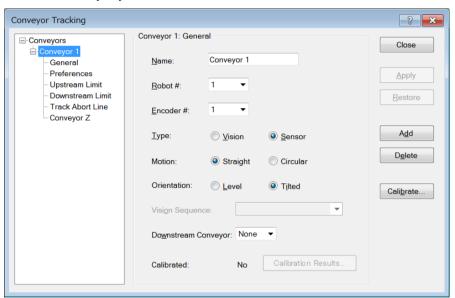
- 3. Execute the sample program "Main".
- 4. Place the part after the conveyor speed becomes constant.
- 5. Check if the robot follows the part.
- 6. Change the sample program as follows.

Set the tracking mode to "1".

- 7. Execute the sample program "Main".
- 8. Place the part when the conveyor speed becomes constant.
- 9. Check if the robot follows the part.

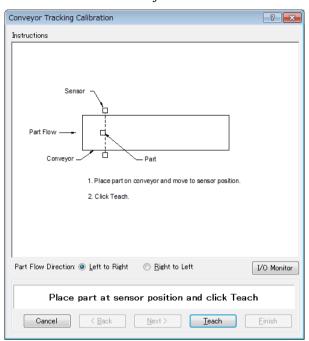
In case the following symptoms occur with the above method, the Vision Guide or conveyor calibration was not executed properly. Perform the calibration again.

- When comparing step (5) and (9), a distance between the robot and the part is smaller in step (5).
- The robot moves to different position from the parts in step (5).

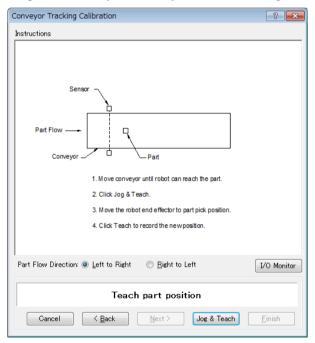

## 16.14 Sensor Conveyors

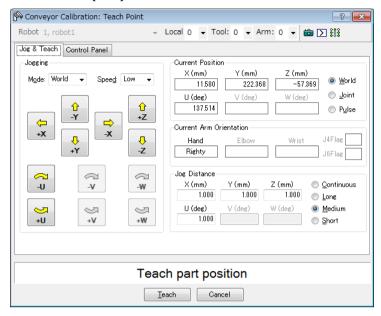
#### Sensor conveyor calibration (Straight conveyor)

Follow these steps to calibrate a straight sensor conveyor:

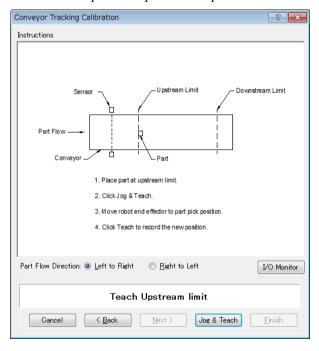


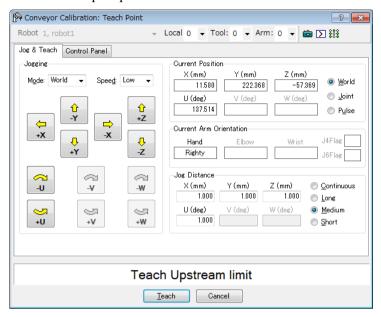

- When teaching part positions with the robot during calibration, it is important to position X, Y, and Z of each point accurately. The conveyor is calibrated in X, Y, Z, U, V, and W.
- To perform the fine calibration, in steps 9 and 11, set as wide a distance as possible between the upstream limit and the downstream limit. After calibration, adjust the Pickup Area by resetting the upstream / downstream limits.
- For the level orientation, the conveyor height is determined by the position of the robot end effector taught in step 8. It cannot be used for the tilted conveyor for it does not detect the conveyor slope. Steps 19 to 20 are not displayed.
- For the tilted orientation, it calibrates the conveyor slope with the position of robot end effector taught in the steps 8, 10, 12, and 14.
  - 1. Select [Tools]-[Conveyor Tracking].
  - 2. Select the conveyor you want to calibrate.



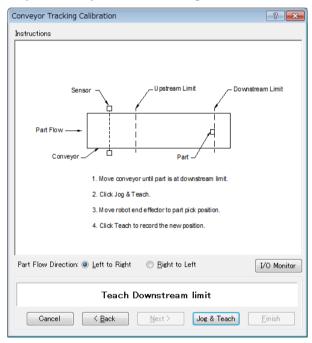


- 3. Click the <Calibrate> button. The Conveyor Tracking Calibration wizard will appear.
- 4. Follow the instructions for each step. Before you can proceed to the next step, you must click the <Teach> button. You can go back to previous steps using the <Back> button.
- 5. Select the [Part Flow Direction] to best match the conveyor you are calibrating. The instruction pictures will change according to the setting. [Part Flow Direction] is only used to aid in the instructions. It has no effect on the calibration.

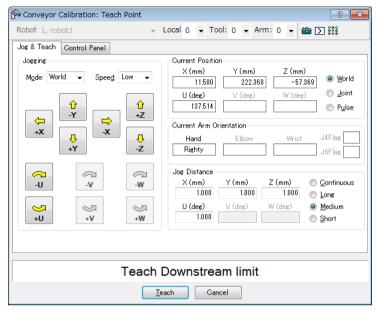
6. For the first wizard step, place a part on the conveyor and move the conveyor toward the sensor until the sensor just turns on. Click the <Teach> button.



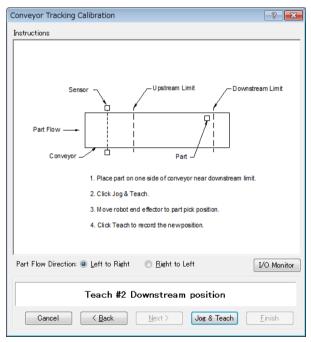


7. Move the conveyor by hand until the part is within reach of the robot. Do not move the part itself, only the conveyor. Click the <Jog & Teach> button.

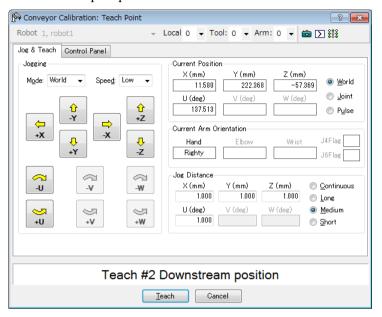




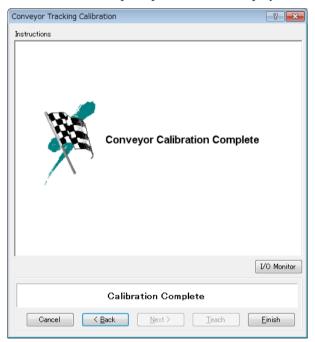


9. Now move or place the part at the upstream limit. Click the <Jog & Teach> button.







11. Move the conveyor so the part is at the downstream limit. Do not move the part, only the conveyor. Click the <Jog & Teach> button.

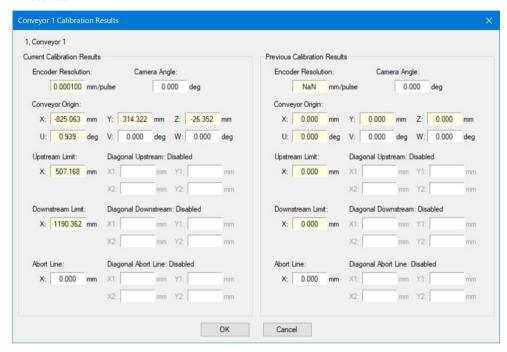





13. Place a part on one side of the conveyor near the downstream limit. This point is used to determine the tilt of the conveyor from side to side. Click the <Jog & Teach> button.






15. The calibration complete picture will be displayed. Click the <Finish> button.

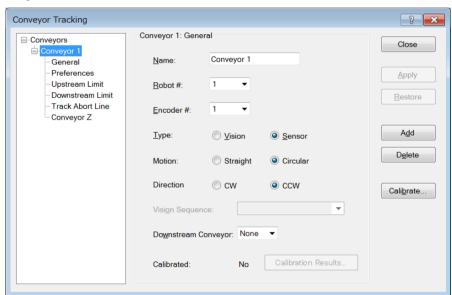


16. The Calibration Results screen is displayed.

Click the <OK> button to complete the calibration.

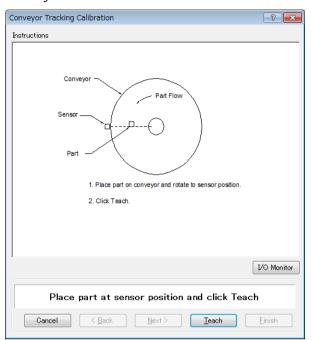
Click the <Cancel> button to return to the procedure 15. Calibration Complete screen.



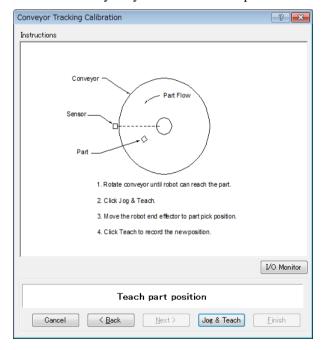

### Sensor Conveyor Calibration (Circular conveyor)

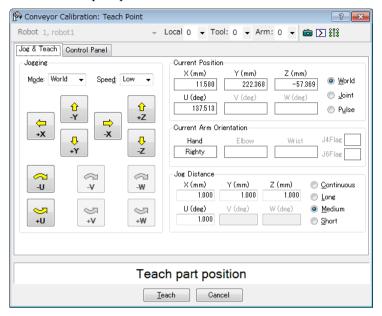
Follow these steps to calibrate a circular sensor conveyor:



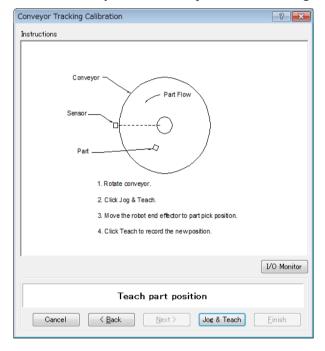

- When teaching part positions with the robot during calibration, it is important to position X, Y, and Z of each point accurately. The conveyor is calibrated in X, Y, Z, U, V, and W.
- To perform the fine calibration, in steps 10, 12, and 14, teach the position when the robot is directly above the parts and set as wide a distance as possible between the points being taught.
  - 1. Select [Tools]-[Conveyor Tracking].
- 2. Select the conveyor you want to calibrate.
- 3. Select <Sensor> for the [Type].
- 4. Select < Circular > for the [Motion].
- 5. Select the conveyor rotating direction for the [Direction].

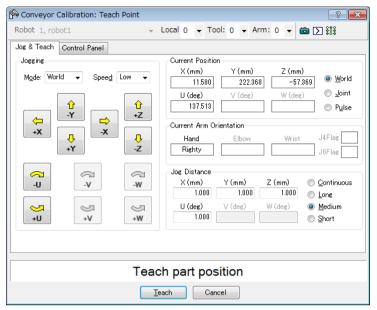
Be careful not to calibrate with a wrong direction, otherwise, the robot will not track the parts.



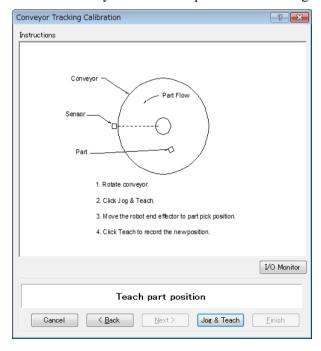


- 6. Click the <Apply> button.
- 7. Click the <Calibrate> button. The [Conveyor Tracking Calibration] wizard will appear. Follow the instructions for each step. Before you can proceed to the next step, you must click the <Teach> button. You can go back to previous steps using the <Back> button.
- 8. Check if the conveyor direction shown in the wizard is the same as the conveyor you want to use.

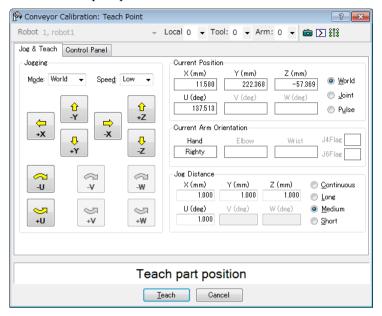
9. Place a part on the conveyor and move the conveyor toward the sensor until the sensor just turns on. Click the <Teach> button.



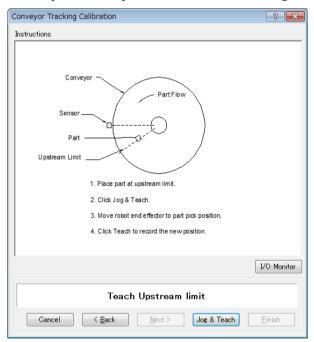


10. Move the conveyor by hand to move the part. Click the <Jog & Teach> button.

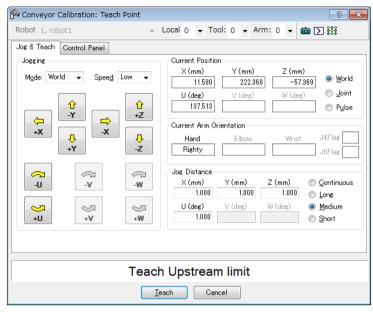




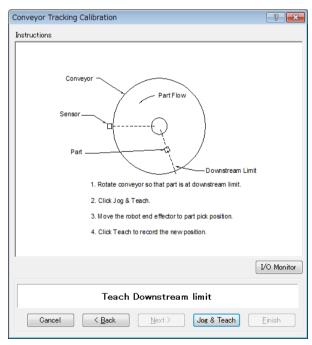


12. Move the conveyor to move the part. Click the <Jog & Teach> button.

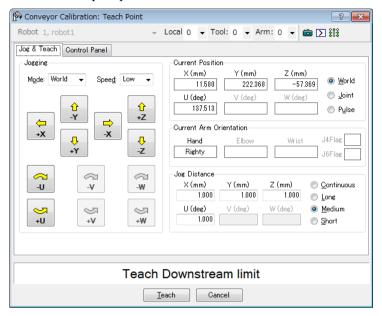




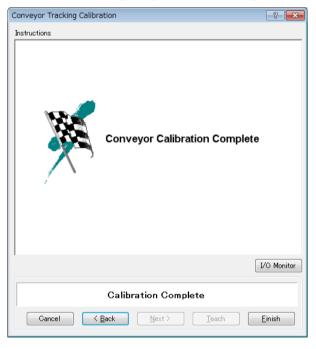


14. Move the conveyor to move the part. Click the <Jog & Teach> button.



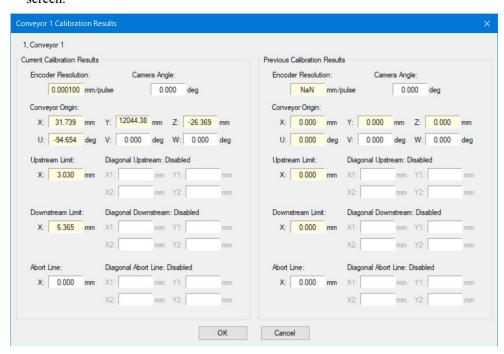




16. Place a part on the upstream limit. Click the <Jog & Teach> button.






18. Move the conveyor so the part is at the downstream limit. Click the <Jog & Teach> button.






20. The calibration complete picture will be displayed. Click the <Finish> button.



21. The Calibration Results screen is displayed.
Click the <OK> button to complete the calibration.
Click the <Cancel> button to return to the procedure 20. Calibration Complete screen.



### Sensor conveyor operation check

After the calibration, we recommend that you check if the sensor conveyor works properly. Select the suitable method since the verification procedures vary depending on the system.

This section uses the program and the command window described in 16.20 Sample Program.

Method 1: When the conveyor can be stopped arbitrary and the conveyor speed can be 30 mm/sec or less

1. Clear the all queue data registered to the conveyor.

```
>Cnv QueRemove 1,all
```

- 2. Detect the part using the sensor.
- 3. Execute the program "ScanConveyor" to register a queue.
- 4. Halt the program "ScanConveyor" and move the conveyor until the part enters the Pickup Area.
- 5. Pick up the part.

When using the 6-axis robot, set U, V, and W values as follows.

When using the SCARA robot, setting of U, V, and W are not necessary.

```
>Go Cnv Queget(1,0):U(90):V(0):W(180)
```

- 6. Check if the robot end effector is above the center of the part.
- 7. Move the conveyor at 50mm/sec or less and check if the robot follows the part. At this point, the end effector will be off the center of the part but this is no problem.
- 8. Stop the tracking motion of the robot.

```
>Cnv AbortTrack
```

In case the following symptoms occur with the above method, the conveyor calibration was not executed properly. Perform the calibration again.

- In step (6), the robot end effector is more than 1 mm away from the center of the part.
- The robot cannot follow the part when the conveyor is moving in step (7).

Method 2: When the conveyor can be stopped arbitrary and the conveyor speed can be 100 mm/sec or less

1. Clear the all queue data registered to the conveyor.

```
>Cnv QueRemove 1,all
```

- 2. Detect the part using the sensor.
- 3. Execute the program "ScanConveyor" to register a queue.
- 4. Halt the program "ScanConveyor" and move the conveyor until the part enters the Pickup Area.

5. Pick up the part.

When using the 6-axis robot, set U, V, and W values as follows.

When using the SCARA robot, setting of U, V, and W are not necessary.

```
>Go Cnv Queget(1,0):U(90):V(0):W(180)
```

- 6. Check if the robot end effector is above the center of the part.
- 7. Change the mode to "High Power".

```
>Power High
```

- 8. Move the conveyor and check if the robot follows the part. At this point, the end effector will be off the center of the part but this is no problem.
- 9. Stop the tracking motion of the robot.

```
>Cnv AbortTrack
```

In case the following symptoms occur with the above method, the conveyor calibration was not executed properly. Perform the calibration again.

- In step (6), the robot end effector is more than 2 mm away from the center of the part.
- The robot cannot follow the part when the conveyor is moving in step (8).

#### Method 3: When the conveyor can be stopped arbitrary

1. Clear the all queue data registered to the conveyor.

```
>Cnv QueRemove 1,all
```

- 2. Detect the part using the sensor.
- 3. Execute the program "ScanConveyor" to register a queue.
- 4. Halt the program "ScanConveyor" and move the conveyor until the part enters the Pickup Area.
- 5. Pick up the part.

When using the 6-axis robot, set U, V, and W values as follows.

When using the SCARA robot, setting of U, V, and W are not necessary.

```
>Go Cnv Queget(1,0):U(90):V(0):W(180)
```

- 6. Check if the robot end effector is above the center of the part.
- 7. Stop the tracking motion of the robot.

```
>Cnv_AbortTrack
```

8. Use the program "Main" to check if the robot follows the part. At this point, change the wait time after tracking to  $0.2 \sim 0.5$  in the sample program.

In case the following symptoms occur with the above method, the conveyor calibration was not executed properly. Perform the calibration again.

- In step (6), the robot end effector is more than 1 mm away from the center of the part.
- The robot moves to a different position from the part in step (8).

Method 4: When the conveyor cannot be stopped and the speed cannot be changed arbitrary

- 1. Move the conveyor.
- 2. Change the sample program as follows.

Change the wait time after tracking to  $0.2 \sim 0.5$ Set the tracking mode to "0"

- 3. Execute the sample program "Main".
- 4. Place the part after the conveyor speed becomes constant.
- 5. Check if the robot follows the part.
- 6. Change the sample program as follows.

Set the tracking mode to "1".

- 7. Execute the sample program "Main".
- 8. Place the part when the conveyor speed becomes constant.
- 9. Check if the robot follows the part.

In case the following symptoms occur with the above method, the conveyor calibration was not executed properly. Perform the calibration again.

- When comparing step (5) and (9), the distance between the robot and the part is smaller in step (5).
- The robot moves to the different position from the parts in step (5).

## 16.15 Calibration Results

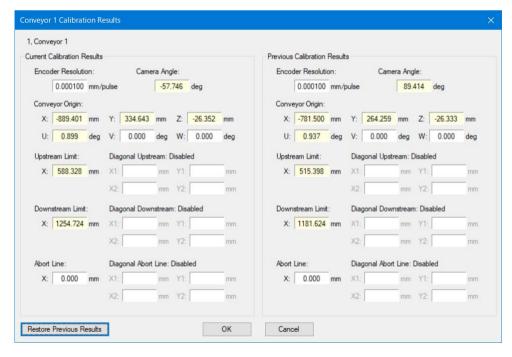
Calibration results will appear once conveyor calibration is complete, or when navigating from [Tools]-[Conveyor Tracking] and clicking the <Calibration Results...> button.

Left: Latest calibration results

Right: Previous results

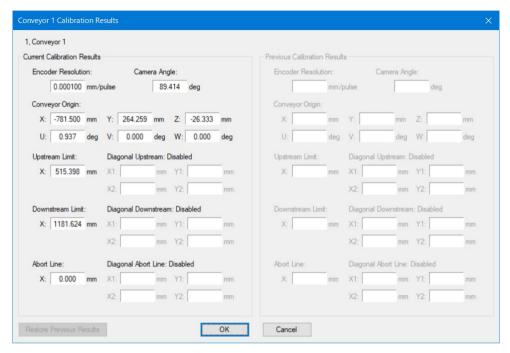
Items where values differ between the latest results and the previous results are highlighted in yellow.

The latest calibration results are used for conveyor tracking. Previous results have no effect on performance.




 The <Calibration Results...> button will be unavailable under the following circumstances.

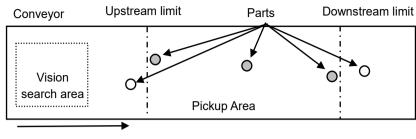
When conveyor calibration has not been performed


When changing the Robot #, Encoder #, Orientation, Type, and Vision Sequence

- Diagonal upstream limit, diagonal downstream limit, tracking abort line, and diagonal tracking abort line values only appear when settings have been configured as described in the procedure outlined in 16.12 Configuring Conveyors.
- The <Restore Previous Results> button will not appear when calibration results are shown after conveyor calibration is complete.
- Values cannot be overwritten on the calibration results screen.



#### Performing conveyor tracking using previous results:

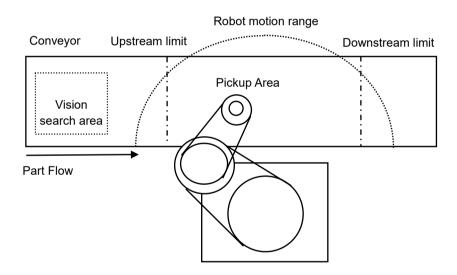

Click the <Restore Previous Results> button to overwrite the calibration results with the previous results as shown on the screen below. Only one set of previous results can be stored. Restoring previous results will wipe the previous results stored. Click the <OK> button on this screen to restore results. Click the <Cancel> button to return the screen to the way it was before restoring. Note that you cannot undo restored calibration results once confirmed.



# 16.16 Pickup Area

The Pickup Area is the range where the robot can pick up parts.

In the figure below, the robot can pick up the parts in gray.

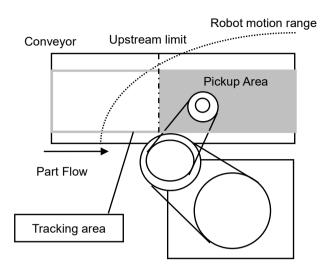



Parts Flow

If the Pickup Area is not appropriate, the robot cannot pick up parts. Follow the steps and cautions below to carefully set the Pickup Area.

#### To define the Pickup Area:

1. After calibration, the Pickup Area will be defined as shown in the following figure. Note that the positions of upstream limit and downstream limit depend on the positions you teach during the calibration.

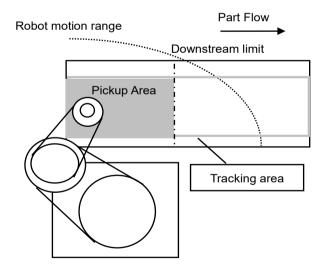



2. Decide the upstream limit position.

The robot starts pickup from the line defined by the upstream limit. The Pickup Area from the upstream limit must be within the robot motion range. (See the figure below.)



The robot does not start pickup until parts cross the upstream limit. If you set the upstream limit in uppermost position, you can reduce the robot standby time.



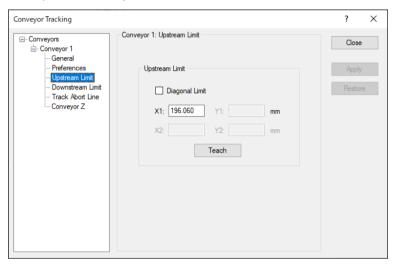

3. Decide the downstream limit position.

Once the robot starts pickup, it continues its operation even over the downstream limit to complete the whole operation. Therefore, set the downstream limit in uppermost possible position so that the robot can operate within its motion range until it completes the operation. (See the figure below.)

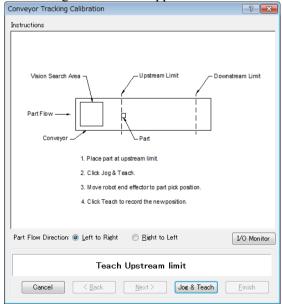


The downstream limit position depends on the conveyor speed and robot position when it starts pickup. If the robot goes over the motion range during the operation, move the downstream limit to upper side.




### Changing the Upstream / Downstream limits positions

To change the upstream limit and downstream limit positions, follow the steps below.


To change the Upstream Limit:

- 1. Select [Tools]-[Conveyor Tracking].
- 2. Select the conveyor you want to edit.
- 3. Click [Upstream Limit].
- 4. The dialog shown below appears.

To define the X1 value, enter a value directly or use Jog & Teach. Entering values directly is for fine adjustment.

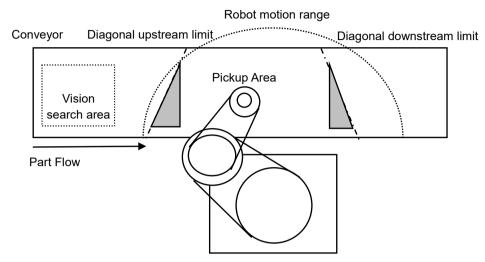


- 5. When you directly specify the value, enter the value in the box and click <Apply>.
- 6. When you use Jog & Teach, click the <Teach> button.
- 7. The dialog shown below appears. Follow the directions as you do during calibration.



To change the downstream limit, click [Downstream Limit] and edit the value in the same way as the upstream limit.

NOTE


Upstream and downstream positions can be changed from the Spel program by using Cnv Upstream and Cnv Downstream commands.

(Diagonal upstream and downstream cannot be changed from the Spel program)

### Diagonal Upstream / Downstream Limits

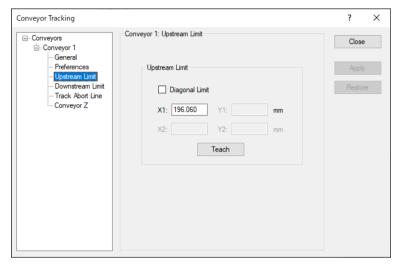
After the calibration, you can set the dividing lines for the Pickup Area (upstream limit / downstream limit) directed diagonally to the part flow.

When you change the dividing lines to diagonal positions, the Pickup Area also changes as shown below. The area indicated in gray is widened by changing the dividing lines to diagonal positions. In addition, diagonal dividing lines are called the diagonal upstream / downstream limits.



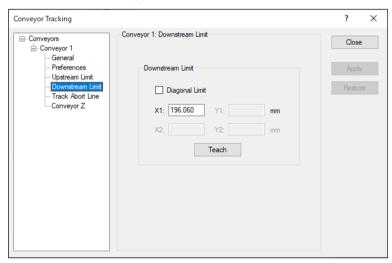
The following are the advantages you can get by widening the Pickup Area.

- Reduce robot standby time by widening the upper side Pickup Area.
- Less possibility of missing parts which flow longer after the downstream limit.




If there are too many parts on the conveyor for the robot to pick up, it only makes the robot move for longer distance and longer time and the number of parts the robot can pick up may decrease, even in a widened Pickup Area.

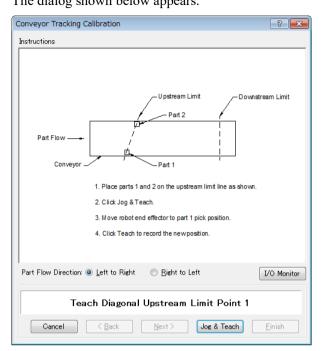
The robot capacity (how fast or how many parts robot can pick up) depends on the Pickup Area width, robot standby position, and conveyor speed.


To set the diagonal upstream limit:

- 1. Select [Tools]-[Conveyor Tracking].
- 2. Select the conveyor you want to edit.
- 3. Click on [Upstream Limit].
- 4. The dialog shown below appears.



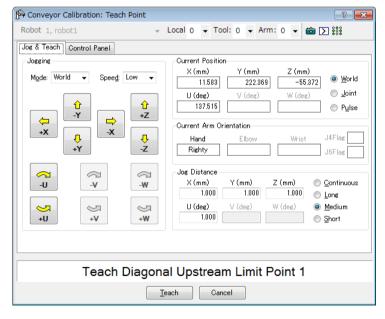
Check the [Diagonal Limit] check box in [Upstream Limit] and click the <Apply>button.

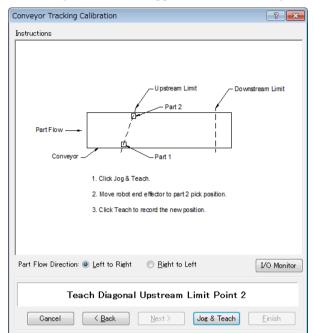

The following dialog appears.



To define the values for X1, Y1, X2, Y2, enter the values directly or use Jog & Teach. Entering values directly is for fine adjustment.

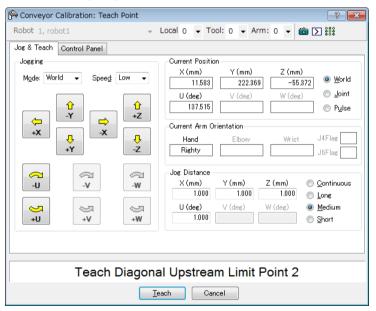
5. When you directly specify the values, enter the values in the boxes and click the <Apply> button.


6. When you use Jog & Teach, click the <Teach> button. The dialog shown below appears.

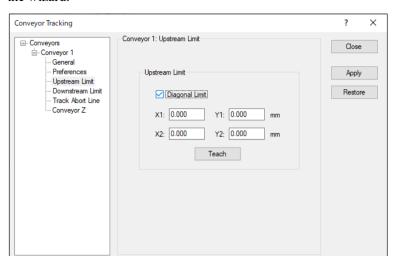



7. Place two parts on the conveyor.

Click the <Jog & Teach> button.


8. The [Jog & Teach] dialog appears. Click the jog buttons to move the robot end effector to the pick position. Click the <Teach> button.






9. The dialog shown below appears. Click the <Jog & Teach> button.

10. The [Jog & Teach] dialog appears. Click the jog buttons to move the robot end effector to the pick position. Click the <Teach> button.



To set the diagonal downstream limit, click [Downstream Limit] to display the downstream limit setting page and check the [Diagonal Limit] check box, then click the <Apply> button.



The following dialog appears. Click the <Teach> button and follow the directions in the wizard.

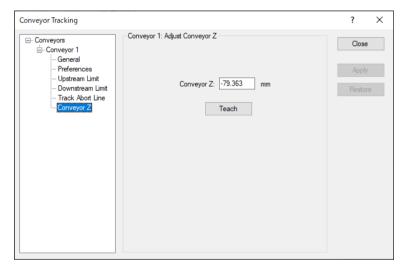
Note that the "Error 4415" occurs when the diagonal upstream / downstream limits are defined as in the following cases.

- They are perpendicular to the part flow direction.
- They are parallel to the part flow direction.
- The diagonal upstream limit and downstream limit cross on the conveyor.

# 16.17 Adjusting the Z value

You can adjust the conveyor Z value after the calibration is completed.

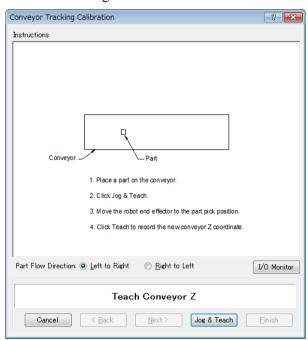
Adjusting the Z value is a function to change the work pickup height that has been determined during calibration.


In the following cases, adjust the Z value:

- To use a pickup area that is different from the one defined during calibration.
- The tool has been changed on the robot after calibration.

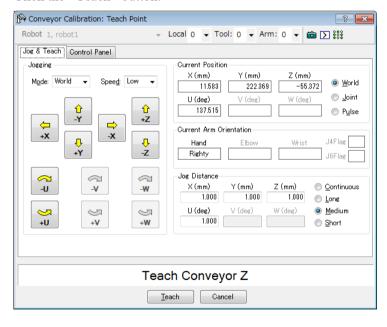
#### To adjust the Z value:

- 1. Select [Tools]-[Conveyor Tracking].
- 2. Select the conveyor you want to edit.
- 3. Click on [Conveyor Z].
- 4. The dialog shown below appears.


Click on <Teach>.



5. The dialog shown below appears.


Place a part on the conveyor in the robot motion range.

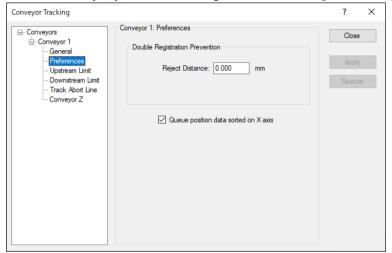
Click on the <Jog & Teach> button.



6. The [Jog & Teach] dialog will appear. Click the jog buttons to move the robot end effector to the pick position.

Click the <Teach> button.




## 16.18 Queue Sorting

When you set the queue sorting, it registers the queue data in the order of position along the X axis in the conveyor local coordinate system.

Set 0 for the index number of Cnv\_QueGet command. If you set nothing, the robot picks up parts from the downstream side.

#### To set the queue sorting

- 1. Select [Tools]-[Conveyor Tracking].
- 2. Click the conveyor you want to configure and select the [Preferences].



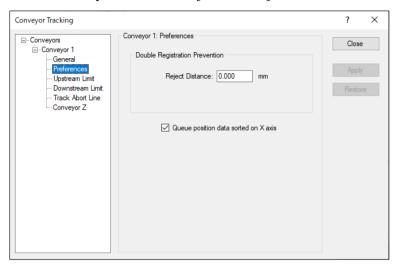
- 3. Set the [Queue position data sorted on X axis] checkbox.
- 4. Click the <Apply> button.



When you set a diagonal upstream limit, register the queue data in the order of entering the Pickup Area.

Also, when you set a diagonal upstream limit, note that the queue sorting cannot be canceled.



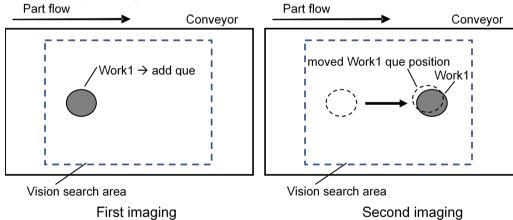

The queue sorting function is applied to both upstream and downstream conveyors.

# 16.19 Double Registration Prevention

Cnv\_QueReject avoids registering the same part doubly. If Cnv\_QueReject value is not changed from the default (0 mm), the robot may perform the pickup motion at the position where the part is not placed, since the same part is registered to the queue several times.

Cnv\_QueReject can be set by using the command or by following the steps below.

- 1. Select [Tools] [Conveyor Tracking].
- 2. Click the conveyor to set. Select [Preferences].




- 3. Set the value to [Reject Distance].
- 4. Click the <Apply> button.



If "Cnv\_QueRejet" is used in the program, the value set for "Cnv\_QueRejet" will be used instead of the value set in the above step.

When the same workpiece is imaged multiple times as shown in the figure below, the moved Work1 que position which from the initially registered Work1 will not exactly match the coordinates of the newly registered Work1 queue due to the influence of the camera and conveyor etc. To prevent the same workpiece from being registered in the queue more than once, it is recommended to enter a value similar to the workpiece size as the double registration prevention distance.



## 16.20 Sample Program

#### Vision conveyor programming

Typically, two tasks are used to operate a vision conveyor. One task finds parts with the vision system and adds them to the conveyor queue.

The other task checks for parts in the Pickup Area of the conveyor queue. When a part is in the Pickup Area, the robot is commanded to pick up the part and place it to the specified position.

The following example is a sample program that uses Xqt to execute two tasks from the "main" function.

- First task: "ScanConveyorStrobed" function
- Second task: "PickParts" function

This program corresponds to "16.5 Wiring Example of Vision Conveyor Tracking System".

This sample program is a hardware trigger structure that uses controller I/O to trigger the camera and latch the encoder.

The following program is a sample with Conveyor #1.

This sample program automatically recovers when the robot tracks the work piece that is out of the tracking area.

```
Function main
  Xqt ScanConveyorStrobed
                                  'Task that registers queues
  Xqt PickParts
                                  'Task that tracks parts (queue)
Fend
Function ScanConveyorNonStrobed
  Integer i, numFound, state, trigger
  Real x, y, u
  Boolean found
  trigger = 10
                   'Allocates pin10 of controller I/O
  Off trigger
                  'Turns OFF the camera trigger and encoder latch I/O
  Do
    VRun FindParts
                         'Searches for parts on the conveyor
                    'Turns ON the camera trigger and encoder latch I/O
    On trigger
    Do
       VGet FindParts.AcquireState, state
    Loop Until state = 3
    VGet FindParts.Parts.NumberFound, numFound
    'Registers the part that has been shot as a queue
    For i = 1 to numFound
         VGet FindParts.Parts.CameraXYU(i), found, x, y, u
         Cnv QueAdd 1, Cnv Point(1, x, y)
    Next i
    Off trigger
                    'Turns OFF the camera trigger and encoder latch I/O
    Wait 0.1
  Loop
Fend
```

```
Function PickParts
         OnErr GoTo ErrHandler
         Integer ErrNum
         Cnv Mode 1,1
                           'Selects the tracking mode
         WaitParts:
         Dο
           'Waits until a part (queue) enters the Pickup Area
           Wait Cnv QueLen(1, CNV QUELEN PICKUPAREA) > 0
           'Starts tracking the parts
           'When using the 6-axis robot
           Jump3 Cnv QueGet(1):Z(0):U(90):V(0):W(180)
           'When using the SCARA robot
           Jump Cnv QueGet(1)
           Wait 0.1
                          'The robot moves at the same speed as the conveyor for the
                          'Wait time specified to this part
           Jump P1
                          'Moves to the specified place
                                     'Clears the picked part (queue)
           Cnv QueRemove 1, 0
         Loop
         'Clears the parts (queue) in the downstream side from the Pickup Area
         'Automatically recovers from the error
         "The specified queue data is outside the set area"
         ErrHandler:
           ErrNum = Err
           If ErrNum = 4406 Then
              Cnv QueRemove 1, 0
              EResume WaitParts
           'Displays the error other than
           "The specified queue data is outside the set area"
           Else
              Print "Error!"
              Print "No.", Err, ":", ErrMsg$(Err)
              Print "Line :", Erl(0)
              'User error occurred
              Error 8000
           EndIf
      Fend
When you use software trigger, use the "ScanConveyorStrobed" function shown below.
      Function ScanConveyorStrobed
         Integer i, numFound, state
         Real x, y, u
         Boolean found
         Dο
           Cnv Trigger 1
                                       'Latches the encoder with software trigger
           'Searches for parts on the conveyor
           VRun FindParts
           VGet FindParts.Parts.NumberFound, numFound
```

NOTE

(B)

### 'Registers the part as a queue

```
For i = 1 to numFound
    VGet FindParts.Parts.CameraXYU(i), found, x, y, u
    Cnv_QueAdd 1, Cnv_Point(1, x, y)
    Next i
    Wait 0.1
Loop
Fend
```

### Sensor conveyor programming

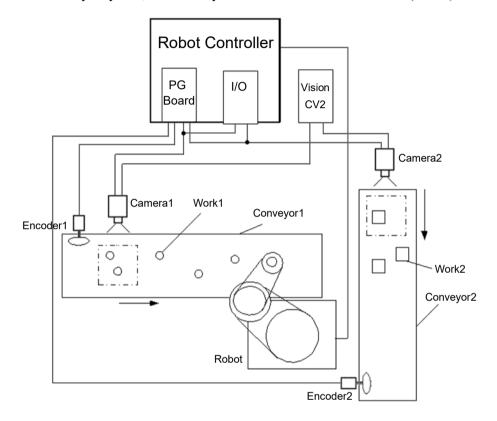
Typically, two tasks are used to operate a sensor conveyor. One task waits for a part to trip the sensor and add it to the conveyor queue. The other task checks for parts in the Pickup Area of the conveyor queue. When a part is in the Pickup Area, the robot is commanded to pick up the part and place it to the specified position.

This sample program automatically recovers when the robot tracks the work piece that is out of the tracking area.

```
Function main
  Xqt ScanConveyor
                             'Task that registers queues
  Xqt PickParts
                             'Task that tracks parts (queue)
Fend
Function ScanConveyor
  Double lpulse1
                                      'Previous latch pulse
     lpulse1 = Cnv LPulse(1)
                                      'Registers the latch pulse as lpulse1
        'Registers a part as a queue only when it passes the sensor
       If lpulse1 <> Cnv LPulse(1) Then
          Cnv QueAdd 1, Cnv Point(1, 0, 0)
          lpulse1 = Cnv LPulse(1)
                                           'Updates lpulse1
       EndIf
     Loop
Fend
Function PickParts
  OnErr GoTo ErrHandler
  Integer ErrNum
  Cnv Mode 1,1
                     'Selects the tracking mode
  WaitParts:
  Do
     'Waits until a part (queue) enters the Pickup Area
     Wait Cnv QueLen(1, CNV QUELEN PICKUPAREA) > 0
     'Starts tracking the parts
     'When using the 6-axis robot
     Jump3 Cnv QueGet(1):Z(0):U(90):V(0):W(180)
     'When using the SCARA robot
     Jump Cnv_QueGet(1)
     Wait 0.1 'The robot moves at the same speed as the conveyor
                ' for the Wait time specified to this part
                'Moves the picked part to a specified place
     Jump P1
                               'Clears the picked part (queue)
     Cnv QueRemove 1, 0
  Loop
   'Clears the parts (queue) in the downstream side from the Pickup Area
   'Automatically recovers from the error
```

```
"The specified queue data is outside the set area"
  ErrHandler:
    ErrNum = Err
    If ErrNum = 4406 Then
       Cnv QueRemove 1, 0
       EResume WaitParts
  'Displays the error other than
  "The specified queue data is outside the set area"
    Else
       Print "Error!"
       Print "No.", Err, ":", ErrMsg$(Err)
       Print "Line :", Erl(0)
       'User error occurred
       Error 8000
    EndIf
Fend
```

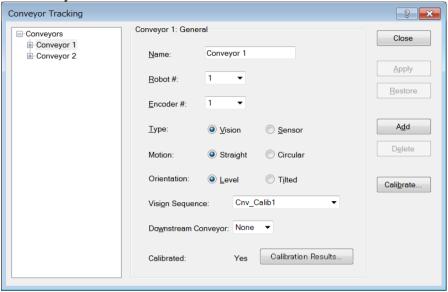
# 16.21 Multiple Conveyors


EPSON RC+ 7.0 supports multiple logical conveyors and robots. You can use multiple robots with one conveyor.

This section describes a conveyor system that uses one robot with two or more conveyors.

# Conveyor tracking for several conveyors

This section describes a conveyor system where one robot picks up "Part 1" from Conveyor 1 and puts the picked parts above "Parts 2" on Conveyor 2 as shown in the figure below.


In this conveyor system, each conveyor needs one encoder and camera (sensor).



# How to use several conveyors

The usage of several conveyors is described below.

- 1. Refer to *16.11 Creating Conveyors in a Project* and create Conveyor 1 and Conveyor 2. (Set the robot in the upstream side to the Conveyor 1.)
- 2. For the [Encoder] and [Vision Sequence], set the different number and sequence for each conveyor 1 and 2.



- 3. Calibrate Conveyor 1.
- 4. Refer to 16.13 Vision Conveyors or 16.14 Sensor Conveyors and check the conveyor operation.
- 5. Calibrate Conveyor 2.
- 6. Check the operation of Conveyor 2.

The following program is a sample.

This sample program automatically recovers when the robot tracks the work piece that is out of the tracking area.

```
Function main
  Xqt ScanConveyorStrobed 'Task that registers queues
                                'Task that tracks parts (queue)
  Xqt PickParts
Fend
Function ScanConveyorStrobed
  Integer i, j, numFound, state, trigger1, trigger2
  Real x, y, u
  Boolean found
  trigger1 = 10 'Allocates pin10 of controller I/O to conveyor 1
  trigger2 = 11 'Allocates pin11 of controller I/O to conveyor 2
  Off trigger1;
                    Off trigger2
                  'Turns OFF the camera trigger and encoder latch
  Do
     'Registers the parts (queue) of the Conveyor 1
     'Searches for a part on the conveyor
    VRun FindParts1
```

```
On trigger1
                   'Turns OFF the camera trigger and encoder latch
    Do
       VGet FindParts1.AcquireState, state
    Loop Until state = 3
    VGet FindParts1.Parts.NumberFound, numFound
     'Registers the part that has been shot as a queue
    For i = 1 to numFound
       VGet FindParts.Parts.CameraXYU(i), found, x, y, u
       Cnv QueAdd 1, Cnv Point(1, x, y)
    Next i
     'Turns OFF the camera shutter and I/O (conveyor trigger)
    Off trigger1
                         'Turns OFF the camera trigger and encoder latch
    Wait 0.1
     'Registers the parts (queue) of the Conveyor 2
     'Searches for part on the conveyor
    VRun FindParts2
    On trigger2 'Turns ON the camera trigger and encoder latch I/O
       VGet FindParts2.AcquireState, state
    Loop Until state = 3
    VGet FindParts2.Parts.NumberFound, numFound
     'Registers the part that has been shot as a queue
    For j = 1 to numFound
       VGet FindParts2.Parts.CameraXYU(j), found, x, y, u
       Cnv QueAdd 2, Cnv Point(2, x, y)
    Next j
    Off trigger2 'Turn OFF the camera shutter and I/O (conveyor trigger)
    Wait 0.1
  Loop
Fend
Function PickParts
  OnErr GoTo ErrHandler
  Integer ErrNum
  MemOff 1; MemOff 2
                               'Turns OFF the memory I/O
     'Tracking of Conveyor 1
    WaitPickup1:
     'Turns ON the memory I/O when the Conveyor 1 tracking phase starts
                   'Turns OFF the memory I/O 1
     'Clears the parts (queue) in the downstream side from the downstream limit
    Do While Cnv QueLen(1, CNV QUELEN DOWNSTREAM) > 0
       Cnv_QueRemove 1, 0
    Loop
```

```
'Waits until a part (queue) enters the Pickup Area
  Wait Cnv QueLen(1, CNV QUELEN_PICKUPAREA) > 0
  'Starts tracking the parts
  'When using the 6-axis robot
  Jump3 Cnv QueGet(1):Z(0):U(90):V(0):W(180)
  'When using the SCARA robot
  Jump Cnv QueGet(1)
  Wait 0.1
                  'The robot moves at the same speed as the conveyor for the
                  'Wait time specified to this part
  'Clears the picked part (queue)
  Cnv Queremove 1,0
  MemOff 1
                   'Turns OFF the memory I/O 1
  'Tracking of the Conveyor 2
  WaitPickup2:
'Start the Conveyor 2 tracking phase
                  'Turns ON the memory I/O 2
  MemOn 2
  'Waits until a part (queue) enters the Pickup Area
  Wait Cnv_QueLen(2, CNV_QUELEN PICKUPAREA) > 0
  'Starts tracking the parts
  'When using the SCARA robot
  Jump Cnv QueGet(2)
  Wait 0.1
                  'The robot moves at the same speed as the conveyor for the
                  'Wait time specified to this part
                  'Moves to the specified place
  Jump P1
  'Clears the picked part (queue)
  Cnv QueRemove 2, 0
  MemOff 2
                   'Turns OFF the memory I/O 2
'Clear the parts (queue) in the downstream side from the Pickup Area
'Automatically recovers from the error
"The specified queue data is outside the set area"
ErrHandler:
  ErrNum = Err
  If ErrNum = 4406 Then
     If MemSw(1) = On Then
       Cnv QueRemove 1
       EResume WaitPickup1
     EndIf
     If MemSw(2) = On Then
       Cnv QueRemove 2
       EResume WaitPickup2
     EndIf
  'Displays the error other than
  "The specified queue data is outside the set area"
```

```
Print "Error!"
Print "No.", Err, ":", ErrMsg$(Err)
Print "Line :", Erl(0)

'User error occurred
Error 8000
EndIf
Fend
```

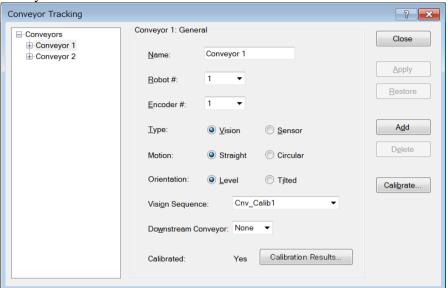
# 16.22 Multi-robot Conveyor

EPSON RC+ supports multiple logical conveyors and robots. You can use multiple robots with one conveyor, or multiple robots with multiple conveyors.

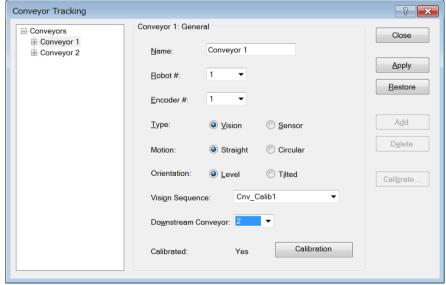
This section describes a conveyor system that uses two or more robots with one conveyor and a conveyor system that uses one robot with two or more conveyors.

# Multi-robot conveyor

The multi-robot system uses two or more robots with one conveyor as shown below. In this system, the second robot (downstream) picks up the parts that the first robot (upstream) failed to pick up.


Although the system uses several robots, it uses only one camera (sensor), encoder, and conveyor.




# How to use multi-robot conveyor

To use the multi-robot conveyors, set the upstream and downstream conveyors. Instructions for using multi-robot conveyors are described below.

- 1. Refer to 16.11 Creating Conveyors in a Project and create conveyors 1 and 2. (Set the upstream-side robot to Conveyor 1.)
- 2. For [Encoder] and [Vision Sequence], set the same number and sequence for both conveyors 1 and 2.



- 3. Calibrate Conveyor 1.
- 4. Refer to the section *operation check* in 16.13 Vision Conveyors or 16.14 Sensor Conveyors and check the conveyor operation.
- 5. Set [Downstream Conveyor] to "2".



- 6. Calibrate Conveyor 2.
- 7. Check the operation of Conveyor 2.
  - (7)-1 Clear the all queue data registered to each conveyor.

```
>Cnv_QueRemove 1,all
>Cnv QueRemove 2,all
```

(7)-2 Place the part in the vision search area.

- (7)-3 Execute the program "ScanConveyorStrobed(ScanConveyor)" and register a queue.
- (7)-4 Halt the program "ScanConveyorStrobed" and move the conveyor until the part enters the Pickup Area.
- (7)-5 Stop the program "ScanConveyorStrobed" and move the conveyor until the part enters the Pickup Area of the conveyor 2.
- (7)-6 Execute the command below to move the queue from conveyor 1 to conveyor 2.

```
>Cnv QueMove 1,0
```

(7)-7 Pick up the part.

```
>Jump Cnv_Queget(2)
```

- (7)-8 Check if the robot end effector is above the center of a part. If the robot end effector is not above the center of the part, perform the calibration again.
- (7)-9 Move the conveyor and check if the robot follows the part. At this point, the end effector will be off the center of part but this is not a problem.
- (7)-10 Stop the tracking motion.

```
>Cnv AbortTrack
```

8. The following is a sample program.

```
Function main
                                   'Task that registers queues
  Xqt ScanConveyorStrobed
  Xqt PickParts1 'Task for the upstream robot to track the parts (queue)
  Xqt PickParts2 'Task for the downstream robot to track the parts (queue)
Fend
Function ScanConveyorStrobed
  Integer i, numFound, state, trigger
  Real x, y, u
  Boolean found
  trigger = 10 'Allocates pin10 of controller I/O
  Off trigger 'Turns OFF the camera trigger and encoder latch I/O
  Do
    'Searches for a part on the conveyor
    VRun FindParts
    On trigger
                  'Turns ON the camera trigger and encoder latch I/O
    Do
       VGet FindParts.AcquireState, state
    Loop Until state = 3
    VGet FindParts.Parts.NumberFound, numFound
    'Registers the found part to the queue of conveyor 1
    For i = 1 to numFound
       VGet FindParts.Parts.CameraXYU(i), found, x, y, u
       Cnv QueAdd 1, Cnv Point(1, x, y)
    Next i
                   'Turns OFF the camera trigger and encoder latch I/O
    Off trigger
```

Wait 0.1

```
Loop
Fend
Function PickParts1
  OnErr GoTo ErrHandler
  Integer ErrNum
  WaitParts:
  Do
     'Waits until a part (queue) enters the Pickup Area
    Wait Cnv QueLen(1, CNV QUELEN PICKUPAREA) > 0
     'Starts tracking the part
     'When using the 6-axis robot
     Jump3 Cnv QueGet(1):Z(0):U(90):V(0):W(180)
     'When using the SCARA robot
    Jump Cnv QueGet(1)
    Wait 0.1
                    'The robot moves at the same speed as the conveyor for the
                    'Wait time specified to this part
    Jump P1
                    'Moves to the specified place
     'Clears the picked part (queue)
    Cnv QueRemove 1, 0
  Loop
  'Moves the parts (queue) in the downstream side than the Pickup Area of conveyor1
  ' to the conveyor 2
  ErrHandler:
    ErrNum = Err
     If ErrNum = 4406 Then
       Cnv QueMove 1, 0
       EResume WaitParts
     'When an error except the conveyor tracking motion range error occurs,
     'display the error
    Else
       Print "Error!"
       Print "No.", Err, ":", ErrMsg$(Err)
       Print "Line :", Erl(0)
       'User error occurred
       Error 8000
    EndIf
Fend
```

```
Function PickParts2
  OnErr GoTo ErrHandler
  Integer ErrNum
  WaitParts:
  Do
     'Waits until a part (queue) enters the Pickup Area
     Wait Cnv QueLen(2, CNV QUELEN PICKUPAREA) > 0
     'Starts tracking the part
     'When using the 6-axis robot
     Jump3 Cnv QueGet(2):Z(0):U(90):V(0):W(180)
     'When using the SCARA robot
     Jump Cnv QueGet(2)
     Wait 0.1
                    'The robot moves at the same speed as the conveyor for the
                    'Wait time specified to this part
                    'Moves to the specified place
     Jump P2
     'Clears the picked part (queue)
     Cnv QueRemove 2, 0
  Loop
  'Clear the parts (queue) in the downstream side than the Pickup Area of conveyor 2
  'Automatically recovers from the error
  "The specified queue data is outside the set area"
  ErrHandler:
    ErrNum = Err
     If ErrNum = 4406 Then
       Cnv QueRemove 2, 0
       EResume WaitParts
     'When an error except "The specified queue data is outside the set area"
     'occurs, display the error
    Else
       Print "Error!"
       Print "No.", Err, ":", ErrMsg$(Err)
       Print "Line :", Erl(0)
       'User error occurred
       Error 8000
    EndIf
Fend
```

# 16.23 Abort Tracking

There are some situations when you want to abort tracking a part that moves out of the Pickup Area while the robot is tracking the part. In this case, use the Cnv\_AbortTrack command in a separate task that monitors the conveyor queue.

# 16.24 Conveyor Tracking with 6-Axis Robot

When you use a 6-axis robot in a conveyor tracking system, you need to set the values of U, V, and W. For this, use the Cnv QueGet command.

The following shows the case where the robot end effector moves toward a part during the pickup.

```
Go Cnv_Queget(Conveyor number,[Index]):U(90):V(0):W(180)
```

To use the Jump3 command, write a program as follows:

```
Jump3 P1,Cnv_QueGet(1):Z(**):U(90):V(0):W(180),
Cnv QueGet(1):U(90):V(0):W(180)
```



P1 and Z(\*\*) height should be the same.

The followings are points to be known before setting the Z(\*\*) height.

- Home position of Z in the tracking coordinate is the calibration position.
- To raise the Z height in the tracking coordinate, offset in a positive (+) direction.
- To lower the Z height in the tracking coordinate, offset in a minus (-) direction.
- Robot coordinate P1 can be converted to the conveyor coordinate and displayed.

```
> print P1@cnv1
```

# 16.25 Tracking Mode

There are three tracking modes: picking quantity-priority mode, picking accuracy-priority mode, and variable speed conveyor mode. The mode can be selected by the Cnv\_Mode command.

Tracking mode selection is only available for linear conveyors. For circular conveyors, the picking quantity-priority mode is only available.

## Picking quantity-priority mode

Picking quantity-priority mode prioritizes reducing time to catch up with the work piece (queue) over the picking accuracy. This mode is suitable for the conveyor tracking system in which space between the work pieces is narrow.



When the picking quantity-priority mode is selected, tracking delay (situation in which the Manipulator does picking motion at the posterior part of the work piece to the direction of the conveyor motion) may occur. When you correct the tracking delay, write the program to add the offset as follows.

```
Go Cnv Queget(Conveyor number, [Index])+X(**)
```

X indicates the direction of the conveyor motion. \*\* indicates correction amount [mm].

For the details of offset, refer to the following manual:

SPEL+ Language Reference - Go

# Picking accuracy-priority mode

Picking accuracy-priority mode is the mode to correct the tracking delay. Picking accuracy-priority mode improves the picking accuracy while it takes more time to catch up with the work piece. This mode is suitable for the conveyor tracking system for small work pieces.

When using the picking accuracy-priority mode, it is recommended to perform the tracking delay acquisition operation in advance. For details, see the next section, "Picking accuracy-priority mode - Acquiring tracking delay".

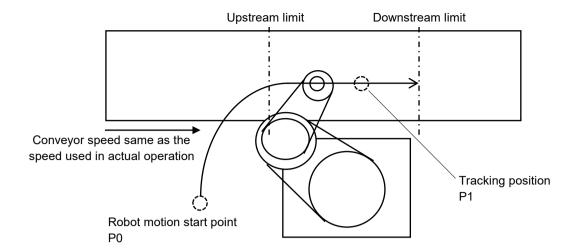


Picking accuracy-priority mode should be used for the conveyors of 350 mm/sec or less.



The Manipulator may slide to the direction of the conveyor motion in Go, Move, or Jump3 motions after the downward motion of the Z-axis. If this occurs, take following countermeasures (these may not be effective for Go and Move motions)

- For Go motion: Change to Jump motion. Or, reduce the values of Accel and Speed.
- For Move and Jump3 motions: Reduce the values of AccelS and SpeedS.


#### Picking accuracy-priority mode - Acquiring tracking delay

When using the conveyor tracking accuracy priority mode, you can acquire and compensate for robot tracking delays to accurately track a workpiece.

The following tracking delay acquisition operation should be performed in advance to acquire tracking delays. Failing to set the offset value in advance would result in tracking delays being acquired and compensated for during actual operation, which may adversely affect accuracy and cycle times.

#### Acquiring the tracking delay

When acquiring the tracking delay, the robot moves from the motion start point to the downstream limit as shown in the diagram below. This acquires the offset amount [mm] and offset time [sec] in the direction the conveyor is traveling.



This motion can be executed by running the following sample program. Configure the following settings beforehand.

- · Perform conveyor calibration
- Set Accel, Speed, Tool, and other parameters to the same settings as that used for actual operation
- Teach the robot the start position for the conveyor tracking motion as P0
- Teach the robot the following two points required to perform the motion
  - Point 1: The robot motion start point
  - Point 2: The point tracked on the conveyor
- Move the conveyor at the same speed as that used for actual operation



- The tracking delay is acquired based on the conveyor width-direction and height coordinates at the tracking position taught to the robot. Configure settings to closely match actual operation.
- The offset value changes based on the conveyor speed, robot acceleration, speed, and orientation. Therefore, the tracking delay should be reacquired when any of these settings are changed.
- As this program runs on a virtual queue, an actual workpiece is not required.

```
Function Cnv Adjust measure
     'Move to robot motion start point
    Motor On
    Go P0
    Power High
    Speed 100
    Accel 100, 100
    Cnv Accel 1, 2000
     'Check conveyor operation
    If Cnv Speed(1) < 0.1 Then
       Print "Conveyor not operational"
       Exit Function
    EndIf
     'Register virtual workpiece to queue
    Cnv QueRemove 1, All
                                  'Clear queue
    Cnv Trigger (1)
                                   'Latch conveyor pulse
    Cnv QueAdd 1, XY(0, CY(P1@Cnv(1)), CZ(P1@Cnv(1)),
  CU(P1@Cnv(1)), 0, 0) /CNV(1) 'Register virtual workpiece
  to queue based on P1
    Wait Cnv_QueLen(1, CNV_QUELEN_PICKUPAREA) > 0
                                                           ' Wait
  until queue enters the Pickup Area
    Cnv Adjust 1, On 'Turn offset acquisition flag On
     'Perform motion
                                            'For SCARA robots
    Go Cnv QueGet (1,0)
     'Go Cnv Queget (1,0):U(90):V(0):W(180) 'For 6-axis robots
    Do
        Wait 0.02
    Loop Until (CX(RealPos@CNV(1)) >= Cnv Downstream(1))
  'Wait until downstream limit is reached
    Go here
                                  'Stop robot
                                 'Reset queue
    Cnv QueRemove 1, All
    Cnv Adjust 1, Off
                                  'Turn offset acquisition flag Off
    motor off
     'Output results of offset value acquired
    If Cnv AdjustGet(1, 0) = 2 then
     Print "Unable to correctly acquire offset value"
     Print "Operation results=", Cnv AdjustGet(1, 0)
     Print "Offset amount =", Cnv AdjustGet(1, 1)
     Print "Offset time =", Cnv AdjustGet(1, 2)
    EndIf
Fend
```



The offset value is reset when turning the controller off. Use Cnv\_AdjustSet to set the offset value acquired within the program in use.

To store the offset value acquired, add the following program to save the file to the Project folder.

```
Integer fileNum; String filename$
  fileNum = FreeFile
  filename$ = "File name"
  AOpen filename$ As #fileNum
  Print
  #fileNum,Cnv_AdjustGet(1,1),",",Cnv_AdjustGet(1,2)
  Close #fileNum
```



- If the operation results are not 1, the robot may not have been able to reach the workpiece within the Pickup Area. Check the Accel and Speed settings, upstream and downstream limit settings, the motion start point, and the conveyor speed.

# Variable speed conveyor mode

The variable speed conveyor mode compensates for the delay in robot tracking in response to changes in conveyor speed.

It is suitable for conveyor systems where the conveyor may stop and continue is in progress while contact is made with the workpiece. For example, screw tightening applications are conceivable.

When stopping and continuing the conveyor in variable speed conveyor mode, set the limit of acceleration and deceleration after conveyor tracked and it is recommended that the operation used to determine the offset value be performed in advance. For details, see the next section, "Setting the offset value for variable speed conveyor mode".



If any of the following processes are performed when the conveyor is being stopped or while it is stopped, conveyor tracking will be terminated and cannot be continued.

- Open the safety door connected to the controller.
- Press the Emergency Stop button connected to the controller.
- Press the Pause button or execute the Pause command.

# Setting the offset value, acceleration and deceleration for variable speed conveyor mode

The robot's tracking delay relative to conveyor speed changes depends on the conveyor speed, conveyor acceleration/deceleration, robot model used, Inertia setting, Weight setting, and other factors.

Therefore, it is necessary to set the offset value according to the operating environment, and the limit of acceleration and deceleration after conveyor tracked.

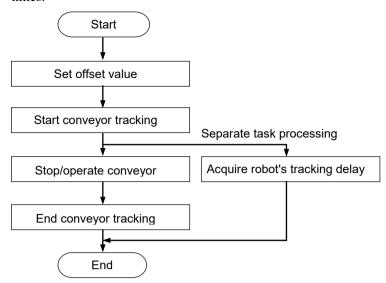
In order to improve the robot's tracking delay, it is necessary to adjust the offset value and set the optimum value.

The amount of robot tracking delay is acquired with the Cnv\_PosErr function, the offset value is set with Cnv\_PosErrOffset, and the limit of acceleration and deceleration after conveyor tracked is set with Cnv\_AccelLim.



When adjusting the offset value, set Cnv\_Fine to 0. If the value is nonzero, the amount of tracking delay cannot be acquired correctly with the Cnv PosErr function.

In the picking quantity-priority mode and picking accuracy-priority mode, it is not possible to acquire and set offset values.


When acquiring the offset value, check the "Picking accuracy-priority mode - Acquiring tracking delay" setting. For a working program, use the sample program described below.

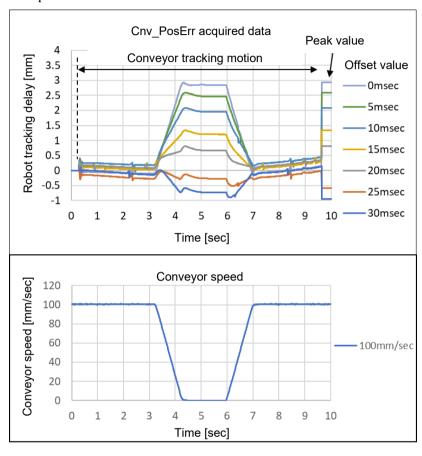
Set the limit to a value greater than the conveyor acceleration and deceleration when stopping or operating the conveyor. A rough guideline for the set value is about twice the conveyor acceleration and deceleration.

The acceleration and deceleration cannot be set separately. If the limit is too high, robot motion gets oscillatory due to variation of the conveyor speed or noise. If it is lowered too much, the robot will not stop tracking the conveyor even it stops, and it may move out of the operating area of the robot. In that case, set a tracking abort line or program to stop tracking at the downstream limit.

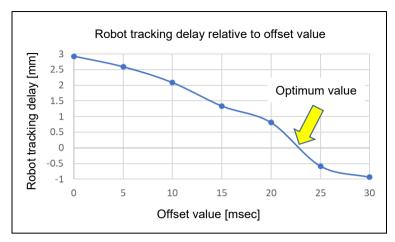
After setting the limit of acceleration and deceleration, follow the procedure below to set the offset value and acquire the robot's tracking delay.

In order to find the optimal offset value, change the offset value and perform multiple times.




```
'Declare a file number
Integer fileNum
Function Cnv PosErr measure
  Motor On
             ' Move to robot motion start point
  Go PO
  Power High
  Speed 100
  Accel 100, 100
  Cnv Accel 1, 2000
  Cnv Fine 1,0
                                  ' Fine setting
  Cnv Mode 1,2
                                  'Variable speed conveyor mode
  Cnv PosErrOffset 1,10
                                  ' Set offset value
  'Check conveyor operation
  If Cnv Speed(1) < 0.1 Then
      Print"Conveyor not operational"
      Exit Function
  EndIf
  'Register virtual workpiece to queue
  Cnv QueRemove 1, All
                               'Clear queue
  Cnv Trigger (1)
                              'Latch conveyor pulse
  Cnv QueAdd 1, XY(0, CY(P1@Cnv(1)), CZ(P1@Cnv(1)),
   CU(P1@Cnv(1)), 0, 0) /CNV(1) 'Register virtual workpiece to queue based
   on P1
  Wait Cnv QueLen(1, CNV QUELEN PICKUPAREA) > 0
  'Wait until queue enters the Pickup Area
  Xqt CnvPosErrTest
                             'Start acquiring offset values in separate task
  'Perform motion
                                               'For SCARA robots
  Go Cnv QueGet(1,0)
  'Go Cnv Queget(1,0):U(90):V(0):W(180)
                                               'For 6-axis robots
  Do
      Wait 0.02
  Loop Until (CX(RealPos@CNV(1)) >= Cnv Downstream(1))
  'Wait until downstream limit is reached
  Go here
                               'Stop robot
                               'Reset queue
  Cnv QueRemove 1, All
  Wait 0.5
  Ouit CnvPosErrTest
                               'End offset value acquisition
  motor off
Fend
Function CnvPosErrTest
  fileNum = FreeFile
                                         'Acquire a file number
   WOpen "poserr.csv" As #fileNum
                                          'csv filename
   Print #fileNum, "Time[sec],Cnv PosErr[mm],Cnv Speed[mm/s]"
   TmReset 0
   Do
      Print #fileNum, Tmr(0), ",", Cnv PosErr(1), ",",
      Cnv_Speed(1)
      Wait 0.01
   Loop
Fend
```

A "poserr csv" file will be created in the project folder of EPSON RC+7.0. Open the file in a spreadsheet or other software and create a line graph or scatter plot.


If data is acquired multiple times with different offset values, a graph like that shown below can be produced.

After a conveyor tracking operation, the return value of the Cnv\_PosErr function will be the Cnv\_PosErr peak value acquired during said operation. It is useful to use these peak values when creating graphs.

A positive tracking delay means that the robot is advancing too far downstream from the workpiece.



Plotting the robot's tracking delay against the offset value allows the optimal offset value to be set.



From the results shown above, add the following offset value setting to the conveyor tracking program:

Cnv PosErrOffset 1, 22.7

'Offset value



- The offset values described in this procedure are for reference.

  Depending on the operating environment and the offset value that is set, the operation may not be successful or may cause vibration.
- If the robot performs an action different from the setting, immediately press the emergency stop button.

# 16.26 How to shorten the picking cycle time

There are following two methods to shorten the picking cycle time.

- -Use the Arch command
- -Use the Cnv Accel command



The followings are the points to consider when using the Cnv Accel command.

- Maximum Cnv Accel value is 5000 mm/sec<sup>2</sup>.
- If the Cnv\_Accel setting value is 0 or exceeds 5001, the default value (2000 mm/sec<sup>2</sup>) will be set.
- If the acceleration error occurs, greater Cnv\_Accel value cannot be specified. Decrease the Cnv\_Accel value or decrease Accel or AccelS.
- When Cnv\_Accel is used in the picking accuracy-priority mode, the manipulator may slide to the direction of the conveyor motion after the downward motion of the Z-axis.

# 16.27 Manipulator Posture

Manipulator posture during the tracking motion is always the default posture regardless of the posture at the conveyor tracking calibration. To specify the posture for the tracking, write a program as follows.

Example: tracks the work piece with Lefty arm position

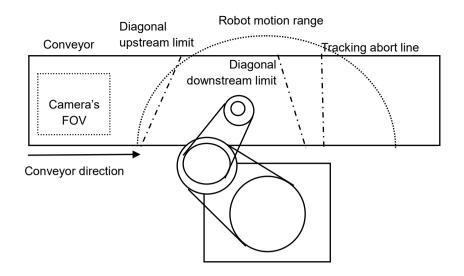
```
jump Cnv Queget(Conveyor number,[Index])/L
```

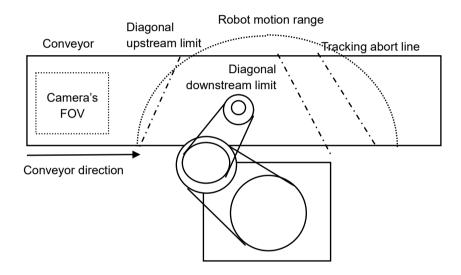


During tracking motion, singularity avoiding function cannot be used. Therefore, set the positions of the Manipulator and the conveyor so that the Manipulator does not pass through the singularity.

# 16.28 Tracking Abort Line

The tracking abort lines cancel or abort the robot's tracking motion in following cases:

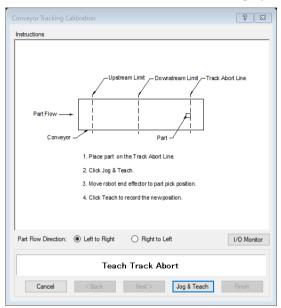

- When it is predicted before the robot starts tracking that it catches up the work piece beyond the abort tracking line.
- When the work piece passes the tracking abort line while the robot performs the tracking motion. At this time, there is a function to detect whether the Z axis is descending for picking and to ascend in the height direction for safety. This height can be set arbitrarily.


When you set the tracking abort line, the out of motion range error will not occur during conveyor tracking.

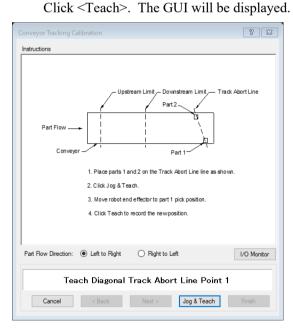


If errors such as the out of motion range error occurs even though the tracking abort line is set, it is possible that the robot motion range has been reached during deceleration. Set the line more upstream than the current position.

The circular conveyor does not support the setting of the tracking abort line.





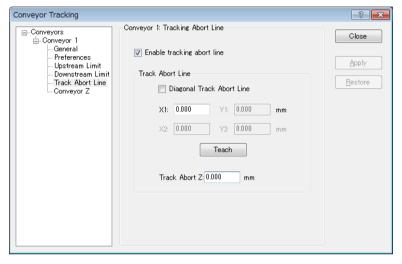


# How to set a tracking abort line

Set a tracking abort line in the following way.

- 1. Select [Tools] [Conveyor Tracking].
- 2. Select the conveyor to configure.
- 3. Select [Track Abort Line].
- 4. Check the [Enable tracking abort line] checkbox.
  - 4.1 Click <Teach>. The GUI will be displayed.



4.2 If you want to enable the diagonal tracking abort line, check the [Diagonal Track Abort Line] checkbox.




5. Follow the steps in the window and finish the setting.

# How to set the Z rising height

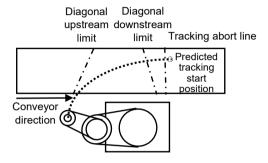
The default rising height during tracking abort is 10 mm. The setting can be changed by the following steps.

- 1. Select [Tools] [Conveyor Tracking].
- 2. Select the conveyor to configure.
- 3. Select[Track Abort Line].
- 4. Set the rising height and click <Apply>.





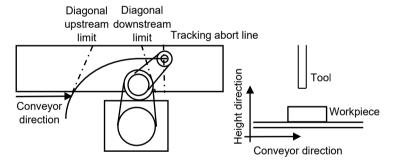
If the out of motion range error occurs while the hand rises, decrease the rising height.


# How to check the tracking abort state

You can check the tracking state in relation to the tracking abort line using the Cnv\_Flag function.

A Cnv\_Flag return value of "0" indicates normal operation, while "other than 0" indicates that tracking has been canceled or aborted. If the return value is "other than 0", perform the following adjustments.

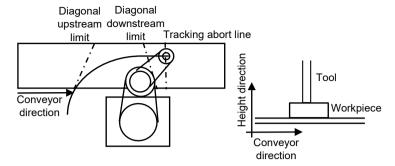
#### When 1:


Tracking has been canceled as the workpiece is expected to exceed the tracking abort line before tracking commences.



Motion start may be delayed due to the downstream limit position setting. Set a downstream limit that is further toward the upstream side than the current position.

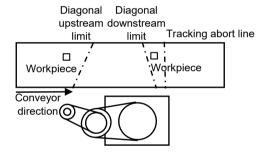
#### When 2:


Tracking has been aborted as the tracking abort line was crossed during tracking (before pickup).



Motion start and completion could be delayed due to an improper downstream limit position and robot standby position. Set a downstream limit that is further toward the upstream side than the current position. Alternatively, bring the robot standby position closer to the downstream limit.

#### When 3:


Tracking has been aborted as the tracking abort line was crossed during tracking (during pickup).



Motion start and completion could be delayed due to an improper downstream limit position and robot standby position, or an improper pickup time. Set a downstream limit that is further toward the upstream side than the current position. Alternatively, bring the robot standby position closer to the downstream limit. Try reducing the workpiece pickup time.

#### When 4:

Tracking has been canceled as the workpiece was outside the Pickup Area during motion command execution.



Refer to the sample program to put the robot on standby until the workpiece exceeds the upstream limit.

If this still occurs even when performing the above, the number of workpieces in the work flow may exceed the robot's processing capacity, causing the workpieces to exceed the downstream limit. Try performing the following adjustments.

- Reduce the number of workpieces
- Increase acceleration using Cnv Accel
- Setup a downstream conveyor



If tracking motion is canceled or aborted, the program will continue to execute the subsequent instruction without stopping.

## **Program**

If the tracking abort line is configured, the error 4406 does not occur. When you set the tracking abort line, use Cnv\_Flag as in the following program. Do not use this program when the abort line is not used.



Use the program 2 after the downstream limit is configured in the program 1 and Cnv\_Flag do not return 2 and 3.



When using the program 1, the robot can operate without an error even though the downstream setting is not adequate since the robot aborts the tracking motion. However, abort of tracking increases the cycle time. It is recommended to adjust the downstream line if you are using the program 1.

```
Program 1
```

```
Function RB1
  'Moves to the waiting position P0
  Jump P0
  Do
     'Waits until the work piece passes the upstream limit
     Wait Cnv QueLen(1, CNV QUELEN PICKUPAREA) > 0
     Jump Cnv QueGet (1) 'Executes the command to operate conveyor tracking
     'When the state is normal, operates the picking
     If Cnv Flag(1) = 0 Then
         On Vacuum1
                               'Vacuum ON
         Wait 0.1
         'When the work piece crosses beyond the tracking abort line during picking and the
         'tracking is stopped, the pickup-failed work piece is released.
         If Cnv Flag(1) = 3 Then
             Jump P2
                             'Moves to the position to release the pickup-failed workpiece
             Off Vacuum1 'Releases the work piece
             Wait 0.1
             Jump P0
                              'Moves to the waiting position P0
         'The picked work piece is moved to the placing position P1
         Else
             Cnv QueRemove 1, 0
                                          'Deletes the picked queue
                                          'Moves to the position to release the work piece
             Jump P1
             Off Vacuum1
                                          'Releases the work piece
             Wait 0.1
         EndIf
     'If the operation is canceled because it is expected to cross the tracking abort line,
     'the queue is deleted.
     ElseIf Cnv Flag(1) = 1 Then
                                          'Deletes the queue data
         Cnv QueRemove 1, 0
     'If the operation is canceled because the work piece at the time of executing the
     'operation command is outside the tracking start area, the queue is deleted.
     ElseIf Cnv Flag(1) = 4 Then
         Cnv QueRemove 1, 0
                                          'Deletes the queue data
```

'If the tracking motion is aborted since the work piece passed the tracking abort line,

'the queue is deleted.

Jump P0

EndIf

ElseIf Cnv Flag(1) = 2 Then

Cnv QueRemove 1, 0

'Moves to the waiting position P0

'Deletes the queue data

```
Loop
Fend
Program 2
Function RB1
  'Moves to the waiting position P0
  Jump P0
  Do
     'Wait until the work piece passes the upstream limit
     Wait Cnv QueLen(1, CNV QUELEN PICKUPAREA) > 0
     Jump Cnv_QueGet(1) 'Starts tracking
     'When the state is normal, operates the picking
     If Cnv Flag(1) = 0 Then
                                         ' Vacuum ON
         On Vacuum1
         Wait 0.1
         Cnv QueRemove 1, 0
                                         'Deletes the picked queue
                                         ' Moves to the position to release the work piece
         Jump P1
         Off Vacuum1
                                         'Releases the work piece
         Wait 0.1
     'If the operation is canceled because it is expected to cross the tracking abort line,
     'the queue is deleted.
     ElseIf Cnv Flag(1) = 1 Then
                                              ' Deletes the queue data
         Cnv QueRemove 1, 0
     'If the operation is canceled because the work piece at the time of executing the
     'operation command is outside the tracking start area, the queue is deleted.
     ElseIf Cnv Flag(1) = 4 Then
                                              'Deletes the queue data
         Cnv QueRemove 1, 0
     EndIf
  Loop
Fend
```

# 16.29 Tips for Accuracy Improvement of Conveyor Tracking

#### 16.29.1 Overview

This section provides the tips for improving the robot's performance to handle the work pieces in the Conveyor Tracking, which uses the vision system to detect the work pieces.

## **Process of Accuracy Improvement**

Prepare the conveyor tracking in the following steps.

- 1. System construction
- 2. Vision calibration
- 3. Conveyor calibration
- 4. Check of the work piece detection accuracy and the detection rate
- 5. Check of the work piece handling accuracy

In order to improve the handling accuracy, proper preparations and adjustments in each step are necessary. The following sections describe tips for accuracy improvement for each step.

Subsequent descriptions use the SCARA robot. Please note that the tips are common in SCARA and 6-Axis robots.

# 16.29.2 Tips for System Construction

### **Tool Settings**

In order to realize precise pickups, the end effector of the robot needs to pick up the work pieces correctly with a tool such as a vacuum pad attached.

To pick up the work piece accurately by the tool, it is necessary to configure the tool in [Tools] page.

Eccentricity of the tool causes a constant pickup position gap. Make sure to configure the tool settings.

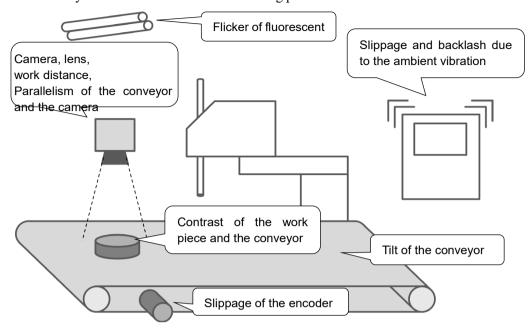
Also, adjustment by the tool settings is not effective for the improper tool such as a randomly-distorted vacuum pad due to the degenerated rubber. Make sure to use the proper tool.

NOTE

For details on the tool setting, refer to 5.12.1 [Robot Manager] Command (Tools Menu) - [Tools] page

NOTE

For details on the tool number selection, refer to 5.12.1 [Robot Manager] Command (Tools Menu) - [Jog and Teach] page




After adjusting the tool, make sure to check the operation and ensure that the calibration result is accurate.

#### Installation and Environment

In order to realize precise pickups, the camera and the conveyor should be installed in the proper environment and calibrated properly.

Install the system with attention to the following points.



## Important Points for Installation of the Conveyor System

- Use a proper camera and lens. Configure a work distance (distance from the lens to the object) properly.
  - Also, ensure parallelism of the camera and the conveyor in order not to cause distortion of the field of view (FOV).
- Ensure horizontality of the horizontal conveyor to match the positions of the robot coordinate system and the conveyor coordinate system.
   For the tilted conveyors, calibrate the tilt properly.
- If the encoder slips, pulse of the conveyor movement cannot be counted correctly.
- If the contrast of the work piece and the conveyor is low, edges of the work piece are difficult to be detected.
- Ambient vibration and source of the impact may cause slippage and backlash of the camera, the conveyor, and the work pieces. It may result in decrease in accuracy.
- General fluorescent lights have periodic flickers and may affect the work detection.
   Consider using fluorescent lights specialized for image processing or the LED lighting system.



Select and install the appropriate cameras and lenses to realize work detection which satisfies required pickup accuracy. Required work detection accuracy should be threefold of the required pickup accuracy.

For details on modification of the FOV for accuracy improvement, refer to 16.29.3 Tips for Vision Calibration – Field of View of Cameras.

## 16.29.3 Tips for Vision Calibration

#### Field of View of Cameras

A large field of view increases mm/pixel (length of 1 pixel) value and decreases detection accuracy of the work pieces.

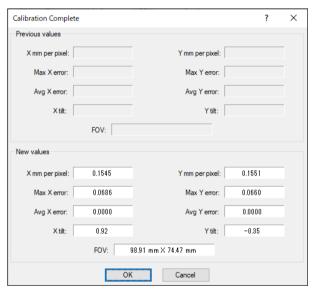
If the following values from the calibration result do not satisfy the required accuracy, consider the following methods.

XmmPerPixel (X mm of one pixel), YmmPerPixel (Y mm of one pixel)

- Reinstall the camera and the work piece to shorten the work distance (distance from the lens to the object)
- Use a high resolution camera
- Use a high resolution lens (e.g. our mega pixel lens) or a long-focal-length lens.



For details on the vision calibration, refer to the following manual.


Vision Guide 7.0 Software 7. Vision Calibration

#### Deviation and Tilt of the Field of View

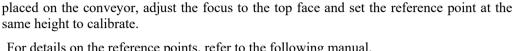
If Error (deviation) or Tilt values displayed in the calibration result were more than "1", it can be considered that calibration was not done properly.

For details, refer to the following manual.

Vision Guide Software 7.5.7 Calibration Complete Dialog Box



Dialog displaying the calibration results


#### Reference Point Detection

For the vision calibration, use a proper combination of the reference point and the vision object; for instance, use a perfect circle as a reference point and detect it by the Blob object. In addition, it is necessary to perform a calibration with the "aperture" and "focus" of the camera adjusted to the work piece.

- Adjust the camera aperture not too bright and not too dark in order to detect edges and marks of the work piece.
- Adjust the focus to see the work piece sharply. Blurs may affect the detection rate and accuracy.

If the work piece is thick and the top face does not come into the focus when the focus is

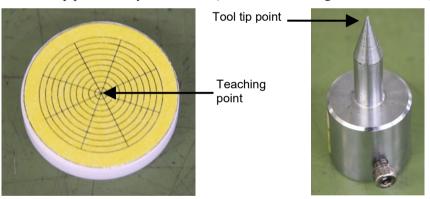






For details on the reference points, refer to the following manual. Vision Guide 7.0 Software 7.3 Reference Points and Camera Points

For details on the vision objects, refer to the following manual. Vision Guide 7.0 Software 6. Vision Objects


# 16.29.4 Tips for Conveyor Calibration

#### Work Piece and Tool

In order to realize precise pickups, it is necessary to perform a correct teaching in the conveyor calibration. To move the center of the end effector to the feature point (e.g. the center point) of the work piece detected by the camera, it is recommended, for example, to use a work piece and a tool as described below.

Work piece: Teaching point is easy to be found

Tool : Tip point is easy to be found (Make sure to configure the tool settings.)



Example of the work piece and the tool used in the conveyor calibration



Perform a model teaching by overlaying the model origin of the Corr or Geom object on the teaching point, and adjust the positions of the camera coordinate system and the conveyor coordinate system correctly. If the teaching point is the center of balance of the work piece (a perfect circle or a square), the center can be detected as the model origin by the Blob object.

# Z Value Adjustment

The work piece and the tool used in the conveyor calibration can have a different height from those used in actual work piece handling. By adjusting the Z value after replacing the tool and the work piece, errors related to the Z offset can be solved.

In the following cases, Z value adjustment is effective.

Tool cannot reach and pick up the work piece. (Z offset is too large) Robot collides with the work piece and damages it. (Z offset is too small)

Like the above cases, redoing of the whole conveyor calibration process may not be required. If there is a problem in the pickup height, adjust the Z value as a first step.



For details on the Z value adjustment, refer to "16.17 Adjusting the Z value".

### 16.29.5 Troubleshooting for Work Piece Detection

### Teaching of Pickup Position

In order to realize precise pickups, the pickup position of the work piece should be detected properly as a model origin. To compensate the constant pickup position gap in work piece handling due to the gap between the pickup position and the model origin, following methods are effective.

- Perform a model teaching by overlaying the model origin of the Corr or Geom object on the teaching point and set the CameraX and CameraY as the pickup position.
- To set the center of balance as a pickup position, detect it as a model origin by the Blob object and set the CameraX and CameraY as the pickup position.



CameraX: X coordinate of the detected work piece position in the camera coordinate system

CameraY: Y coordinate of the detected work piece position in the camera coordinate system



For details on the vision objects, refer to the following manual.

Vision Guide 7.0 Software 6. Vision Objects

#### If the Work Piece Cannot Be Detected in the Search Area

If the work piece which is in the search area cannot be detected and an image processing error occurs, it can be improved by adjusting the vision properties. See the following points.

- Adjust the camera's exposure time
  - Long exposure time affects the work detection since it may blur the image of the moving work piece.
  - Use the ExposureTime property to shorten the exposure time.
- Adjust the shape score value

  If the work detection rate is unstable, it may be improved by adjusting the Accept property of the vision object.



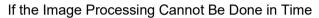
For details on the vision properties, refer to the following manual. Vision Guide 7.0 Properties and Results Reference

# If Work Detection Does Not Satisfy the Required Accuracy

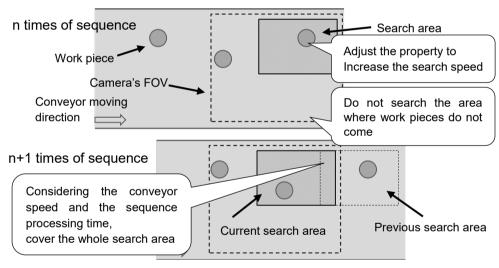
If the work detection does not satisfy the required accuracy, it can be improved by adjusting the vision properties. See the following points.

Adjust the camera's exposure time
 Long exposure time affects the work detection since it may blur the image of the moving work piece.

Adjust the camera's field of view
 Wide field of view increases the length of 1 pixel and decreases the detection accuracy.


Check the XmmPerPixel and YmmPerPixel values.

Example: If approximately 0.5 mm of the image blur at the 100 mm/sec of the conveyor speed is acceptable, set the exposure time to 5 msec.


For details on the vision properties, refer to the following manual.

Use the Exposure Time property to shorten the exposure time.

Vision Guide 7.0 Properties and Results Reference



If the image processing cannot be done in time, it can be improved by adjusting the search area and the vision properties. See the following points.



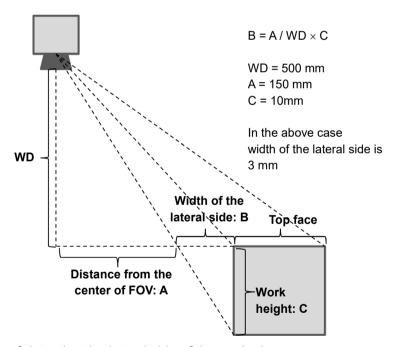
## Tips for the case if the image processing cannot be done in time

- Adjust the search window of the object
   A large search window increases time to execute the vision objects. Adjust the search window as small as possible by eliminating the area where work pieces do not come in.
- Adjust the number of the objects to be detected When you want to detect only one work piece at a time, setting the NumberToFind property to "1" may reduce the execution time.





- Adjust the range of the expected scale


  If there is no great variability in size of the work pieces, set the ScaleEnable property
  to "False". If there is a small variability, narrow the ranges of the ScaleFactorMax
  and the ScaleFactorMin properties as much as possible.
- Adjust the range of the angled detection
   If there is no great variability in angle among the work pieces, set the AngleEnable property to "False". If there is a small variability, narrow the range of the AngleRange property as much as possible.
- Adjust the timeout period
   A process is aborted when the image processing time is considered to exceed the timeout period. If image processing times vary, both the detection rate and the execution time may be improved by shortening the Timeout property.



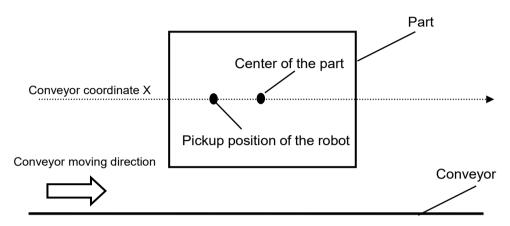
For details on the vision properties, refer to the following manual *Vision Guide 7.0 Properties and Results Reference* 

## When Using A Thick Work Piece

If the work piece is thick, the camera's FOV includes the lateral side of the work piece as shown in the figure below. If the top face and the lateral side of the work piece have similar color, those two faces may be detected as a single top face of the work piece. Pay attention to this influence especially when using the thick work pieces.



### Influence of detecting the lateral side of the work piece




This influence can be decreased by increasing the work distance or replacing the lens with a one with a long focal distance and a narrow angle of view.

#### 16.29.6 Offset

#### Pickup of moving parts

When the "pickup accuracy-priority mode" is selected for the tracking mode, the pickup position of the robot may deviate from the center of the part as shown below. This gap occurs as a result of accuracy errors of the vision system calibration, tool calibration, and tracking.



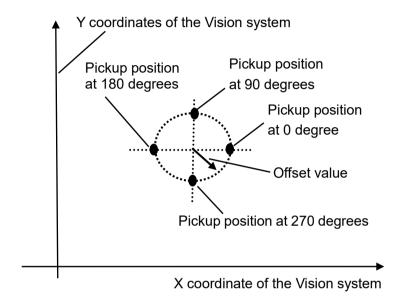
Followings are countermeasures for the problem.

- 1. Feed the part with an angle near 0 degree. Then, pick up the part.
- 2. Measure the gap between the center of the part and the robot's pickup position.
- 3. Repeat the steps 1 and 2 for five times and calculate the average.
- Set the average calculated in the step 3 to the program as follows.
   Jump Cnv QueGet (1) +X (\*\*)
- 5. Feed the part with an angle near 90 degrees. Then, pick up the part.
- 6. If t the gap is large, fine-tune the value set in the step (4).
- 7. Feed the part with an angle near 0. Then, pick up the part.
- 8. If the gap is large, fine-tune the value set in the step (6).
- 9. Repeat the steps 6 through 8 until you get the suitable accuracy for the system.



When the conveyor speed is 200 mm/sec, the gap between the center of the part and the pickup position of the robot cannot be smaller than plus or minus 1 mm.

When the conveyor speed is faster than 200 mm/sec, the gap increases.


When the conveyor speed is slower than 200 mm/sec, the gap decreases.



If the gap between the center of the part and the pickup position can be measured by using the vision system, compensate the "Offset" by following steps.

- 1. Feed the part with an angle near 0 degree. Then, pick up the part.
- 2. Take the image of the picked part, and record X and Y coordinates.
- 3. Repeat the steps 1 and 2 for five times and calculate the average.
- 4. Feed the part with an angle of about 90 degrees. Then, pick up the part.
- 5. Take the image of the picked part by the camera, and record the X and Y coordinates.

- 6. Repeat the steps 5 and 6 for five times and calculate the average.
- 7. Feed the part with an angle near 180 degrees. Then, pick up the part.
- 8. Take the image of the picked part by the camera and record X and Y coordinates.
- 9. Repeat the steps 7 and 8 for five times and calculate the average.
- 10. Feed the part with an angle near 270 degrees. Then, pick up the part.
- 11. Take the image of the picked part by the camera and record X and Y coordinates.
- 12. Repeat the steps 11 and 12 for five times and calculate the average.
- 13. Plot the values in the steps 3, 6, 9, and 12 as shown in the figure below, and calculate the offset value.



14. Set the offset value to the program as follows.

```
Jump Cnv QueGet(1) +X(offset)
```



If a negative value is set to "offset", the error 4406 may occur when the following program is executed.

```
Wait Cnv_QueLen(1, CNV_QUELEN_PICKUPAREA) > 0
Jump Cnv_QueGet(1) -X(offset)
```

The error can be avoided by performing any of the followings.

- Set the wait time before Jump command.
- Set the "offset" when registering the queue and not to register when executing the Jump command.

### 16.30 Dispense Application on Conveyors

#### 16.30.1 Overview

Conveyor Tracking corresponds CP motion commands and Path motion and can be used in dispense application. The function is used in EPSON RC+ 7.0 Ver.7.5.3 or later.

The following motion commands correspond:

Move : Linear motion

Arc : XY plane circular interpolation

Arc3 : 3D circular interpolation
CVMove : Free curve interpolation

CP motion and Path motion can be executed while following a workpiece. Dispensing speed of CP motion and Path motion are set in AccelS and Speeds.

```
'Setting of dispensing speed

SpeedS 50 'Dispensing speed 50mm/s

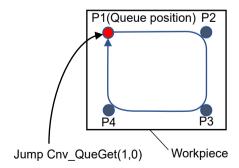
AccelS 1000 1000
```



When executing a dispensing at a constant speed, add a pre-motion to reach the dispensing speed. When you use an optional analog I/O board, it can adjust the amount of dispensing according to the speed.

#### 16.30.2 Setting a Target Point

When executing CP motion and Path motion in Conveyor Tracking, specify a target point by using conveyor queue data detected in Vision system or points.


#### To use points:

Teach points in the dispensing path using a workpiece placed on the conveyor. Do not move the conveyor during teaching.

Specify the coordinate differences between points for CP motion and Path motion. If the angle of the workpiece is different from that of the teaching, calculate the angle difference and specify the coordinates.

The following is a sample program that uses CP motion and Path motion on a square shape.

Teach in the order of P1, P2, P3, P4, P1.



```
'Converts point coordinates to conveyor coordinates (using conveyor 1)

P101 = P1 @CNV1; P102 = P2 @CNV1

P103 = P3 @CNV1; P104 = P4 @CNV1

Jump Cnv_QueGet(1,0) 'Follows the queue position

Move Cnv_QueGet(1,0) +X(CX(P102) -CX(P101)) +Y(CY(P102) -CY(P101)) CP

Move Cnv_QueGet(1,0) +X(CX(P103) -CX(P101)) +Y(CY(P103) -CY(P101)) CP

Move Cnv_QueGet(1,0) +X(CX(P104) -CX(P101)) +Y(CY(P104) -CY(P101)) CP

Move Cnv_QueGet(1,0)
```

#### To use CVMove command:

```
'Converts point coordinates to conveyor coordinates (using conveyor 1)

P101 = P1 @CNV1; P102 = P2 @CNV1

P103 = P3 @CNV1; P104 = P4 @CNV1

Curve "MyFile", O, 2, 4, P(101:104) 'Creates a Curve file

Jump Cnv_QueGet(1,0) 'Follows the queue position

CVMove "MyFile"
```

#### To use conveyor queue data detected in Vision system:

Register the position of points P1 to P4 in the diagram of "To use points:" to Vision system as conveyor queue data. Converting coordinates as in "To use points:" or calculating the coordinate differences between points and the angle of a workpiece are not required.

To use CVMove command, create Curve in the same way as "To use points:"

#### 16.30.3 Adjusting an Amount of Dispensing

Use the optional analog I/O board to output analog voltages according to the speed of the robot during Conveyor Tracking.

When you use a dispenser with a function to output the dispensing amount, the dispensing amount can be adjusted according to the speed of the robot.

The ways of connecting and using the analog I/O board are described in the following manual:

Robot Controller RC700 Series Manual

Functions 16.6 Analog I/O Board

Robot Controller RC700-D Manual

Functions 14.6 Analog I/O Board

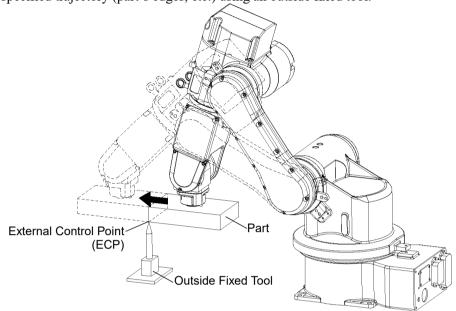
Robot Controller RC700-E Manual

4.15.6 Analog I/O Board

Robot Controller RC90 Series Manual

Functions 13.6 Analog I/O Board

The SPEL+ command of the analog I/O board used for Conveyor Tracking is AIO\_Set. For details, refer to the "SPEL+ Language Reference" manual.




AIO Set cannot be used for circular conveyors.

### 17. ECP Motion

#### 17.1 Overview

An ECP (external control point) motion is when the robot arm holding a part follows a specified trajectory (part's edges, etc.) using an outside fixed tool.



The ECP option supports the following:

- ECP definition by ECPSet statement and selection by ECP statement
- ECP motion commands (additional functions of Move, Arc3, Curve, and CVMove commands)
- Teaching with ECP jogging

This option is available for SCARA (including RS series), Cartesian and 6-axis robots (including N series). Also, it can be used with multi-robot systems.

Up to 15 ECP coordinate systems can be defined.

#### How to move the arm with ECP motion

In the following paragraphs, the process for moving the 6-axis robot arm with ECP motion is explained as an example.

#### 1. Setting an ECP

The ECP (external control point) is a coordinate system data used for defining the robot position and orientation at a processing point on the tip of the outside fixed tool.

The ECP should be defined based on the robot coordinate system or desired local coordinate system.

For example, when a drawing shows that the ECP is located at X=300, Y=300, Z=300 based on the robot coordinate system, specify it as shown below.

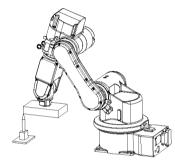
When you have no ECP location data, you can specify it by teaching.

As an example, attach the tool of which you know the data precisely and bring the tip of the tool close to the ECP and then teach its position anywhere as P0. Then, specify the ECP using P0 coordinate data as shown below.

```
ECPSet 1, P0 : U(0) : V(0) : W(0) Defines ECP No.1
```

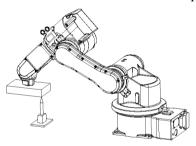
The orientation data (U, V, W) were set to 0 in the above examples. In these cases, the orientation in the ECP coordinate system is equal to that in the reference robot coordinate system.

You can specify U, V, and W coordinates in the ECP coordinate system. However, this data is valid only during the tangential correction mode ON in the Curve statement and ECP jog motion.


#### 2. Teaching

Teach the point data while moving the robot arm holding the actual part. In this section, the part is assumed to be a rectangular solid and the arm is moved straight so that it touches one side of the part of the ECP specified in the previous section 1. Setting the ECP.

For details on teaching, refer to 5.12.1 [Robot Manager] (Tools Menu)-[Tools]-[Robot Manager]-[Jog and Teach] Page.


#### 2-1 Teaching the motion start point

Move the arm to the motion start point and teach it as P1.



#### 2-2 Teaching the motion end point

Move the arm to the motion end point and teach it as P2.



#### ECP Jog Mode:

The ECP jog mode is an additional jog mode used for teaching besides the Joint, World, and Tool jog modes.



The ECP jog mode is based on the selected ECP coordinate system.

#### 3. Executing Motion

To move the arm with ECP motion, add the "ECP" parameter to a motion command.

ECP 1 ' Select ECP

Go P1 ' Moves the arm to the motion start point

Move P2 ECP ' Executes ECP motion

Use the Arc3 command to move the arm in an arc trajectory with the fixed tool. Use the Curve and CVMove commands to move the arm in cubic spline curves.

## 18. Force Sensing



This option allows you to measure force and enable a stop trigger by force using ATI Force Sensor. This is available in EPSON RC+ 7.0 Ver.7.2.0 or later version, however, this option is for EPSON RC+ 7.0 Ver.7.2.0 or before version.

EPSON RC+ 7.0 Ver.7.2.0 or later version supports "Force Guide 7.0" that measures, controls, and triggers force by using Epson Force Sensor.

For details on Force Guide 7.0, refer to the following manual.

EPSON RC+ 7.0 option Force Guide 7.0

#### 18.1 Overview

The EPSON RC+ Force Sensing Option allows you to integrate force sensing in your applications. The force sensor is typically mounted on the robot's U axis. The sensor has 6 axes: ForceX, ForceY, ForceZ, TorqueX, TorqueY, TorqueZ.



With this option you can do the following:

- Read one or all 6 force/torque sensing axes values.
- Set triggers for motion commands.
- Use multiple force sensors in the same application. (up to 2 sensors)



SCARA robot with Gamma force sensor

### 18.2 Specifications

EPSON RC+ supports ATI force sensors using PCI interface boards.

For the PCI interface board, we support the following products of National Instruments.

PCI-6220 Connect one force sensor
PCI-6224 Connect one or two force sensors
PCI-6034E Connect one force sensor (Conventional)

Note that we offer only the software license of this option. If you need ATI Force Sensor, a set of the PCI interface board and the sensor, please purchase it separately.

For specifications on force sensors, please see the ATI website:

http://www.ati-ia.com/products/ft/sensors.aspx

In addition, it is required for the users to prepare for installation to the manipulator. For details, refer to "18.3 Installation".

#### 18.3 Installation

The Force Sensing Option must be enabled in the RC700 controller. If you purchased the option with your system, the option will already be installed and configured.

You can also purchase the Force Sensing Option and install it in the field. See the chapter *Installing EPSON RC+ Options* for details.

#### Installing the force transducer circuit board

If you are adding Force Sensing in the field, you must install the force transducer board(s) in your system, and then run the NI-DAQmx driver installer.

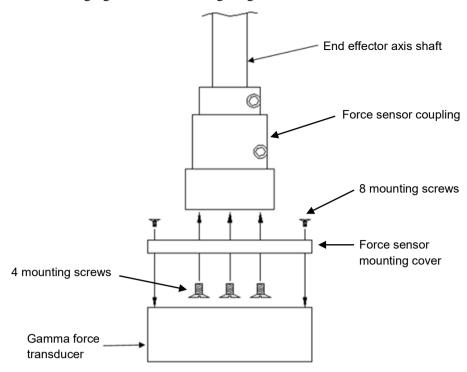
#### **Board Installation**

Before installing the force sensing circuit board(s), you must first install the National Instruments DAQmx drivers that came with the board. To install the National Instruments DAQ drivers:

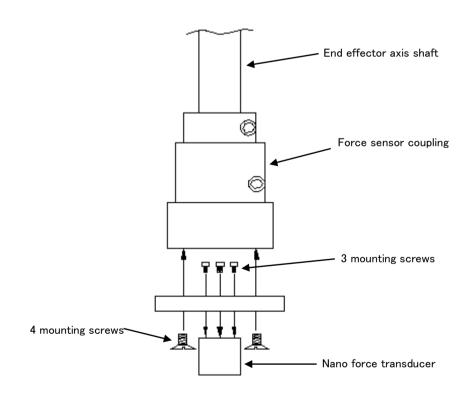
- 1. Run the NI-DAOmx driver installer.
- 2. Accept defaults for each step of the installation wizard.
- 3. Shutdown the system.
- 4. Install the board(s).
- 5. Start the system.
- 6. Run the National Instruments Measurement & Automation Explorer program once to verify that the board(s) that were installed are recognized.

You do not need to install the ATI software that came with the force transducer.




The calibration for the transducer must be loaded into memory. EPSON RC+ 7.0 handles this when you import the calibration data file as described in the section *Software Configuration* later in this chapter. The calibration data file can be located on the CD that came with the force transducer.

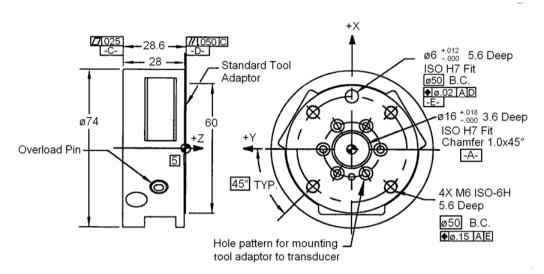
#### Mounting the force transducer


To mount the force transducer to the robot:

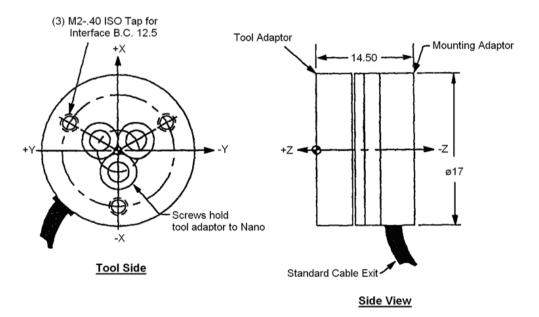
- 1. Remove the top cover of the transducer.
- 2. Remove the robot's end effector axis coupling and mount it to the transducer cover.
- 3. Install the transducer cover / coupling assembly onto the transducer.
- 4. Install the entire assembly on the end effector axis.

The following figures show mounting for gamma and nano transducers.




Mounting the Gamma Force Sensor




Mounting the Nano Force Sensor

#### Mounting tooling to force sensor

The following diagrams show the tooling mounting dimensions for Gamma and Nano force transducers.



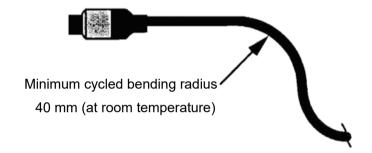
Tool mounting for Gamma transducer



Tool mounting for Nano transducer

#### Connecting the force transducer

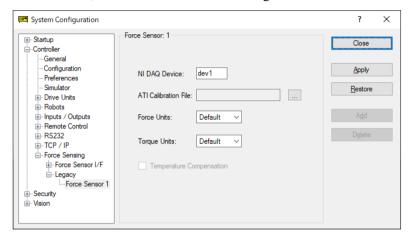
Use the cable supplied with the transducer to connect it to the PC board. The Nano transducer connects to an external interface box which in turn connects to the PC board.



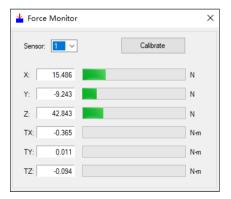

■ Make sure power is off before connecting or disconnecting the force transducer. Protect transducer from electro-static discharge. Do not touch the internal electronics or connector pins.

#### Routing the transducer cable

The transducer cable must be routed so that it is not stressed, pulled, kinked, cut, or otherwise damaged throughout the full range of motion. If the cable will rub other cables during cycling, use a plastic spiral wrap to protect it.


When the cable is cycling below the minimum bending radius the cable may fail due to fatigue. A small radius can be used if the cable is not being moved.




#### Software Configuration

To configure EPSON RC+ 7.0 Force Sensing:

- 1. Start EPSON RC+ 7.0, then select [Setup]-[System Configuration].
- 2. Click on the [Force Sensing] item in the tree on the left. If [Force Sensing] is not displayed, then the software options key for Force Sensing has not been enabled.
- 3. To add a board, click the <Add> button. A new force sensor will be shown in the tree on the left, and the controls used to configure the sensor will become enabled.



- 4. Enter the [NI DAQ device] name. This is assigned by the National Instruments software. To view NI DAQ device numbers, run the Nation Instruments Measurement & Automation Explorer.
- 5. Click the button shown on the right of [ATI Calibration File] to import a calibration file for the sensor. This can be found on the CD that came with the sensor. Navigate to the calibration file whose name includes the serial number of the sensor. Click <Open>, and the file will be copied to the EpsonRC70\force directory.
- 6. Leave the force and torque units at the default setting to use the native units. The actual units will be displayed in the sensor list after you click <Apply>. Or, you can select the desired units.
- 7. Click <Apply> to accept the new sensor.
- 8. From the [Tools] menu, select [Force Monitor]. This will open the [Force Monitor] window.



9. Apply pressure to the sensor. You should see the values change on the [Force Monitor] window. If you are using multiple sensors, change the sensor number on the monitor and verify that each sensor is working.

### 18.4 Force Sensing Commands

All Force Sensing commands begin with the same prefix: "Force\_". Here is a list of all of the commands. For details, please see the online help or SPEL<sup>+</sup> Language Reference Manual.

Force\_Calibrate Zeros out all axes for the current sensor.

Force\_ClearTrigger Clears all trigger conditions for the current sensor.

Force GetForce Returns the current value for one axis for the current sensor.

Force GetForces Returns the current values for all axes for the current sensor in an

array.

Force Sensor Sets / returns the current sensor for the current task.

Force\_SetTrigger Sets /displays the force limit triggers for the current sensor.

### 18.5 Using the Force Sensing Trigger

You can configure the system to stop the robot after the force sensing trigger has been activated. You can set the trigger to activate when one or more force sensing axes reaches a preset limit. You use the Till command to check the trigger condition during motion.

#### Stopping Motion along Z axis

Use a trigger on the ZForce axis to stop the robot during Z axis motion.

For example:

' Set the force trigger to fire when force on Z axis is less than -10

```
Force_ClearTrigger
Force_SetTrigger FORCE_ZFORCE, -10, FORCE_LESS
Till Force
Jump P1
Speeds 1
Move P2 Till
```

You can combine other conditions with Force in the Till command:

```
Till Sw(1) = On Or Force
```

You can combine other force/torque conditions by calling Force\_SetTrigger more than once. In this case, clear all triggers first before setting them.

```
Force_ClearTrigger
Force_SetTrigger FORCE_ZFORCE, -10, FORCE_LESS
Force SetTrigger FORCE XFORCE, 5, FORCE GREATER
```

#### Stopping Motion along X or Y axes

Use a trigger on the XForce, XTorque, YForce, YTorque axes to stop the robot during Z axis motion. You need to align the force sensor by rotating the robot's U axis. The X and Y axes of the force sensor are marked on the transducer.

For example:

' Set the force trigger to fire when torque or force on X axis is less than -10

```
Force_ClearTrigger
Force_SetTrigger FORCE_XFORCE, -10, FORCE_LESS
Force_SetTrigger FORCE_XTORQUE, -10, FORCE_LESS
Till Force
Jump P1
Speeds 1
Move P2 Till
```

# 19. Distance Tracking Function

#### 19.1 Overview

Distance tracking function controls the robot so that a constant distance can be kept between the robot and the workpiece.

Distance sensor which is connected to the analog I/O board (optional) is used.

To use the function, analog I/O board (optional) is required.

Select one axis from below as the direction to control.

Tool coordinate system: X axis, Yaxis, Zaxis ECP coordinate system: X axis, Yaxis, Zaxis

ECP coordinate system can be selected only when the ECP (external control point motion) option is enabled.

Specify the axis to be controlled by AIO TrackingSet.

The distance tracking function is available for SCARA robots (including RS series manipulators) and 6-Axis robots (including N series manipulators). Also, it can be used with multi-robot systems.

Note that the following A, B, and C when using the distance tracking function in multirobot systems.

A: Two robots : Up to two distance tracking sensors are available.

Two robots can use each distance tracking sensor to execute the distance tracking function simultaneously.

B: Three robots : One distance tracking sensor is available.

One robot can use the distance tracking function. However, three robots can use the one distance tracking sensor and execute the distance tracking function in order

by switching it.

C: More than four robots : The distance tracking function is not available.

When using the distance tracking function in multi-robot systems, you cannot connect the force sensor.



We recommend using a laser displacement meter for a distance sensor.
 For the specifications of the distance sensor, please check its manual thoroughly. Improper use of the sensor may result in abnormal motions of the robot.

For connection and use of analog I/O board, refer to the following manuals:

Robot Controller RC700 series Manual Functions 16.6 Analog I/O Board

Robot Controller RC700-D Manual Functions 14.6 Analog I/O Board

Robot Controller RC700-E Manual 4.15.6 Analog I/O Board

Robot Controller RC90 series Manual Functions 13.6 Analog I/O Board

#### 19.1.1 Distance Tracking Accuracy

For the accuracy achieved by this function, see the after mentioned experiment results. However, the accuracy of the distance tracking function may differ depending on the robot model, speed, and workpiece shape.

#### **Experiment conditions**

Robot: 6-axis robot C4L

Laser displacement meter: Two types (See the table below for specifications)

|                            |      | Medium speed,            | High speed                     |
|----------------------------|------|--------------------------|--------------------------------|
|                            |      | Medium accuracy          | High accuracy                  |
|                            |      | laser displacement meter | laser displacement meter       |
| Measured distance          | (mm) | 20 to 30                 | 7.2 to 8.8                     |
| Spot diameter              | (um) | Approx. 25×1200          | Approx. ø20                    |
| Repeatability              | (um) | 1                        | 0.02                           |
| Sampling cycle             |      | 0.33, 1, 2, 5 ms         | 20, 50, 100, 200, 500, 1000 us |
| Sampling Cycle             |      | (4 levels available)     | (6 levels available)           |
| Light source (Laser class) |      | Class 2                  | Class 1                        |

#### Experiment environment

Start point and target point have been taught in advance.



Robot trajectory without the distance tracking function

Robot trajectory with the distance tracking function

Without the distance tracking function:

Robot moves in a straight line from the start point to the target point.

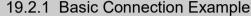
With the distance tracking function:

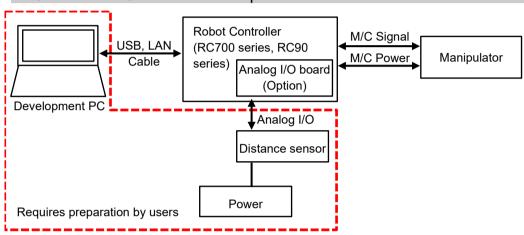
The robot moves on a trajectory to keep a constant distance to the workpiece like the blue arrow (robot trajectory) shown in the above figure.

#### Experiment results

Values of the distance tracking accuracy are the width of variations in the distance measured values between the start point and end point of the distance tracking function. Two types of the laser displacement meter are used. (See the tables below for the experiment results.)

# Distance tracking accuracy of medium speed and medium accuracy laser displacement meter


| Robot SpeedS | Robot AccelS | Workpiece tilt (mm) |            |            |
|--------------|--------------|---------------------|------------|------------|
| (mm/s)       | (mm/s*s)     | 5 deg.              | 10 deg.    | 15 deg.    |
| 10           | 100          | $\pm 0.03$          | ± 0.04     | $\pm 0.06$ |
| 30           | 300          | $\pm 0.06$          | $\pm 0.09$ | $\pm 0.14$ |
| 50           | 500          | $\pm 0.09$          | $\pm 0.15$ | $\pm 0.32$ |
| 100          | 1000         | $\pm 0.15$          | $\pm 0.30$ | $\pm 0.48$ |


Distance tracking accuracy of high speed and high accuracy laser displacement meter

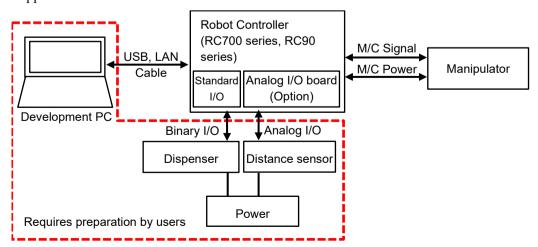
| Robot SpeedS | Robot AccelS | Work       | (piece tilt | (mm)       |
|--------------|--------------|------------|-------------|------------|
| (mm/s)       | (mm/s*s)     | 5 deg.     | 10 deg.     | 15 deg.    |
| 10           | 100          | ± 0.02     | ± 0.04      | ± 0.05     |
| 30           | 300          | $\pm 0.04$ | $\pm 0.06$  | ± 0.13     |
| 50           | 500          | $\pm 0.06$ | $\pm 0.11$  | $\pm 0.20$ |
| 100          | 1000         | ± 0.13     | ± 0.20      | ± 0.35     |

### 19.2 Connection Example

This section describes the connection example of the distance tracking function.

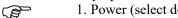





NOTE

Please prepare the following items by yourself.

- 1. Power (select depending on the distance sensor to be used.)
- 2. Distance sensor (e.g. laser displacement meter)
- 3. Development PC


#### 19.2.2 Connection Example for Dispense Application

Distance tracking function is available for dispense applications. To realize the dispense application with high accuracy, it is important to keep a constant needle gap (distance between tip of the needle and the workpiece). Constant needle gap can be realized with the distance tracking function. Figure below is a connection example for dispense application.



NOTE

Please prepare the following items by yourself.



- 1. Power (select depending on the distance sensor and dispenser to be used.)
- 2. Distance sensor (e.g. laser displacement meter)
- 3. Dispenser
- 4. Development PC

#### 19.3 Commands

List of SPEL+ commands for the distance tracking function.

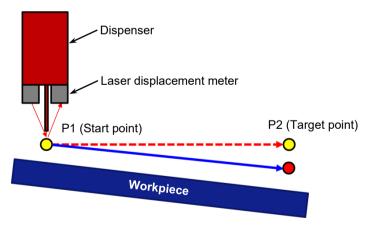
AIO TrackingSet : Sets the distance tracking function AIO TrackingStart : Starts the distance tracking function AIO TrackingEnd : Ends the distance tracking function

AIO TrackingON Function : Returns status of the distance tracking function

For more details on the commands, refer to the following manual:

EPSON RC+ 7.0 SPEL+ Language Reference

### 19.4 Steps to adjust parameters

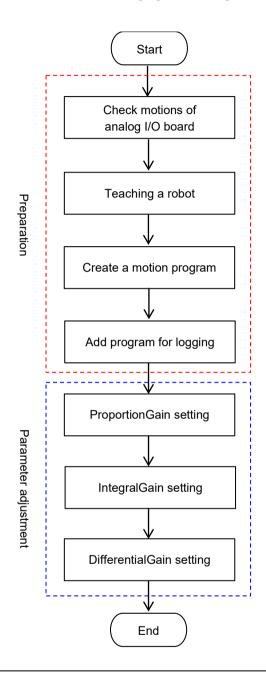

The accuracy of the distance tracking function may differ depending on the robot model, speed, and workpiece shape.

Therefore, you need to set parameters depending on the working environment when using the distance tracking function.

To improve the accuracy of the distance tracking function, adjust parameters and set a proper value.

Parameters to be set are ProportionalGain, IntegralGain, and DifferentialGain. Those are parameters for AIO TrackingStart.

In the steps to adjust parameters, it is assumed to use a flat metallic plate as a workpiece in the dispense application as shown below.




Steps to adjust parameters are below:

Statuses at the beginning are as follows:

Dispenser: Connection and settings have completed. Laser displacement meter: Connected to analog I/O.

Describe in order of the preparation for parameter adjustment and parameter adjustment.





- The parameters used in this step are reference values. Please note that the operation may not be successful or the motion may be vibratory depending on the set parameters and some operating conditions.
- If the robot moves abnormally, immediately hold down the emergency button.

#### 19.4.1 Check Motions of Analog I/O Board

The following steps describe how to check the motion of the analog I/O board.

(1) Make sure that the analog I/O board and the laser displacement meter (distance sensor) are connected properly.

For connection and use of the analog I/O board, refer to the following manuals:

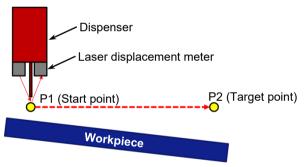
Robot Controller RC700 series Manual Functions 16.6 Analog I/O Board

Robot Controller RC700-D Manual Functions 14.6 Analog I/O Board

Robot Controller RC700-E Manual 4.15.6 Analog I/O Board

Robot Controller RC90 series Manual Functions 13.6 Analog I/O Board

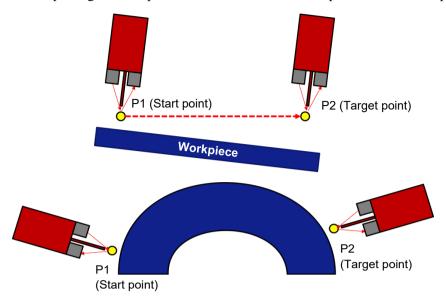
- (2) Execute the following command on the command window.


  >Print AIO In (channel number of the analog I/O board)
- (3) Output voltage from the laser displacement meter is displayed.

  Check the displayed value and the value measured by the laser displacement meter.

  If those values are the same, the analog I/O board works properly.

#### 19.4.2 Teaching a Robot


Teach the start and target point of the distance tracking function.



- (1) Move the robot to a position where the laser displacement meter will be within the measurable range.
- (2) Set a robot position and orientation within the range and teach as the start point (P1). When using the distance tracking function for a dispense application, be sure to check that the needle gap at the start point is same as the recommended gap value of the dispenser.
- (3) Move the robot to the target point.
- (4) Teach a moved point as the target point (P2).

Sometimes the laser displacement meter cannot measure the tilt of workpiece due to workpiece types (especially mirrored object), its tilt angle, and types of the laser displacement meter. In that case, place the bottom of a chassis of the laser displacement meter in parallel with the workpiece surface.

For layout of the distance sensor (laser displacement meter) and target workpiece, follow the specifications of each distance sensor. Ex: When placing the workpiece and chassis of the laser displacement meter in parallel



For the arc-shaped workpiece as shown above, teach the trajectory of the arc shape by using Move or Arc command before executing the distance tracking function.

#### 19.4.3 Create a Motion Program

Create a motion program for the distance tracking function.

#### Program example:

Move the robot from P1 to P2 by using the distance tracking function. Set the needle tip position of the dispenser for Tool coordinate system. However, the dispenser does not move until the parameter adjustment ends. Parameters of AIO\_TrackingSet are examples. Be sure to set parameters depending on the working environment.

Function AIOTrackingSample

```
'-----Robot settings-----
    Motor On
    Power High
    SpeedS 30
    AccelS 300, 300
    '-----Motion part-----
                                         ' Move to start point
    AIO_TrackingSet 1, -1, 0, -3, 3, 0, 2
                                         ' Set the distance tracking function
    Wait 2
    AIO TrackingStart 1, 10, 0, 0
                                         'Start the distance tracking function
                                         ' Move to target point
    Move P2
    AIO TrackingEnd
                                         ' End the distance tracking function
    Wait 2
    Motor Off
Fend
```

Set the default values for parameters of AIO\_TrackingStart as follows:

ProportionalGain: 10 IntegralGain: 0 DifferentialGain: 0

### 19.4.4 Add a Program for Distance Sensor Logging

To adjust the parameters (ProportionalGain, IntegralGain, DifferentialGain), you need to check the measured data of the laser displacement meter during execution of the distance tracking function.

Measured data of the laser displacement meter can be acquired by the following sample program.

Add  $\bigstar$  to the program created in 19.4.3.

```
'★ Declare a file number
Integer fileNum
Function AIOTrackingSample
    ' Program to record the measured value of the distance sensor during execution of the
    distance tracking function.
    '----- Robot setting -----
    Motor On
    Power High
    SpeedS 30
    AccelS 300, 300
    Tool 1
    '----- Create a CSV file for recording -----
                                       '★ Acquire a file number
    fileNum = FreeFile
    WOpen "AIO Monitor.csv" As #fileNum
                                        '★ Save to Project folder
    '------Motion part------
    Move P1
                                        ' Move to start point
    Xqt AIO Monitor '★Start to record the measured value by distance sensor
    AIO TrackingSet 1, -1, 0, -3, 3, 0, 2
                                         ' Set the distance tracking function
    Wait 2
    AIO TrackingStart 1, 10, 0, 0 'Start the distance tracking function
                                         ' Move to target point
    Move P2
    AIO TrackingEnd
                                         ' End the distance tracking function
    Wait 2
    Quit AIO Monitor ' *Quit recording the values by distance sensor
                                        '★Close CSV
    Close #fileNum
    Motor Off
Fend
                                         '★
Function AIO_Monitor
  'Called by AIOTrackingSample.
  'Keep recording values input to Ch1 of analog I/O board to CSV.
  Do
      Print #fileNum, AIO In(1)
      Wait 0.002
  Loop
Fend
```

#### 19.4.5 ProportionalGain Setting

This section describes how to execute the program created in 19.4.4 and adjust ProportionalGain.

#### (1) Test run in low speed

Execute the program created in 19.4.4 in low speed (10mm/s or less).

Set SpeedS to 10 or less and AccelS to 100 or less.

Make sure that the robot moves to the target point and the program works properly. Since the value of ProportionalGain is small, the robot moves straight to the target point. Be sure to move the robot in the environment with no obstacles between the motion start point and target point.

#### When 4603: out of range error occurs:

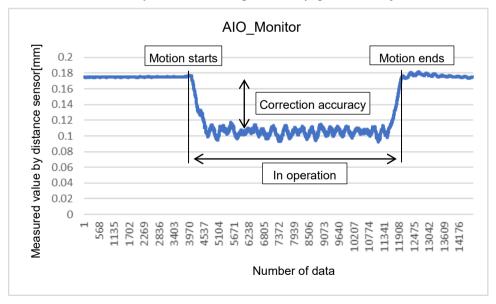
Since the value of ProportionalGain is small, "4603: Out of range error" may occur. If the error occurs, increase the value of ProportionalGain by 10.

#### (2) Test run in actual speed

Since it was confirmed that the program works properly at (1), execute the program in the desired working environment. Set robot speed and acceleration to desired value.

#### When 4603: out of range error occurs:

Parameter adjustment is required. Refer to the following tips to adjust parameters, and then check the motion again.

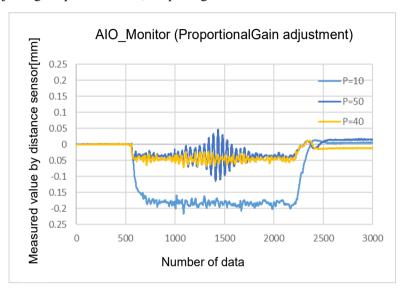

- Value of ProportionalGain is small. Increase the current value by 10.
- Robot speed is too fast. Move the robot in 100mm/s or less.

#### (3) Check the motion results

"AIO\_Monitor.csv" is created in the project folder of EPSON RC+7.0. Open the file in spreadsheet software and create a line graph or a scatter plot by all data of column A.

Graph shown below will be created. Check the correction accuracy on the graph. In case of the the following graph, the correction accuracy is approx. 70um.

If the correction accuracy is within the target accuracy, parameter adjustment ends.




#### (4) Adjustment of Proportional Gain

If the correction accuracy does not achieve the target value, adjustment of ProportionalGain is required.

ProportionalGain is a parameter to set strength of correction. Adjust value of ProportionalGain and repeat the program execution to calculate a proper value. Be sure to increase the value of ProportionalGain gradually. Changing the value to a larger one at one time is extremely hazardous and the robot may move unintentionally.

When adjusting ProportionalGain, keep IntegralGain and DifferentialGain to "0".

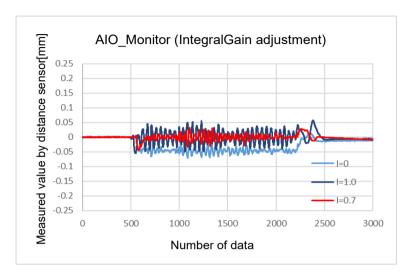


When adjusting ProportionalGain, the correction accuracy is improved.

However, if increasing the value too much, the robot motion will be vibratory. Refer to the upper graph: P=50

ProportionalGain value without robot vibrations and the best correction accuracy is an optimum value.

Refer to the upper graph: P=40


If the target correction accuracy is not achieved even if ProportionalGain is adjusted, you need to adjust IntegralGain.

#### 19.4.6 IntegralGain Setting

IntegralGain is a parameter to clear an offset between the target value.

Adjust value of IntegralGain and repeat the program execution to calculate a proper value. Be sure to increase the value of IntegralGain gradually. Changing the value to a larger one at one time is extremely hazardous and the robot may move unintentionally.

When adjusting IntegralGain, keep ProportionalGain to the value calculated in 19.4.5 and DifferentialGain to "0".

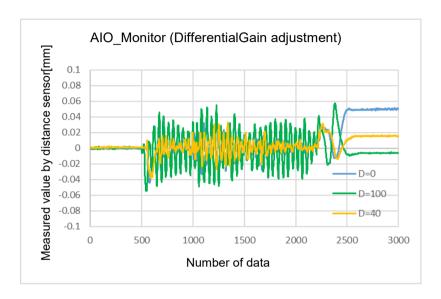


When adjusting IntegralGain, offset between the target value is cleared.

However, if increasing the value too much, the robot motion will be vibratory. Refer to the upper graph: I=1.0

IntegralGain value without robot vibrations and the best correction accuracy is an optimum value.

Refer to the upper graph: I=0.7


#### 19.4.7 DifferentialGain Setting

DifferentialGain is a parameter to improve the responsiveness of correction.

Adjust value of DifferentialGain and repeat the program execution to calculate a proper value.

Be sure to increase the value of DifferentialGain gradually. Changing the value to a larger one at one time is extremely hazardous and the robot may move unintentionally.

When adjusting DifferentialGain, enter the value calculated in 19.4.5 for ProportionalGain and the value calculated in 19.4. 6 for DifferentialGain.



When adjusting DifferentialGain, the responsiveness of correction is improved.

However, if increasing the value too much, the robot motion will be vibratory. Refer to the upper graph: D=100

DifferentialGain value without robot vibrations and the best correction accuracy is an optimum value.

Refer to the upper graph: D=40

Now, gain adjustment is completed.

### 19.5 Example of Dispense Application

The following describes a program example when using the distance tracking function for dispense applications.



- The parameters used in this step are reference values. Please note that the operation may not be successful or the motion may be vibratory depending on the set parameters and some operating conditions.
- If the robot moves abnormally, immediately hold down the emergency button.

#### 19.5.1 Basic Example

It is a program using the distance tracking function when the robot moves from P1 to P2. Dispenser is connected to output No.1 of the standard I/O.

For more details on connection of the standard I/O, refer to the following manuals:

```
Robot Controller RC700 series Manual
Functions 13. I/O Connector
RC700-D Manual
Functions 11. I/O Connector
RC700-E Manual
4.12 I/O Connector
Robot Controller RC90 series Manual
Functions 11. I/O Connector
```

Function AIOTrackingSample

```
'----- Robot settings-----
    Motor On
    Power High
    SpeedS 30
    AccelS 300, 300
    Tool 1
    '----- Motion part-----
                                      ' Move to start point
    AIO_TrackingSet 1, -1, 0, -3, 3, 0, 2
                                      ' Set the distance tracking function
    AIO TrackingStart 1, 10, 0, 0
                                      'Start the distance tracking function
    Move P2 !D1; On 1; D99; Off 1!
                           ' Move to target point, start and end of dispenser application
                                      ' End of the distance tracking function
    AIO TrackingEnd
    Motor Off
Fend
```

#### 19.5.2 Example with Application Amount Control

It is a program example when controlling the application amount depending on the robot speed.

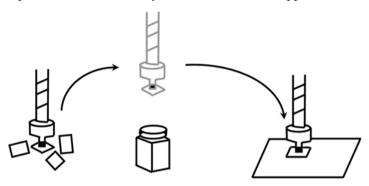
This program can prevent amassing fluid at the start point, end point, and corners.

When using this function, a dispenser with "external input of the application amount" is required.

For adjustment procedures of application amount and connection method, refer to the manual of the dispenser to be used.

```
Function Main
    '-----Robot settings -----
    Motor On
    Power High
    SpeedS 30
    AccelS 300, 300
    Tool 1
    AIO Set 1, On, RealTCPSpeed, 100, 0
                                       'Start the analog output of the robot speed
    '-----Motion part-----
    Move P1
                                               'Move to start point
    AIO TrackingSet 1, -1, 0, -3, 3, 0, 2
                                 ' Set the distance tracking function
    AIO TrackingStart 1, 10, 0, 0
                                 'Start the distance tracking function
    Move P2 !D1; On 1; D99; Off 1!
                                             ' Move to the end point
                                 'End of the distance tracking function
    AIO TrackingEnd
    AIO Set 1, Off
                                 'End the analog output of the robot speed
    Motor Off
Fend
```

# 20. Real-Time I/O


You can use this function only with the controller RC700 series.

### 20.1 Overview

Real-time I/O is a feature that allows you to input trigger signals into the R-I/O connector of the robot controller so that you can latch and acquire the robot position at high speed while it is operating.

An example of an application using real-time I/O is "Picture on the fly": This synchronizes the robot position detection and the vision position detection, and performs part pickup, alignment, and assembly without stopping the robot.

With the real-time I/O feature, you can reduce the robot stop time for vision image acquisition that is necessary for traditional vision applications.



### 20.2 Specifications

#### **R-I/O Connector**

The RC700 series robot controller has an R-I/O connector that is used to connect the real-time I/O trigger input signals. An R-I/O input is a special input interface that monitors the signals at higher speed than the standard I/O inputs. There are two trigger input signals on each of the Control Unit and Drive Units. For example, set the transmission type sensor so that it reacts when the robot passes the camera acquisition point and use the R-I/O connector so that the R-I/O input is detected at the moment shutter clicked.

For the details of the hardware (connection connector, connection circuit), refer to the *Robot Controller* manual,: *I/O Remote Settings*.

#### Real-time I/O commands

There are special commands provided for use the real-time I/O. The following are basic descriptions of these commands.

For more details, refer to the manual SPEL+ Language Reference.

#### LatchEnable

This command is used to enable or disable the latch function of the robot position information with the real-time I/O. When LatchEnable On executes, it enables the robot position latch function using the trigger input signals connected to the R-I/O connector. After the latch is enabled, it is possible to latch the number of consecutive latches (up to 4 times) specified by SetLatch. To repeatedly latch the robot position, execute LatchEnable Off and then execute LatchEnable On again. To use the command repeatedly, it requires 60 ms minimum interval for each command processing time but it is not necessary to consider the command executing time.

#### SetLatch

Specifies the real-time input port that you connected the trigger input signal to, the input logic, and the number of consecutive latches. The table below shows the port numbers you can specify. Specify the port number that the robot using R-I/O is connected. If the other ports are specified, an error will occur. One robot cannot wait for the trigger signals from multiple ports.

|              |       | Point    | Port number |
|--------------|-------|----------|-------------|
| Control Unit | INPUT | 2 points | 24,25       |
| Drive Unit 1 | INPUT | 2 points | 56,57       |
| Drive Unit 2 | INPUT | 2 points | 280,281     |
| Drive Unit 3 | INPUT | 2 points | 312,313     |

Execution of SetLatch requires approximately 40 msec for processing.

#### LatchState Function

This function returns the position latch status.

After it confirms that the latch has been done, it acquires the position information using the LatchPos Function.

#### LatchPos Function

This function returns the robot position information latched by the trigger input.

Executing the LatchPos Function needs approximately 15 msec for processing.

To return Tool 0 and Arm 0 positions:

Set the WithoutToolArm parameter when using the "Picture on the fly" application.

#### RobotPos Vision Sequence Property

When acquiring the parts place position by using the RobotPos result, set the robot position in image capturing to this property before acquiring the RobotPos result.

Also, set the RobotPos sequence property to set the robot coordinates of the image acquisition position to calculate the part position when you use a mobile camera system.

In any of the above cases, the system can calculate the correct part position by using the position acquired by LatchPos Function in this property.

For the details, refer to the manual *Vision Guide 7.0 Properties & Results Reference*.

#### Latch accuracy

The following is the theoretical sampling time used to latch the position information.

|               |              | Sampling time [µsec] |
|---------------|--------------|----------------------|
| Control Unit  | 4-axis robot | 32                   |
| Control Offic | 6-axis robot | 32                   |
| Drive Unit    | 4-axis robot | 32                   |
| Dilve Oill    | 6-axis robot | 21                   |

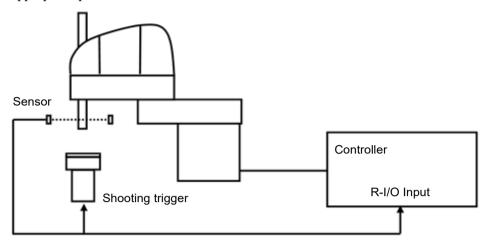
You can get a rough idea of latch accuracy from the robot speed (parts moving speed) at the latch trigger input and the sampling time. For real accuracy, you must have a margin on the required accuracy because time delay and variation in the hardware may affect. The latch accuracy will improve as the robot moves slower at the trigger input.

Latched position accuracy [mm] = Robot speed [mm/sec] × Sampling time [sec]

### 20.3 Usage

#### 1. Basic example

The following program is a sample to connect any trigger signal to the R-I/O connector of the controller, latch the robot position information while it is operating at the trigger input, and show the latched position information.


```
Function Main
    Motor On
    Power High
    Speed 50; Accel 50, 50
    SpeedS 500; AccelS 5000
    Go P0
                                   'Start position
    SetLatch SETLATCH PORT CU 0,
    SETLATCH TRIGGERMODE LEADINGEDGE, 4
    LatchEnable On
                                  'Latch enabled
    Move P1
                                  'Starts operation, inputs trigger while the
                                   'operation
                                  'Checks latch completion
    Wait LatchState = True
    P3 = LatchPos(WithoutToolArm, 1)
                                               'Retrieves latch position 1
                                               'Retrieves latch position 2
    P4 = LatchPos(WithoutToolArm, 2)
    P5 = LatchPos(WithoutToolArm, 3)
                                               'Retrieves latch position 3
    P6 = LatchPos(WithoutToolArm, 4)
                                               'Retrieves latch position 4
                                  'Latch disabled
    LatchEnable Off
    Print P3
                                  'Displays latch position 1
    Print P4
                                  'Displays latch position 2
    Print P5
                                  'Displays latch position 3
    Print P6
                                  'Displays latch position 4
Fend
```

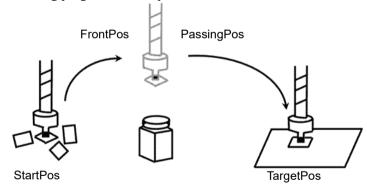
#### Example to omit parameters:

```
Function Main
   Motor On
   Power High
    Speed 50; Accel 50, 50
    SpeedS 500; AccelS 5000
                                  'Start point
    Go P0
    SetLatch SETLATCH PORT CU 0,
   SETLATCH TRIGGERMODE LEADINGEDGE
   LatchEnable On
                                  'Enable the latch
   Move P1
                                  'Start the operation, trigger input while operating
   Wait LatchState = True
                                  'Confirmed the latch is complete
    P3 = LatchPos
                                  'Acquire the latched position
   LatchEnable Off
                                  'Disable the latch
                                  'Show the latched position
    Print P3
Fend
```

#### 2. Example with Vision system

This is an example that uses the robot end effector to handle parts, passes above the external fixed upward camera acquisition point without stopping, and assembles the parts with an appropriate position correction.




Trigger signal

This system has a transmission type sensor that outputs the trigger signal when the robot end effector handles a part and passes the camera acquisition point. Then, it connects the sensor output with both the R-I/O and the camera trigger input for external tuning and synchronizes the latched robot position information and the camera image. It calculates the part position error and offsets the position comparing the robot position information from the camera image to the robot position information from the real-time I/O.

In this case, the robot vision system must be calibrated as the upward fixed camera. Also, by registering the parts place position in advance, robot position information can be acquired for precise parts placement by CalRobotPlacePos result. Parts place position can be set in the CalRobotPlacePos property wizard.

For details on the camera trigger signal connection and the vision calibration, refer to the manual *Vision Guide 7.0*.

The following program is a sample.



```
Function Main
Robot 1
Motor On
Power High

Speed 100
Accel 100, 100

Jump InitPos
Wait 1.0

SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
'Sets the latch condition
```

```
MemOff 0
  Xqt PictureOnFly Camera
                                               'Starts the shooting task
  Jump StartPos C0
                                               'Moves to the part feed point
  Wait 0.5
  LatchEnable On
                                               'Starts waiting the latch
  MemOn 0
                                               'Enables the shooting
  Jump FrontPos CO CP
                                               'Moves close to the camera
                                               ' Passes over the camera
  Go PassingPos CP
  Go TargetPos :Z(-70) CP
                                               'Moves over the assembly point
                                'Waits until the image processing is complete
  Wait MemSw(1) = On
                                               'Waits for position latch
  Wait LatchState = True
                                               'completion
                                               'Disables the position latch
  LatchEnable Off
                                               'Moves to the assembly point
  Jump ExactTargetPos C0 LimZ (-70)
  Wait 0.5
  Jump InitPos
                                               'Moves to the initial point
  Wait 0.5
  Motor Off
Fend
  Function to execute from work image capturing to work place acquisition
Function PictureOnFly Camera
   'Vision Result variable
  Integer AcqStat
                                'Strobe imaging completion flag
                                'Work detection status
  Boolean Found
  Wait MemSw(0) = On
                                'Waits the imaging start flag
  MemOff 1
                                'Clears the imaging completion flag
  MemOff 0
                                'Clears the imaging start flag
  AcqStat = 0
                                'Clears the strobe imaging flag
  VRun PictureOnFly i
                                'Wait for strobe
  Do Until AcqStat = 3
          VGet PictureOnFly i.AcquireState, AcqStat
  Loop
   'Check the work detection
  VGet PictureOnFly i.Geom01.Found, Found
  If Found = False Then
          Print "Work NotFound"
          Pause
  EndIf
  Wait LatchState = True 'Waits for the trigger
  'Sets the image capturing position (trigger position) to the Vision
  VSet PictureOnFly_i.RobotPos, LatchPos (WithoutToolArm)
```

<sup>&#</sup>x27;Acquires the robot position

VGet PictureOnFly\_i.Geom01.RobotPlacePos, Found, ExactTargetPos

MemOn 1 'Changes the camera imaging flag

Fend

# 21. Additional Axis

#### 21.1 Overview

You can attach up to two additional drive axes (per manipulator) which can operate in association with the manipulator. The position data of the additional axis is saved with the robot point data. The additional axis can move simultaneously with the manipulator by motion commands and you can design an application using a traveling axis (manipulator on the straight axis) with simple programming.



If you want to operate the manipulator and drive axis separately, you need to define the additional axis as another manipulator using the multi-manipulators feature.



■ When you use the additional axis as traveling axis and mount a manipulator(s) on the axis, the reaction force of manipulator(s) is put on the traveling axis. Therefore, you should limit the acceleration/deceleration speed with the Accel setting so that it is within the allowable inertia of traveling axis. In addition, the manipulator may swing widely at the positioning and possibly break the additional axis.

### 21.2 Specifications

#### Types of additional axis

The supported additional axis is the PG axis, controlled by the pulse generator board. However, note that the PG axis has some limitations.

Limitations of a PG additional axis

- a. Synchronizes with the manipulator to start motion but not to finish.
- b. Does not support Path motion with CP On and Pass. Stops for every motion.
- c. Does not go through the CVMove series of points
- d. Calibration is necessary using the MCAL command. Cannot operate the additional axis and the robot together until the calibration is complete. If movement of the PG additional axis is "0", and Go and Move are executed to the point where only the robot moves, the robot will move singly.

#### Number of additional axis

Up to two additional axes are available for each of the SCARA robot series (including RS series), Cartesian coordinate robot, 6-axis robot (including N series), and Joint type robot. However, the number of axes you can add is determined by how many axes are available with your controller.

#### Position data management

The additional axes are allocated to Joint #8 and #9 for all robot types. The position data are shown in the S and T coordinate values of point data of the manipulator to which you add the additional axes.

The additional axis as Joint #8 is called the additional S axis and Joint #9 is the additional T axis

The coordinate values of additional axes are saved with the robot point data but don't have any effect on the robot coordinate system.

#### How to operate

The additional axis can move simultaneously with the manipulator (synchronous start / stop). However, if you use the PG axis, it doesn't synchronize with manipulator to finish and operate by the different acceleration/deceleration speed from the manipulator. See below for the details of motion commands.

Also, you can operate the additional axis and manipulator separately by proper management of the point data. However, you cannot operate separately both of them in arbitrary timing. In this case, use the multi-manipulators function and set the drive axis as another manipulator.

#### Command specification

#### Pulse, Go, BGo, TGo, Pass

The additional axis can operate in association with the manipulator motion. However, if you use the PG axis, it synchronizes only to start the motion and a motion command completes when both the manipulator and axis finish each motion. In addition, if the PG additional axis has a travel distance, the Path motion with CP On and Pass are prohibited and the axis moves with CP Off automatically.

#### Move, BMove, Tmove

The additional axis can operate in association with the manipulator motion. However, if you use the PG axis, it synchronizes only to start the motion and a motion command completes when both the manipulator and axis finish each motion. In addition, if the PG additional axis has a travel distance, the Path motion with CP On is prohibited and the axis moves with CP Off automatically.

#### Arc, Arc3

The additional axis can operate in association with the manipulator motion. It doesn't go through the specified midPoint and directly goes to the end point. If you use the PG axis, it synchronizes only to start the motion and a motion command completes when both the manipulator and axis finish each motion. In addition, if the PG additional axis has a travel distance, the Path motion with CP On is prohibited and the axis moves with CP Off automatically.

#### **CVMove**

The additional axis can operate in association with the manipulator motion. If you use a servo axis for the additional axis, for each of the S and T axis it creates a curve going through the S and T coordinates specified by a series of point data. However, if you use the PG axis for the additional axis, it doesn't go through the series of points and directly goes to the end point. Also, it synchronizes only to start the motion and a motion command completes when both the manipulator and axis finish each motion. In addition, if the PG additional axis has a travel distance, the Path motion with CP On is prohibited and the axis moves with CP Off automatically.

#### Jump

The additional axis executes PTP motion in association with the manipulator horizontal motion. However, if you use the PG axis, it synchronizes only to start the motion and a motion command completes when both the manipulator and axis finish each motion. In addition, if the PG additional axis has a travel distance, the Path motion with CP On is prohibited and the axis moves with CP Off automatically.

#### Jump3, Jump3CP

The additional axis can operate in association with the manipulator depart / span / approach motion. However, if you use the PG axis, it synchronizes only to start the motion and a motion command completes when both the manipulator and axis finish each motion. In addition, if the PG additional axis has a travel distance, the Path motion with CP On and Pass are prohibited and the axis moves with CP Off automatically.

JTran, PTran

The additional axis can operate separately by specifying as Joint #8, #9. Example:

```
> JTran 8, 90 'Move the additional S axis by 90 mm
> PTran 9, 10000 'Move the additional T axis by 10000 pulse
```

### 21.3 Usage

#### Additional axis configuration

For the instruction of configuring the additional axis, refer to 10.2 Configuration of Additional Axes.

If you use the PG axis for the additional axis, you need to set the PG parameters. For the details of PG parameters, refer to the *Robot Controller option: PG Motion System* manual.

#### Point data usage

This example specifies the position data of manipulator and additional ST axes and substitutes them to the point data.

```
P1 = XY(10, 20, 30, 40) : ST(10, 20) ' SCARA robot

P1 = XY(10, 20, 30, 40, 50, 60) : ST(10, 20) ' 6-axis robot
```

This example specifies the position data of manipulator and additional ST axes and executes a PTP motion.

```
Go XY(10, 20, 30, 40) :ST(10, 20)
Go XY(10, 20, 30, 40, 50, 60) :ST(10, 20)
```

This example specifies the position data of additional ST axes individually

```
P1 = XY(10, 20, 30, 40) : S(10) : T(20)

P1 = XY(10, 20, 30, 40) : S(10)

P1 = XY(10, 20, 30, 40) : T(20)
```

This example omits the robot position assignment XY() and specifies only the additional axis position. Then, the point data is defined so that the manipulator doesn't move (undefined).

```
P1 = ST(10, 20)
```

Go P1 'Only additional axis moves and the manipulator remains at the current position.

This example operates only the additional axis.

```
Go ST (10, 20) 'Only the additional axis moves.
```

This example omits the additional axis position assignment ST() and specifies only the manipulator position. Then, the point data is defined so that the additional axis doesn't move (undefined).

```
P1 = XY(10, 20, 30, 40)
```

Go P1 'Only the manipulator moves and the additional axis remains at the current position.

This example operates the manipulator only.

```
Go XY (10, 20, 30, 40) 'Only the manipulator moves.
```

This example calculates the additional axis coordinate value using a point operator expression.

```
P1 = XY(10, 20, 30, 40, 50, 60) :ST(10, 20)

P2 = P1 + S(10) + T(20) ' Add the offset amount to the additional ST axes for P1.
```

Note that you cannot use the point operator for undefined points.

This example shows the additional ST axes coordinate values retrieved from the point data.

```
Print CS(P1), CT(P1)
```

#### Pallet motion

When you specify a pallet with the point data including the position data of additional axis, the position data of additional axis is also calculated by the pallet operator. If you use the additional axis as traveling axis, you can define a wide range pallet than for a single manipulator.

Also, if you want to use the additional axis not as traveling axis and exclude the additional axis position from the pallet operator, define the pallet with the point data that clears the additional axis position data.

# 22. Absolute Accuracy Calibration

Each function and applicable models of the absolute accuracy calibration are as follows.

| Function        | Models         | GX4-A, GX8-A,<br>GX4-B, GX8-B | Other Models |
|-----------------|----------------|-------------------------------|--------------|
| Arm Length      | Option for     | OK                            | N/A          |
| Calibration     | limited models |                               |              |
| Area distortion | Standard       | OK                            | OK           |
| correction      | function       |                               |              |
| Joint Accuracy  | Standard       | OK                            | N/A          |
| Calibration     | function for   |                               |              |
|                 | limited models |                               |              |

#### 22.1 Overview

Differences in ideal robot performance and actual robot performance are caused by mechanical errors and the robot's structure. Absolute accuracy calibration compensates for these differences to ensure that the actual position and trajectory of the robot match the coordinates and trajectory specified.

Using absolute accuracy calibration to improve robot accuracy is expected to provide the following benefits.

- · Reduce the number of teaching points required
- · High-precision assembly
- · Reduction of start-up time during restoration

# 22.2 Arm Length Calibration

#### 22.2.1 Overview

Arm length calibration is one of the absolute accuracy calibration functions. It is used to measure the actual length of each robot arm, and correct any deviation between the intended robot position and the actual robot position.

# 22.2.2 Replacing Parts Requiring Arm Length Calibration Remeasurements

Arm length measurements need to be performed again when replacing the following parts.

- · Reduction gear unit replacement
- Ball screw spline unit replacement

For more information of parts, contact a supplier of your region.

#### 22.2.3 Arm Length Measurements

Arm length calibration measurements require precise measurements that cannot be performed by the user. When purchasing an arm length calibration license, arm length calibrations are completed prior to delivery based on factory arm length measurements.

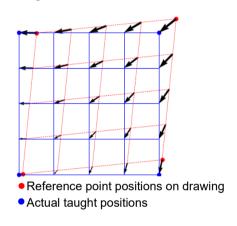
We provide an arm length calibration remeasurement service for users replacing parts. Please inquire with your supplier.

#### 22.2.4 Enabling and Disabling Arm Length Calibration

Arm length calibration can be enabled and disabled using the following commands.

#### ArmCalib On | Off




- Enabling and disabling arm length calibration will cause teaching positions to become misaligned. Perform the position teaching procedure again.
- Enabling arm length calibration will render parts of the movable range described in the manual as inaccessible. This is because of differences in the logical robot arm length and the actual robot arm length.

### 22.3 Area distortion correction

#### 22.3.1 Overview

The area distortion correction function corrects the positions of points when reference points on a drawing and the positions of those points that the robot is actually taught are different. Corrections are made within the area bounded by the selected reference points.

Using the area distortion correction function, teaching can be omitted for points within the area bounded by the reference points.



#### 22.3.2 Commands

Here is a list of SPEL+ commands for the area distortion correction function.

AreaCorrectionSet: Sets and displays a correction area
AreaCorrectionDef Function: Returns correction area settings

AreaCorrectionClr: Deletes a correction area
AreaCorrection Function: Returns corrected points

AreaCorrectionInv Function: Returns corrected points to their original condition

AreaCorrectionOffset Function: Returns positions relatively displaced from corrected

points

Command details are described in the following manual:

EPSON RC+ 7.0 SPEL+ Language Reference

#### 22.3.3 How to use

#### Setting reference points

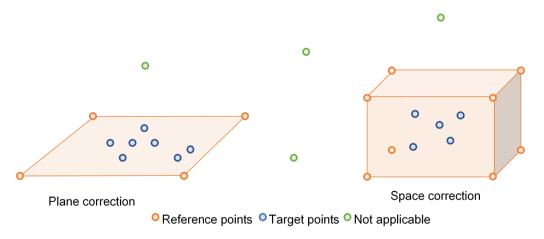
The area distortion correction function works inside the area set as the correction area. Therefore, reference points must be set to surround the operating point. The reference points are set for the robot.

For the reference points, use points whose positions relative to each other are precisely known. For example, use a reference hole of the device or a point with a tight position tolerance. Since corrections are made using the correspondence of taught points, the use of inaccurate reference positions may result in inaccurate correction results.

Increasing the number of reference points may improve accuracy.

You can use Plane correction and Space correction.

#### Plane correction


Plane correction allows you to make corrections to points on a plane composed of the points you have selected as reference points. If plane correction is selected, place the refPointList on a plane. A minimum of three reference points is required.

When plane is selected as the correction type, the effect of the correction is reduced at points vertically distant from the plane selected for Kind (the type of correction). Set the correction area at an appropriate height or, if a reference point can be established in the height direction, specify space for Kind (the type of correction).

#### Space correction

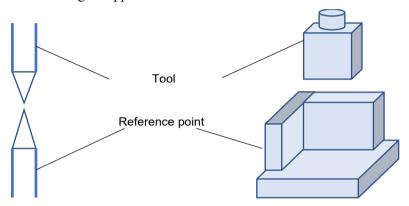
Space correction allows you to make corrections to points in three-dimensional space composed of the points you have selected as reference points. When selecting space correction, make sure that the refPointList surround the area to be corrected. A minimum of four reference points is required.

Save the positions of the reference points on the drawing as point data. Point numbers must be continuous. For example, if you choose four reference points, prepare four contiguous areas in the point file.



To correct point data using the area distortion correction function with a vertical 6-axis robot (including N series), the tool coordinate system's Z axis at the point to be corrected must match the tool coordinate system's Z axis at the reference point of the correction area. The angle formed by the tool coordinate system's Z axis can be acquired by specifying COORD Z PLUS as the axis number for the DiffToolOrientation function.

With a SCARA robot (including RS series), correction is effective in any orientation.


If you want to maintain high accuracy even at a point where the orientation has rotated in the tool coordinate system's Z-axis direction from the reference point, it is effective to add the rotated orientation point to the reference points.

#### Reference point teaching

When teaching, use a method that will ensure as much accuracy as possible. For example, use a device-side reference point and a tool as shown in the figure below.

Reference point: A teaching point is apparent

Tool: An edge is apparent



#### Correction of operating points

After teaching has been performed for all reference points, use AreaCorrectionSet to set the correction area. Set P1 to P4 as reference point positions on the drawing. Also, set P11 to P14 as the points where the reference points were actually taught. To set up a plane correction for correction area 1, set as follows:

AreaCorrectionSet 1, P(1:4), P(11:14), MODE PLANE

If you want to apply the correction to operating point P20 in the correction area, write the following:

Go AreaCorrection(P20, 1)

For more information about each command, see the following manual:

EPSON RC+ SPEL+ Language Reference



- Set the correction area for each tool. If the correction is performed using a tool different from the tool taught by area number, the position may be inaccurate.
- The correction area is valid until the controller power is turned off.

To enable the correction area, execute AreaCorrectionSet on the points recorded in the point file.

#### 22.3.4 During restoration

Using the area distortion correction function, teaching points can be omitted, potentially reducing the time required for reteaching that accompanies restoration. To omit teaching points during restoration, the following conditions must be met:

- · Reference points are set.
- Teaching is performed for the reference points prior to restoration.
- · Points to be restored are inside the correction area, and the correction is valid.

If only corrected point data is available, or if an actually taught point is used as an operating point, use the AreaCorrectionInv function to return to the point that existed before correction.

Teach the reference points again and create new point data. Apply the AreaCorrectionSet function to these teaching points to create a new correction area.

For the points prior to correction, make a correction using the newly defined correction area. The position will be closer to the original position than if using the uncorrected points directly.

An example is shown below.

```
'Assume it is defined by correction area 1 before restoration

P21 = AreaCorrectionInv(P121,1) 'P121 is a point created by teaching

P22 = AreaCorrectionInv(P122,1) 'P122 is the point after conversion
```

```
AreaCorrectionSet 2, P(1:4), P(101:104), MODE_PLANE
```

```
'(P121, P122, and P123 are used as operating points)
```

```
P121 = AreaCorrection(P21, 2)
P122 = AreaCorrection(P22, 2)
P123 = AreaCorrection(P23, 2)
```

#### 22.3.5 When reconfiguration of the area is needed

The area must be set up again when the following operations have been performed:

- Reduction gear unit replacement
- Ball screw spline unit replacement
- AC servo motor replacement
- Timing belt replacement
- Calibration
- Body installation

<sup>&#</sup>x27;Reteach the reference points to P101 to P104

<sup>&#</sup>x27;Newly set P1 to P4 and P101 to P104 as correction areas

<sup>&#</sup>x27;Apply new correction areas

## 22.4 Joint Accuracy Calibration

#### 22.4.1 Overview

Joint accuracy calibration is one of the absolute accuracy calibration functions. It is used to measure the joint accuracy of each axis, and correct any errors.

# 22.4.2 Replacing Parts Requiring Joint Accuracy Calibration Remeasurements

Joint accuracy measurements need to be performed again when replacing the following parts.

- · Reduction gear unit replacement
- AC servo motor replacement
- Timing belt replacement

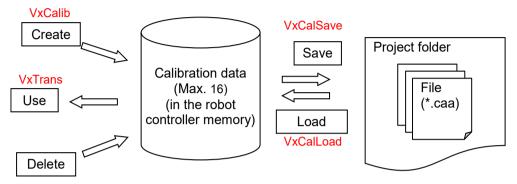
For more information of parts, contact a supplier of your region.

#### 22.4.3 Joint Accuracy Measurements

Joint accuracy calibration contains factory settings. Joint accuracy calibration remeasurements for part replacing shall be performed by personnel who has taken a proper training. For details, refer to Safety Manual Training.

Trajectory accuracy is improved within the range specified in the joint accuracy calibration wizard. Calibrate joint accuracy at points actually in use. Joint calibration is performed across all motion ranges at the factory.




- Do not change joint accuracy calibration settings unless absolutely necessary.
   Changing these settings unnecessarily may adversely impact trajectory accuracy.
- Trajectory accuracy may drop outside the range specified in the joint accuracy calibration wizard. To improve accuracy across the entire range of motion, specify a joint accuracy calibration range to cover the entire motion range.

# 23. Calibration of Commercial Vision Sensor and Robot

### 23.1 Overview

When using the commercially available vision sensors or image processing systems, instead of our Vision Guide, it is necessary to calibrate the image processing result (image coordinate system, camera coordinate system) with the robot coordinate system. This chapter describes the calibration procedure.

The figure below shows commands and functions related to calibration and behaviors of data and files.



The vision calibration data can be created in the following steps.

- (1) Install the camera
- (2) Create the image processing sequence for calibration(in each vision sensor)
- (3) Teach the robot position for calibration at necessary parts
- (4) Perform image processing at necessary parts and acquire the image processing result.
- (5) Execute calibration (VxCalib command)
- (6) Save calibration data (VxCalSave command)



If you are using our Vision Guide option, refer to the *Vision Guide* manual. Calibration with the Vision Guide option can be configured by the wizard easily.

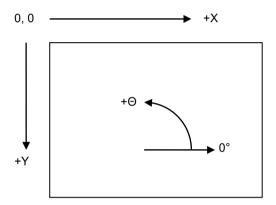


We cannot answer the questions regarding communication settings and usage for commercial vision sensors. Please contact the manufacture directly.

# 23.2 Specifications

#### Calibration data/Calibration file

Up to 16 calibration data can be saved to the robot controller at the same time. If you are using more than 16 calibration data, load them from the file and save to the file. Up to 16 files can be created. Be careful not to exceed the maximum number of files.


#### Camera installation

Following seven camera mounting types are supported. For details, refer to "23.3 Camera Installation".

- 1: Standalone
- 2: Fixed downward camera
- 3: Fixed upward camera
- 4: Mobile camera on the Joint #2
- 5: Mobile camera on the Joint #4
- 6: Mobile camera on the Joint #5
- 7: Mobile camera on the Joint #6

#### Image coordinate system

Following image shows the adapted image coordinate system. The unit is pixel.



# 23.3 Camera Installation

Camera installation method can be selected for each calibration data. The data set required for calibration differs depending on mounting types. Note that the wrong setting may result in improper calibration.

EPSON RC+ 7.0 supports the following camera installations:

| Camera Installation        | Description                                               |  |
|----------------------------|-----------------------------------------------------------|--|
|                            | Camera can be installed anywhere. Camera does not         |  |
|                            | have a relation with the robot. With this method,         |  |
|                            | position information in the Robot coordinate system       |  |
| Standalone                 | cannot be acquired. However, it can be converted from     |  |
|                            | the image coordinate system to the camera coordinate      |  |
|                            | system. That is, simple length measurement can be         |  |
|                            | performed.                                                |  |
|                            | Camera and target objects do not move and is looking      |  |
|                            | down into robot work envelope. The camera acquires        |  |
|                            | position information in the Robot coordinate system.      |  |
|                            | The camera must be installed vertically to the XY         |  |
| Fixed downward             | plane of the specified coordinate system. (Angle gap      |  |
|                            | may result in poor accuracy)                              |  |
|                            | Specified coordinate systems are Robot coordinate         |  |
|                            | system and Local coordinate system.                       |  |
|                            | Uses nine reference points.                               |  |
|                            | Camera does not move and is looking up into a portion     |  |
|                            | of the robot work envelope.                               |  |
|                            | For example, this installation method is used to check    |  |
| Fixed upward               | the position of the object which is carried by the robot. |  |
|                            | It does not require a reference point. The calibration    |  |
|                            | target is on the end effector or the object held by the   |  |
|                            | robot.                                                    |  |
| Mobile camera on the Joint | Camera is mounted on Joint 2 on SCARA robot or            |  |
| #2                         | Cartesian robot. It reports robot world coordinates.      |  |
| π2                         | Uses one reference point.                                 |  |
| Mobile camera on the Joint | Camera is mounted on Joint 4 on SCARA robot or            |  |
| #4                         | Cartesian robot. It reports robot world coordinates.      |  |
| <del></del>                | Uses one reference point.                                 |  |
| Mobile camera on the Joint | Camera is mounted on Joint 5 on 6-Axis robot. It          |  |
| #5                         | reports robot world coordinates.                          |  |
|                            | Uses one reference point.                                 |  |
| Mobile camera on the Joint | Camera is mounted on Joint 6 on 6-Axis robot. It          |  |
| #6                         | reports robot world coordinates.                          |  |
| ""                         | Uses one reference point.                                 |  |

#### 23.4 Reference Points

Reference points are important points to be used to calibrate the relation of the image coordinates and the Camera or Robot coordinate systems.

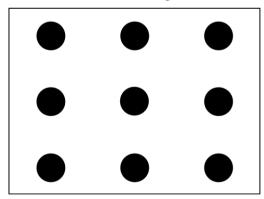
Each calibration scheme requires one or more reference points. The methods for teaching these points vary according to the camera mounting and orientation.

For Standalone camera calibration, you manually enter the coordinate values of the reference points into the system.

For all other camera calibrations, you teach the reference points using the robot.

#### 23.5 Reference Points for Mobile Camera

This scheme requires one reference point. Also, TowRefPoint parameter can be specified. If TowRefPoint parameter is True, a pair (two points) of the position data is required for the reference point. Each position data consists of two position data of the robot when the U axis is at 0 degree and 180 degrees in the specified coordinate system. By the TwoRefPoint function, the system can determine more precise position of the reference position in the robot coordinate system. However, this function is not necessary if the robot tool is defined accurately.


For the reference point, the taught points where the robot jogged can be used.

Here are some examples of taught reference points:

- A part or calibration target in the robot work envelope.
- A hole somewhere in the work envelope that a tool mounted on the robot end effector can be slipped into.

#### 23.6 Reference Points for Fixed Camera

The 'Fixed Downward' and 'Standalone' calibration schemes require a calibration target plate or sheet that contains nine targets.



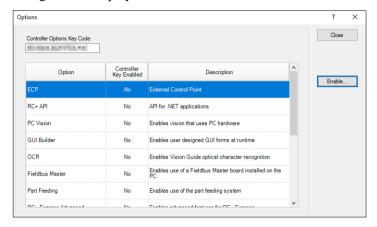
Fixed Camera Calibration Targets

For 'Fixed Downward' calibrations, the targets could be holes in a plate that a rod on the robot end effector can be slipped into. The distances between the targets do not have to be exact.

For Standalone cameras, a pattern sheet can be used. The horizontal and vertical distances between the targets must be known.

# 23.7 Command List

Following table shows the commands and functions related to Vision calibration.


For details, refer to the SPEL+ Language Reference.

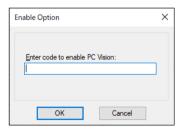
| Command name          | Function                                                      |  |
|-----------------------|---------------------------------------------------------------|--|
| VxCalib Statement     | Creates calibration data for the vision system.               |  |
| VxCalDelete Statement | Deletes the calibration data.                                 |  |
| VxCalLoad Statement   | Loads the calibration data from a file.                       |  |
| VxCalInfo Function    | Returns the calibration completion status and the calibration |  |
|                       | result.                                                       |  |
| VxCalSave Statement   | Saves the calibration data to a file.                         |  |
| VxTrans Function      | Converts pixel coordinates to robot coordinates and returns   |  |
|                       | the converted point data                                      |  |

# 24. Installing Controller Options

When you purchase options with your system, the options have already been installed on your system before shipment. Of course, you can purchase options separately.

To see what options are enabled on your system, select [Setup]-[Options]. The following dialog will be displayed.




| Item                  | Description                                             |
|-----------------------|---------------------------------------------------------|
| Option                | Name of the option.                                     |
| Controller Key Enable | Indicates that the option is enabled in the controller. |
| Description           | A brief note for each option.                           |

#### To enable an option on site

- 1. Copy and paste or write down the Options Key Code. You can view this from the [Setup]-[Controller]-[Options] dialog.
- 2. Call the supplier of your region to purchase the enable key code for the desired option.
- 3. You will receive a code to enable the option from the supplier of your region.
- 4. Select the option to enable on the grid, and then click the <Enable> button.
- 5. Enter in the code you received from the supplier of your region.



The key code is case sensitive.



#### If the DMB Board or CF card is replaced

If the DMB board or CF card is replaced due to malfunction, all configured options will be disabled. Follow the procedure in *To enable an option on site* to configure the options again.

\* If the DMB board or CF card is replaced, the previous code for enabling the option cannot be used.

# 25. Software License Agreement

#### **EPSON END USER SOFTWARE LICENSE AGREEMENT**

NOTICE TO USER: PLEASE READ THIS AGREEMENT CAREFULLY BEFORE INSTALLING OR USING THIS PRODUCT.

IF YOU ACQUIRE THIS PRODUCT IN AUSTRALIA, SECTIONS 17-19 OF THIS DOCUMENT MAY APPLY TO YOU. SECTIONS 18.1 AND 19.1 DESCRIBE WHEN THESE SECTIONS MAY APPLY. SECTIONS 17-19 SET OUT MANDATORY STATUTORY PROTECTIONS WHICH CANNOT BE EXCLUDED UNDER LAW. WHERE INDICATED, OTHER TERMS IN THIS AGREEMENT ARE SUBJECT TO SECTIONS 17-19.

IF YOU ARE LOCATED IN THE UNITED STATES, SECTIONS 20-23 OF THIS DOCUMENT APPLY TO YOU. SECTION 22 CONTAINS A BINDING ARBITRATION PROVISION THAT LIMITS YOUR ABILITY TO SEEK RELIEF IN A COURT BEFORE A JUDGE OR JURY, AND WAIVES YOUR RIGHT TO PARTICIPATE IN CLASS ACTIONS OR CLASS ARBITRATIONS FOR CERTAIN DISPUTES. AN "OPT-OUT" IS AVAILABLE UNDER SECTION 22.7 FOR THOSE WHO WISH TO BE EXCLUDED FROM THE ARBITRATION AND CLASS WAIVER.

This is a legal agreement ("Agreement") between you (an individual or entity, referred to hereinafter as "you") and Seiko Epson Corporation and/or its affiliates ("Epson") for the enclosed software programs, including any related documentation, firmware, or updates (collectively referred to hereinafter as the "Software"). BEFORE INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE, YOU NEED TO REVIEW AND AGREE TO THE TERMS AND CONDITIONS OF THIS AGREEMENT INCLUDING THE EPSON PRIVACY POLICY stated in Section 16. If you agree, click on the Agree ("ACCEPT", "OK" or any similar representation of agreement) button below if any. If you do not agree with the terms and conditions of this Agreement, click on the Disagree ("EXIT", "Cancel" or any similar representation of disagreement) button if any and return the Software, along with the packaging and related materials, to Epson or the place of purchase for a full refund.

Please note that some of software programs accompanying the Software may require the purchase of a separate paid license in order to make them available for your use.

#### 1. Grant of License.

Subject to your compliance with the terms and conditions of this Agreement, Epson grants you a limited, nonexclusive, nonsublicensable and nonassignable license to:

- (i) install and use the Software on a single Epson brand robot controller (the "Epson Hardware") or on a single computer solely for the purpose of operating the Epson Hardware; and
- (ii) make one copy of the Software solely for backup and archival purposes.

#### 2. Upgrades and Updates.

Epson may, from time to time, issue an upgrade, updated version, modified version, or additions to or for the Software (collectively, "Updates"). You acknowledge that Epson has no obligation to provide you with any Updates to the Software.

#### 3. Other Rights and Limitations.

You agree not to use or copy the Software in any way, except as otherwise licensed herein, or transfer your rights licensed under this Agreement in any way, except as otherwise licensed herein. You agree not to modify, adapt or translate the Software and further agree not to attempt to reverse engineer, decompile, disassemble or otherwise attempt to discover the source code of the Software. You may not rent, lease, distribute, lend the Software to

third parties. The Software is licensed as a single unit, and its component programs may not be separated for some other use. Further, you agree not to place the Software onto or into a shared environment accessible via a public network such as the Internet or otherwise accessible by others other than licensed herein.

#### 4. Ownership.

Title, ownership rights, and intellectual property rights in and to the Software shall remain with Epson or its licensors and suppliers. The Software includes part of XVL Kernel, which is the copyrighted work of Lattice Technology Co., Ltd., as Third-Party Components, and the copyright and other rights therein belong to Lattice Technology Co., Ltd. The Software is protected by United States Copyright Law, copyright laws of Japan and international copyright treaties, as well as other intellectual property laws and treaties. There is no transfer to you of any title to or ownership of the Software and this License shall not be construed as a sale of any rights in the Software. You agree not to remove or alter any copyright, trademark, registered mark and other proprietary notices on any copies of the Software. Epson and/or its licensors and suppliers reserve all rights not granted. The Software may also contain images, illustrations, designs and photos ("Materials"), and the copyright of such material belongs to Epson and/or its licensors and suppliers, protected by national and/or international intellectual property laws, conventions and treaties.

#### 5. Open Source and Other Third-Party Components.

Notwithstanding the foregoing license grant, you acknowledge that certain components of the Software may be covered by third-party licenses, including so-called "open source" software licenses, which means any software licenses approved as open source licenses by the Open Source Initiative or any substantially similar licenses, including without limitation any license that, as a condition of distribution of the software licensed under such license, requires that the distributor make the software available in source code format (such third-party components, "Third-Party Components"). A list of Third-Party Components, and associated license terms (as required), for particular versions of the Software is indicated at https://support.epson.net/terms/, the end of this Agreement, relevant user manual/storage media, or the license information displayed on your Device/in Software. To the extent required by the licenses covering Third-Party Components, the terms of such licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the licenses applicable to Third-Party Components prohibit any of the restrictions in this Agreement with respect to such Third-Party Components, such restrictions will not apply to such Third-Party Component.

#### 6. Disclaimer of Warranty and Remedy.

Subject to Section 18.1 (which may apply to you if you acquire goods and services from Epson in Australia), you acknowledge and agree that the use of the Software is at your sole risk. THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY OF ANY KIND. EPSON AND ITS SUPPLIERS DO NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING THE SOFTWARE. Epson does not warrant that the operation of the Software will be uninterrupted, error free, free from viruses or other harmful components or vulnerabilities, or that the functions of the Software will meet your needs or requirements. Epson's sole, exclusive and entire liability and your exclusive remedy for breach of warranty shall be limited to a refund of the price paid for the Software. Epson is not liable for performance delays or for nonperformance due to causes beyond its reasonable control. This Limited Warranty is void if failure of the Software resulted from accident, abuse, or misapplication. THE STATED LIMITED WARRANTIES AND REMEDY ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS. EPSON DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, WITHOUT LIMITATION, **INCLUDING** ALL WARRANTIES INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES OR JURISDICTIONS, HOWEVER, DO NOT ALLOW

EXCLUSIONS OR LIMITATIONS OF IMPLIED WARRANTIES, AND IN SUCH STATES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

#### 7. Limitation of Liability.

Subject to Section 18.1 and/or 19.1 (which may apply to you if you acquire goods and services from Epson in Australia), TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL EPSON OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES, WHATSOEVER, WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER ARISING UNDER CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, BREACH OF WARRANTY, MISREPRESENTATION, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS, ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, OR ARISING OUT OF THIS AGREEMENT, EVEN IF EPSON OR ITS REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DAMAGES IN CERTAIN TRANSACTIONS, AND IN SUCH STATES, THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT APPLY.

#### 8. U.S. Government Acquisition of the Software.

This Section applies to all acquisitions of the Software by or for the U.S. Government ("Government"), or by any prime contractor or subcontractor (at any tier) under any contract, grant, cooperative agreement, "other transaction" ("OT"), or other activity with the Government. By accepting delivery of the Software, the Government, any prime contractor, and any subcontractor agree that the Software qualifies as "commercial" computer software within the meaning of FAR Part 12, paragraph (b) of FAR Subpart 27.405, or DFARS Subpart 227.7202, as applicable, and that no other regulation, or FAR or DFARS data rights clause, applies to the delivery of this Software to the Government. Accordingly, the terms and conditions of this Agreement govern the Government's (and the prime contractor and subcontractor's) use and disclosure of the Software, and supersede any conflicting terms and conditions of the contract, grant, cooperative agreement, OT, or other activity pursuant to which the Software is delivered to the Government. If this Software fails to meet the Government's needs, if this Agreement is inconsistent in any respect with Federal law, or if the above cited FAR and DFARS provisions do not govern, the Government agrees to return the Software, unused, to Epson.

#### 9. Export Restriction.

You agree that the Software will not be shipped, transferred or exported into any country or used in any manner prohibited by the United States Export Administration Act or any other export laws, restrictions or regulations.

#### 10. Entire Agreement.

Subject to Section 19.1 (which may apply to you if you acquire goods and services from Epson in Australia), this Agreement is the entire agreement between the parties related to the Software and supersedes any purchase order, communication, advertisement, or representation concerning the Software.

#### 11. Binding Agreement; Assignees.

This Agreement shall be binding upon, and inure to the benefit of, the parties hereto and their respective successors, assigns and legal representatives.

#### 12. Severability.

If any provision herein is found void or unenforceable by a court of competent jurisdiction (subject to Section 22.8 and 22.9 if you are a located in the U.S.), it will not affect the validity of the balance of the Agreement, which shall remain valid and enforceable according to its terms.

#### 13. Indemnification.

Subject to Section 19.1 (which may apply to you if you acquire goods and services from Epson in Australia), you agree that you will indemnify and hold harmless, and upon Epson's request, defend Epson and its directors, officers, shareholders, employees and agents from and against any and all losses, liabilities, damages, costs, expenses (including reasonable attorneys' fees), actions, suits, and claims arising from (i) any breach of any of your obligations in this Agreement or (ii) any use of the Software. If Epson asks you to defend any such action, suit or claim, Epson will have the right, at its own expense, to participate in the defense thereof with counsel of its choice. You will not settle any third-party claims for which Epson is entitled to indemnification without the prior written approval of Epson.

#### 14. Termination.

Without prejudice to any other rights of the parties, each party may terminate this Agreement, effective on notice to the other party, if the other party fails to comply with this Agreement. Upon termination, you must cease using the Software, and all copies thereof, must be immediately destroyed.

#### 15. Capacity and Authority to Contract.

You represent that you are of the legal age of majority in your state or jurisdiction of residence and have all necessary authority to enter into this Agreement, including, if applicable, due authorization by your employer to enter into this Agreement. Epson represents that it has all necessary authority to enter into this Agreement.

#### 16. Privacy, Information Processing.

The Software may have the ability to connect over the Internet to transmit data to and from your Device. For example, if you install the Software, the Software may cause your Device to send information about your Epson Hardware and/or the Software such as model and serial number, country identifier, language code, operating system information, and usage information to an Epson Internet site which may return promotional or service information to your Device for display. Any processing of information provided through the Software, shall be according to applicable data protection laws and the Epson Privacy Policy located at https://global.epson.com/privacy/area\_select\_confirm\_eula.html. To the extent permitted by applicable laws, by agreeing to the terms of this Agreement and by installing the Software, you consent to the processing and storage of your information in and/or outside your country of residence. If there is a specific privacy policy incorporated into the Software and/or displayed when you use the Software (for example, in the case of certain software application software), such specific privacy policy shall prevail over the Epson Privacy Policy stated above.

(THE FOLLOWING SECTIONS 17-19 OF THIS DOCUMENT MAY APPLY TO YOU IF YOU ACQUIRE GOODS OR SERVICES IN AUSTRALIA (SEE SECTIONS 18.1 AND 19.1 FOR FURTHER INFORMATION AS TO WHEN THESE SECTIONS APPLY)

#### 17. Definition.

For the purpose of the following Sections 18-19 of this Agreement, the Australian Consumer Law means Schedule 2 of the Competition and Consumer Act 2010 (Cth).

#### 18.1 Acquiring Product as a Consumer.

If you acquire the Software in Australia as a consumer under the Australian Consumer Law, which can include individuals or businesses or other entities of any size, this Agreement is subject to the following Sections 18.2 and 18.3.

#### 18.2 Australian Consumer Law.

Nothing in this Agreement applies where it would exclude, restrict or modify any right or remedy you may have under the Australian Consumer Law if such right or remedy cannot lawfully be excluded, restricted or modified.

Notwithstanding anything to the contrary in this Agreement, if you acquire goods (other than goods acquired for the purpose of resupply) and services from Epson as a consumer, they come with statutory guarantees under the Australian Consumer Law that are not excluded by any other terms of this Agreement.

The statutory guarantees include (without limitation) the following:

Goods must be of acceptable quality. This means they must:

- be safe;
- be free from defects;
- be acceptable in appearance and finish;
- do all the things someone would normally expect them to do;
- match any demonstration model or sample;
- be fit for the purpose which Epson has represented to you it would be fit for;
- match the description of the goods given by Epson; and
- meet any express warranty given by Epson to you at the time of your purchase about their performance, condition and quality.

Services provided by Epson must:

- be provided with due care and skill or technical knowledge;
- be fit for the purpose or give the results that have been agreed to; and
- be delivered within a reasonable time when there is no agreed end date.

To the extent that Epson fails to comply with a consumer guarantee applicable to you under the Australian Consumer Law you are entitled to the remedies as set out in the Australian Consumer Law. For major failures with the service, you are entitled:

- to cancel your service contract with Epson; and
- to a refund for the unused portion, or to compensation for its reduced value.

You are also entitled to choose a refund or replacement for major failures with goods.

If a failure with the goods or a service does not amount to a major failure, you are entitled to have the failure rectified in a reasonable time. If this is not done, you are entitled to a refund for the goods and to cancel the contract for the service and obtain a refund of any unused portion.

You are also entitled to be compensated for any other reasonably foreseeable loss or damage from a failure in the goods or service.

#### 18.3 Disclaimer of Warranty and Remedy.

Section 6 will not apply to you. The following section will apply instead:

EXCEPT THAT NOTHING IN THIS CLAUSE EXCLUDES, RESTRICTS OR MODIFIES ANY WARRANTIES, GUARANTEES, RIGHTS OR REMEDIES WHICH CANNOT BE EXCLUDED UNDER THE AUSTRALIAN CONSUMER LAW: (1) THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY OF ANY KIND; (2) EPSON AND ITS SUPPLIERS DO NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING THE SOFTWARE; (3) Epson does not warrant that the operation of the Software will be uninterrupted, error free, free from viruses or other harmful components or vulnerabilities, or that the functions of the Software will meet your needs or requirements; (4) Epson is not liable for performance delays or for non-performance due to causes beyond its reasonable control; and (5) EPSON DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ALL WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

#### 19.1 Acquiring Product under a Consumer or Small Business Contract.

If:

- (a) you are an individual and you acquire the Software wholly or predominantly for personal, domestic or household use or consumption; or
- (b) this agreement constitutes a small business contract (as that term is defined in the Australian Consumer Law from time to time),

then the following Sections 19.2-19.3 will apply to you.

#### 19.2 Limitation of Liability.

Section 7 will not apply to you. The following section will apply instead:

Subject to Section 18.1, IN NO EVENT WILL A PARTY OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER ARISING UNDER CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, BREACH OF WARRANTY, MISREPRESENTATION, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS, ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, OR ARISING OUT OF THIS AGREEMENT, EVEN IF THAT PARTY OR ITS REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

#### 19.3 Entire Agreement; Indemnification.

Sections 10 (Entire Agreement) and 13 (Indemnification) will not apply to you.

# (IF YOU ARE LOCATED IN THE UNITED STATES, THE FOLLOWING SECTIONS 20-23 APPLY TO YOU)

#### 20. Downloadable Updates.

You may also be able to download from an Epson Internet site updates or upgrades to the Software if such updates or upgrades are made available. If you agree to install the Software, any transmissions to or from the Internet, and data collection and use, will be in accordance with Epson's then-current Privacy Policy, and by installing the Software you agree that such then-current Privacy Policy shall govern such activities.

#### 21. Epson Accounts and Promotional Messages.

In addition, if you install the Software and register your Epson Hardware with Epson, and/or you create an account at the Epson Store, and provided your consent to such use, you agree that Epson may merge the data collected in connection with installation of the Software, registration of your Epson Hardware and/or creation of your Epson Store account, consisting of personal information and non-personally identifiable information, and use such merged data to send you Epson promotional or service information. If you do not wish to send information about your Epson Hardware or receive promotional or service information, you will be able to disable these features on a Windows system through the Monitoring Preferences section in the driver. On a Mac operating system, you can disable these features by uninstalling the Epson Customer Research Participation and Low Ink Reminder software.

# 22. DISPUTES, BINDING INDIVIDUAL ARBITRATION, AND WAIVER OF CLASS ACTIONS AND CLASS ARBITRATIONS

#### 22.1 Disputes.

The terms of this Section 22 shall apply to all Disputes between you and Epson. The term "Dispute" is meant to have the broadest meaning permissible under law or in equity and includes any past, present, or future dispute, claim, controversy or action between you and Epson including those that arose before the existence of this or any prior Agreement arising out of or relating to this Agreement (including its formation, performance, or breach), the Software, Epson Hardware, the parties' relationship with each other and/or any other transaction involving you and Epson, whether in contract, or with respect to warranty, misrepresentation, fraud, tort, intentional tort, statute, regulation, ordinance, or any other legal or equitable basis. However, a "Dispute" does not include a claim or cause of action for (a) trademark infringement or dilution, (b) patent infringement, (c) copyright infringement or misuse, or (d) trade secret misappropriation (an "IP Claim"). A "Dispute" also does not include a request for public injunctive relief. You and Epson agree, consistent with Section 22.6(a), that a court, not an arbitrator, may decide if a claim or cause of action is for an IP Claim, as well as whether a claim seeks public injunctive relief.

#### 22.2 Initial Dispute Resolution.

Before submitting a claim for arbitration in accordance with this Section 22, you and Epson agree to try, for sixty (60) days, to resolve any Dispute informally. If Epson and you do not reach an agreement to resolve the Dispute within the sixty (60) days, you or Epson may commence an arbitration in accordance with Section 22.6. Notice to Epson must be addressed to: Epson America, Inc., ATTN: Legal Department, 3131 Katella Avenue, Los Alamitos, CA 90720-2335. Any notice of the Dispute shall include the sender's name, address and contact information, the facts giving rise to the Dispute, and the relief requested. Any notice sent to you will be sent to the most recent address Epson has in its records for you. For this reason, it is important to notify us if your address changes by emailing us at EAILegal@ea.epson.com or writing us at the address above. You and Epson agree to act in good faith to resolve the Dispute before commencing arbitration in accordance with this Section 22. To minimize the cost and inconvenience to all parties, and to promote prompt resolution of Disputes, you and we agree that engaging in this initial dispute resolution process is a material term of this Agreement and a requirement that must be fulfilled before commencing any arbitration.

Consistent with Section 22.6(a), you and Epson agree that any disagreements regarding compliance with this Section 22.2 shall be decided by a court, not an arbitrator; pending resolution of any such disagreements by a court, which may include requests to compel compliance with this Section 22.2, you and we agree that arbitration (as well as any obligation to pay arbitration fees) shall be stayed until the initial dispute resolution process in Section 22.2 is complete. You and Epson acknowledge that either party's failure to comply with the provisions of this Section 22.2 would irreparably harm the other, and you and Epson agree that a court may issue an order staying arbitration (and any obligation to pay arbitration fees) until the initial dispute resolution process in this Section 22.2 is complete.

#### 22.3 Binding Arbitration.

If we do not reach an agreed upon solution within a period of sixty (60) days from the time informal dispute resolution is pursued pursuant to Section 22.2 above, then either party may initiate binding arbitration. Except as stated below in Section 22.4, you and Epson agree that all Disputes shall be resolved by binding arbitration according to this Agreement. ARBITRATION MEANS THAT YOU WAIVE YOUR RIGHT TO A JUDGE OR JURY IN A COURT PROCEEDING, AND YOUR RIGHT TO DISCOVERY AND GROUNDS FOR APPEAL ARE MORE LIMITED THAN IN COURT. Pursuant to this Agreement, and except as stated below in Section 22.6(h), binding arbitration shall be administered by JAMS, a nationally recognized arbitration provider, pursuant to the JAMS Streamlined Arbitration Rules and Procedures or its applicable code of procedures then in effect for consumer related disputes, but excluding any rules that permit class arbitration. For more detail on the procedure to initiate arbitration and what your demand for arbitration should include, see Sections 22.6(g) and 22.6(h) below. You and Epson understand and agree that (a) the Federal Arbitration Act (9 U.S.C. §§ 1 et seq.) governs the interpretation and enforcement of this Section 22, (b) this Agreement memorializes a transaction in interstate commerce, and (c) this Section 22 shall survive termination of this Agreement.

#### 22.4 Exception - Small Claims Court.

Notwithstanding the parties' agreement to resolve Disputes through arbitration, either party can elect to have an individual claim resolved in small claims court of your state or municipality if the action is within that court's jurisdiction, even if the claim was initiated by another party in a different forum.

#### 22.5 WAIVER OF CLASS ACTION AND CLASS ARBITRATION.

YOU AND EPSON AGREE THAT EACH PARTY MAY BRING DISPUTES AGAINST THE OTHER PARTY ONLY IN AN INDIVIDUAL CAPACITY, AND NOT AS A CLASS action or class arbitration. If any court or arbitrator determines that the class action waiver set forth in this paragraph is void or unenforceable for any reason or that an arbitration can proceed on a class basis, then the arbitration provision set forth above in Section 22.3 shall be deemed null and void in its entirety and the parties shall be deemed to have not agreed to arbitrate disputes.

#### 22.6 Arbitration Procedure.

a) The arbitrator shall be empowered to grant whatever relief would be available in a court under law or in equity, except for requests for public injunctive relief, if any, which shall be decided by a court, not an arbitrator. If either party seeks public injunctive relief, that request for relief shall be severed from any arbitration proceeding and stayed pending a final determination of the arbitration. Nothing in Section 22 of this Agreement shall be construed as a waiver of either party's right to seek public injunctive relief, and you and we agree to cooperate to effect the stay of any requests for public injunctive relief.

The arbitrator is bound by the terms of this Agreement. The arbitrator, and not any federal, state or local court or agency, shall have exclusive authority to resolve all disputes arising out of or relating to the interpretation, applicability, enforceability or formation of this Agreement, including any claim that all or any part of this Agreement is void or voidable. Notwithstanding this broad delegation of authority to the arbitrator, and consistent with Sections 22.1, 22.2, 22.6(a) and 22.6(h) of this Agreement, a court may determine: (i) the limited question of whether a claim or cause of action is for an IP Claim, which is excluded from the definition of "Disputes" in Section 22.1 above; (ii) disagreements regarding compliance with the initial dispute resolution provisions in Section 22.2 above; (iii) disagreements regarding claims for public injunctive relief as set forth in this Section 22.6(a); and/or (iv) disagreements regarding the provisions for "Mass Arbitration" in Section 22.6(h) below.

#### b) Costs of Arbitration and Legal Fees.

In some instances, the costs of arbitration can exceed the costs of litigation. Each party will have the right to use legal counsel in connection with arbitration at its own expense. If, however, the arbitrator determines that a claim or defense asserted by you or Epson is patently frivolous or in bad faith, the arbitrator may award the reasonable legal fees and costs incurred by the other party defending against the claim or defense. By way of illustration only, and without limitation, a patently frivolous claim may be found where it is based on a product never purchased by a claimant.

#### c) Discovery.

The discovery or exchange of non-privileged information relevant to the Dispute may be allowed during the arbitration. The right to discovery may be more limited in arbitration than in court.

#### d) Awards.

The arbitrator's award is binding and may be entered as a judgment in any court of competent jurisdiction.

#### e) Hearing Format and Location.

You may choose to engage in arbitration hearings by telephone or, if you and we both agree, to conduct it online, in lieu of appearing live. Arbitration hearings not conducted by telephone or online shall take place in a location reasonably accessible from your primary residence, or in Orange County, California, at your option.

#### f) Settlement Offers.

During the arbitration, the amount of any settlement offer made shall not be disclosed to the arbitrator until after the arbitrator determines the amount, if any, to which you or Epson is entitled.

#### g) Initiation of Arbitration Proceeding Before JAMS.

Except as stated in Section 22.6(h) below, if you or Epson commences arbitration, the arbitration shall be governed by the JAMS Streamlined Arbitration Rules and Procedures or the applicable rules of JAMS that are in effect when the arbitration is filed, excluding any rules that permit arbitration on a class-wide basis (the "JAMS Rules"), available at http://www.jamsadr.com or by calling 1-800-352-5267, and under the rules set forth in this Agreement. All Disputes shall be resolved by a single neutral arbitrator, which shall be selected in accordance with the JAMS Streamlined Arbitration Rules and Procedures, and both parties shall have a reasonable opportunity to participate in the selection of the arbitrator. If either you or Epson decides to arbitrate a Dispute before JAMS, both parties agree to the following procedure:

(i) Write a Demand for Arbitration. The demand must include a description of the Dispute and the amount of damages sought to be recovered. The demand also must identify the product purchased, identify the date and place of purchase and, if possible, provide the serial number and proof of purchase. You can find a copy of a demand for arbitration at http://www.jamsadr.com.

- (ii) Send three copies of the demand for arbitration, plus the appropriate filing fee, to: JAMS, 500 North State College Blvd., Suite 600 Orange, CA 92868, U.S.A.
- (iii) Send one copy of the demand for arbitration to the other party (at the same address as the notice of a dispute, above in section 22.2), or as otherwise agreed by the parties.

#### h) Initiation of Mass Arbitration Before FedArb.

Notwithstanding Sections 22.3 and 22.6(g), if 20 or more demands for arbitration are filed relating to the same or similar subject matter and sharing common issues of law or fact, and counsel for the parties submitting the demands are the same or coordinated, you and we agree that this will constitute a "Mass Arbitration."

If a Mass Arbitration is commenced, you and we agree that it shall not be governed by JAMS Rules or administered by JAMS. Instead, a Mass Arbitration shall be administered by FedArb, a nationally recognized arbitration provider, and governed by the FedArb Rules in effect when the Mass Arbitration is filed, excluding any rules that permit arbitration on a class-wide basis (the "FedArb Rules"), and under the rules set forth in this Agreement. The FedArb Rules are available at https://www.fedarb.com/ or by calling 1-650-328-9500. You and we agree that the Mass Arbitration shall be resolved using FedArb's Framework for Mass Arbitration Proceedings ADR-MDL, available at https://www.fedarb.com/.

Before any Mass Arbitration is filed with FedArb, you and we agree to contact FedArb jointly to advise that the parties intend to use FedArb's Framework for Mass Arbitration Proceedings ADR-MDL. The individual demands comprising the Mass Arbitration shall be submitted on FedArb's claim form(s) and as directed by FedArb.

Consistent with Section 22.6(a) above, you and Epson agree that if either party fails or refuses to commence the Mass Arbitration before FedArb, you or Epson may seek an order from a court of competent jurisdiction compelling compliance with this Section 22.6(h) and compelling administration of the Mass Arbitration before FedArb. Pending resolution of any such requests to a court, you and we agree that all arbitrations comprising the Mass Arbitration (and any obligation to pay arbitration fees) shall be stayed. You and Epson acknowledge that either party's failure to comply with the provisions of this Section 22.6(h) would irreparably harm the other, and you and Epson agree that a court may issue an order staying the arbitrations (and any obligation to pay arbitration fees) until any disagreements over the provisions of this Section 22.6(h) are resolved by the court.

#### 22.7 30 Day Opt-out Right.

You may elect to opt-out (exclude yourself) from the final, binding, individual arbitration procedure and waiver of class proceedings set forth in Sections 22.3 to 22.6 of this Agreement by sending a written letter to the Epson address listed above in Section 22.2 within thirty (30) days of your assent to this Agreement that specifies (i) your name, (ii) your mailing address, and (iii) your request to be excluded from the final, binding individual arbitration procedure and waiver of class proceedings specified in this Section 22. In the event that you opt-out consistent with the procedure set forth above, all other terms set forth in the Agreement, including this Section 22, shall continue to apply, including the requirement to provide notice prior to litigation. If you opt-out of these arbitration provisions, Epson will also not be bound by them.

#### 22.8 Amendments to Section 22.

Notwithstanding any provision in this Agreement to the contrary, you and Epson agree that if Epson makes any future amendments to the dispute resolution procedure and class action waiver provisions (other than a change to Epson's address) in this Agreement, Epson will obtain your affirmative assent to the applicable amendment. If you do not affirmatively assent to the applicable amendment, you are agreeing that you will arbitrate any Dispute

between the parties in accordance with the language of this Section 22 (or resolve disputes as provided for in Section 22, if you timely elected to opt-out) when you first assented to this Agreement.

#### 22.9 Severability.

If any provision in this Section 22 is found to be unenforceable, that provision shall be severed with the remainder of this Agreement remaining in full force and effect. The foregoing shall not apply to the prohibition against class actions as provided in Section 22.5. This means that if Section 22.5 is found to be unenforceable, the entire Section 22 (but only Section 22) shall be null and void.

#### 23. For New Jersey Residents.

NOTWITHSTANDING ANY TERMS SET FORTH IN THIS AGREEMENT, IF ANY OF THE PROVISIONS SET FORTH IN SECTIONS 6 OR 7 ARE HELD UNENFORCEABLE, VOID OR INAPPLICABLE UNDER NEW JERSEY LAW, THEN ANY SUCH PROVISION SHALL NOT APPLY TO YOU BUT THE REST OF THE AGREEMENT SHALL REMAIN BINDING ON YOU AND EPSON. NOTWITHSTANDING ANY PROVISION IN THIS AGREEMENT, NOTHING IN THIS AGREEMENT IS INTENDED TO, NOR SHALL IT BE DEEMED OR CONSTRUED TO, LIMIT ANY RIGHTS AVAILABLE TO YOU UNDER THE TRUTH-IN-CONSUMER CONTRACT, WARRANTY AND NOTICE ACT.

2023

# Appendix A: Automatic Processing of Project Import

## Project Import for EPSON RC+ 6.\*

When projects created in EPSON RC+ 6.\* are imported, all project files are copied to the new EPSON RC+ 7.0 project directory.

#### **Vision Guide Conversion**

When using the smart camera or flame grabber, model images of each object (Correlation object, Geometric object, etc.) are not imported.

Perform model teaching again after importing them.

## Project Import for EPSON RC+ 5.\*

When projects created in EPSON RC+ 5.\* are imported, all project files are copied to the new EPSON RC+ 7.0 project directory. In addition, the following processes are executed automatically:

- Point file update
- User Program Conversion

#### **Point File Update**

For EPSON RC+ 5.\*, the .PTS files are updated automatically to the EPSON RC+ 6.0 .PTS file version.

#### **User Program Conversion**

# Project Import for EPSON RC+ 3.\* / 4.\*

When projects created in EPSON RC+ 3.\* / 4.\* are imported, the following processes are executed automatically:

- User program conversion
- Point file conversion
- I/O label file conversion
- User error label file conversion
- Vision Guide conversion

#### **User Program Conversion**

The tables below show the syntax conversions from EPSON RC+ 3.\* / 4.\* to EPSON RC+ 7.0.

| Project Ty | pe EPSON RC | + 4.* EPSON RC+ 7.0 |
|------------|-------------|---------------------|
|            | While       | Do While            |
| Syntax     | Wend        | Loop                |
|            | TrapCall    | TrapXqt             |

| Project Type | EPSON RC+ 3.* | EPSON RC+ 7.0 |
|--------------|---------------|---------------|
|              | While         | Do While      |
|              | Wend          | Loop          |
|              | TrapCall      | TrapXqt       |
| Syntax       | On \$, Off \$ | MemOn, MemOff |
| Symax        | Sw(\$         | MemSw(        |
|              | Sw \$(        | MemSw(        |
|              | In(\$         | MemIn(        |
|              | In \$(        | MemIn(        |

| Project Type | EPSON RC+ 3.* | EPSON RC+ 7.0 |
|--------------|---------------|---------------|
|              | Out \$        | MemOut        |
|              | Xqt!          | Xqt           |
| Syntax       | Quit!         | Quit          |
|              | Resume!       | Resume        |
|              | Halt!         | Halt          |

#### **Point File Conversion**

For EPSON RC+ 3.\*, the EPSON RC+ 7.0 \*PTS files are generated automatically from the .PNT files and corresponding .DEF files.

| Project Type | EPSON RC+ 3.*                 | EPSON RC+ 7.0 |
|--------------|-------------------------------|---------------|
| Point File   | *.PNT file (Point file)       | *.PTS         |
|              | *.DEF file (Point label file) |               |

For EPSON RC+ 4.\*, the EPSON RC+ 7.0 \*.PTS files are generated automatically from the .PNT files.

| Project Type | EPSON RC+ 4.*           | EPSON RC+ 7.0 |
|--------------|-------------------------|---------------|
| Point File   | *.PNT file (Point file) | *.PTS         |

#### I/O Label File Conversion

IOLabels.dat is generated automatically from the following three files.

| Project Type   | EPSON RC+ 3.* / 4.* | EPSON RC+ 7.0 |
|----------------|---------------------|---------------|
| I/O Label File | inplabel.txt        | IOLabels.dat  |
|                | outlabel.txt        |               |
|                | memlabel.txt        |               |

#### **User Error Label File Conversion**

Files are changed automatically as the user error numbers are changed.

| Project Type          | EPSON RC+ 3.* / 4.* | EPSON RC+ 7.0  |
|-----------------------|---------------------|----------------|
| User Error Label      | 30000 to 30999      | 8000 to 8999   |
| User Error Label File | UserErrors.txt      | UserErrors.dat |

#### **Vision Guide Conversion**

EPSON RC+ 3.\* / 4.\* project vision files are updated to EPSON RC+ 7.0 format automatically. Files related to sequence, objects, and calibration are all imported.

#### Note:

When using the smart camera or flame grabber, model images of each object (Correlation object, Geometric object, etc.) are not imported.

Perform model teaching again after importing them.

# Project Import for SPEL for Windows 2.\*

When projects created in SPEL for Windows 2.\* are imported, the following processes are executed automatically.

- User program conversion - Global Preserve variable table conversion

Point file conversion
 I/O label file conversion
 Global variable conversion
 Local variable conversion

#### **User Program Conversion**

The table below shows the syntax conversions to EPSON RC+ 7.0.

| Project Type | SPEL for Windows 2.* | EPSON RC+ 7.0    |
|--------------|----------------------|------------------|
| Syntax       | While                | Do While         |
|              | Wend                 | Loop             |
|              | Trap nCall           | Trap nXqt        |
|              | On \$, Off \$        | MemOn, MemOff    |
|              | Sw(\$                | MemSw(           |
|              | Sw \$(               | MemSw(           |
|              | In(\$                | MemIn(           |
|              | In \$(               | MemIn(           |
|              | Out \$               | MemOut           |
|              | Xqt!                 | Xqt              |
|              | Quit!                | Quit             |
|              | Resume!              | Resume           |
|              | Halt!                | Halt             |
|              | Palet                | Pallet           |
|              | Print"               | Print "          |
|              | Date\$(0)            | Date\$           |
|              | Time\$(0)            | Time\$           |
|              | JS(0)                | JS               |
|              | TW(0)                | TW               |
|              | ZeroFlg(0)           | ZeroFlg          |
|              | Entry                | Global           |
|              | Config statement     | SetCom statement |
|              | Cooked               | Line deleted     |
|              | SetRaw               | Line deleted     |
|              | SelRB                | Line deleted     |
|              | SelRB1               | Line deleted     |
|              | Extern               | Line deleted     |
|              | End                  | Quit All         |
|              | GetDate d\$          | d\$ = Date\$     |
|              | GetTime t\$          | t\$ = Time\$     |

#### **Point File Conversion**

EPSON RC+ 7.0 \*.PTS files are generated automatically from the .PNT files and corresponding .DEF files.

| Project Type | SPEL for Windows 2.*     | EPSON RC+ 7.0 |
|--------------|--------------------------|---------------|
| Point File   | *.PNT file (Point file)  | *.PTS         |
|              | *.DEF file (Point label) |               |

#### I/O Label File Conversion

Converts the I/O labels automatically.

| Project Type   | SPEL for Windows 2.* | EPSON RC+ 6.0 |  |
|----------------|----------------------|---------------|--|
| I/O Label File | ProjectName.IOL      | IOLabels.dat  |  |

#### **Global Preserve Variable Table Conversion**

Backup variable definitions created in the SPEL for Windows 2.\* Project Menu are converted into Global Preserve declaration statements in the first program file. (Example)

If the SPEL for Windows 2.\* project defines an integer backup variable called "s\_iValue", the following statement is generated in the first program of the project.

Global Preserve Integer s iValue

#### **Global Variable Conversion**

Global variables (Entry / Extern) in SPEL for Windows 2.\* projects are converted to Global variables in EPSON RC+ 7.0.

| Project Type              | SPEL for Windows 2.*   | EPSON RC+ 7.0  |
|---------------------------|------------------------|----------------|
| Global Variable (Command) | Entry / Extern command | Global command |

#### **Local Variable Conversion**

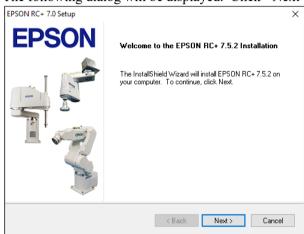
Local variables in SPEL for Windows 2.\* functions can be used throughout the entire file in which they are declared. These variables are converted to module variables or local variables in EPSON RC+ 7.0, depending on their scope.

If the variable is used in only one function, it is converted to a local variable in that function.

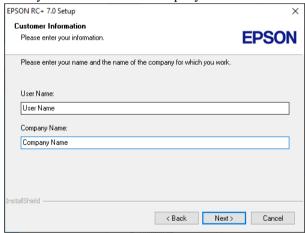
If the variable is used in more than one function, it is converted to a module variable.

# Appendix B: EPSON RC+ 7.0 Software

EPSON RC+ 7.0 can be used in the following operating systems.

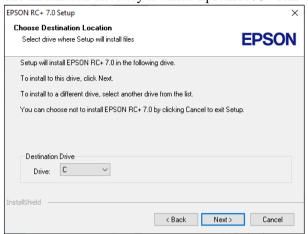

Windows 8.1 Pro (EPSON RC+ 7.0 Ver.7.1.0 or later)

Windows 10 Pro (EPSON RC+ 7.0 Ver.7.2.0 or later)

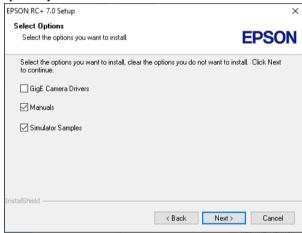

### **EPSON RC+ 7.0 Software Installation**

The EPSON RC+ 7.0 software needs to be installed on your development PC.

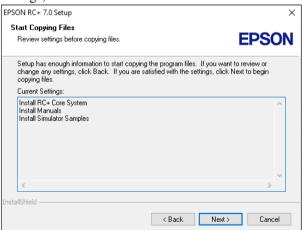
- (1) Insert the EPSON RC+ 7.0 Setup DVD in the DVD drive.
- (2) The following dialog will be displayed. Click <Next>.




(3) Enter your user name and company name and click <Next>.







(4) Select the drive where you want to install EPSON RC+ 7.0 and click <Next>. The installation directory is called EpsonRC70. This cannot be changed.



(5) The dialog for selecting the options to be installed will be displayed. Check the options you want to install and click <Next>.



(6) The dialog to review the settings will be displayed. If you are satisfied with the settings, click <Next>.



(7) If required, install "Windows Installer" on your system. This may take several minutes.



Manuals are provided in PDF. To refer to the manual, use the pre-installed PDF viewer in Windows, or install a PDF viewer such as Adobe Acrobat Reader.

(8) After the installation has completed, restart your computer. The EPSON RC+ 7.0 software installation is now completed.



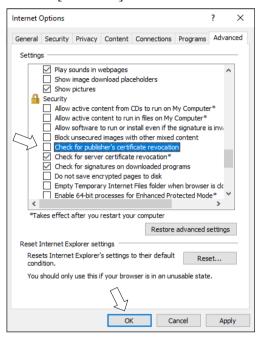


When installing RC; an error "Cannot create parser instance." may occur. If the error occurs, uninstall RC+ once and execute Microsoft\VC151719.exe in the DVD and re-install RC+.

#### To install the service pack

If the following folder exists in the EPSON RC+7.0 setup DVD, the service pack is available.

\EpsonRC\Service\_Packs


Install the latest service pack by double-clicking "erc\*\*\*sp\*.exe" in the folder. (\*\*\*: RC+version / \*: service pack version)

For details of the service pack, refer to "readme\*.txt". (\*: language)

## After Installing EPSON RC+ 7.0 Software

EPSON RC+ 7.0 software may boot slowly when using PC with EPSON RC+7.0 software in an environment without the internet connection. Follow the steps below and change the configurations of the internet options.

(1) Start the Internet Explorer and display the [Internet Options] dialog. Click the [Advanced] tab.



- (2) Uncheck the [Check for publisher's certification revocation] checkbox.
- (3) Click the <OK> button.

# EPSON RC+ 7.0 Software Update



Make sure that EPSON RC + 7.0 is updated by a user with Administrator right.

Insert the EPSON RC+ 7.0 setup DVD into the DVD drive and follow the menu to update the software.

# Appendix C: Simulator Functions List of Unsupported Manipulator Models

Simulator functions do not support the following Manipulator models.

# X5 series Manipulators

All models do not support the simulator functions.

There is no alternative model.

### G6 series Manipulators

Protected models as described in the table below do not support the simulator functions.

| G6-451D  | G6-551D  | G6-651D  | G6-451D-II  | G6-551D-II  | G6-651D-II  |
|----------|----------|----------|-------------|-------------|-------------|
| G6-451DR | G6-551DR | G6-651DR | G6-451DR-II | G6-551DR-II | G6-651DR-II |
| G6-451DW | G6-551DW | G6-651DW | G6-451DW-II | G6-551DW-II | G6-651DW-II |
| G6-451P  | G6-551P  | G6-651P  | G6-451P-II  | G6-551P-II  | G6-651P-II  |
| G6-451PR | G6-551PR | G6-651PR | G6-451PR-II | G6-551PR-II | G6-651PR-II |
| G6-451PW | G6-551PW | G6-651PW | G6-451PW-II | G6-551PW-II | G6-651PW-II |
| G6-453D  | G6-553D  | G6-653D  | G6-453D-II  | G6-553D-II  | G6-653D-II  |
| G6-453DR | G6-553DR | G6-653DR | G6-453DR-II | G6-553DR-II | G6-653DR-II |
| G6-453DW | G6-553DW | G6-653DW | G6-453DW-II | G6-553DW-II | G6-653DW-II |
| G6-453P  | G6-553P  | G6-653P  | G6-453P-II  | G6-553P-II  | G6-653P-II  |
| G6-453PR | G6-553PR | G6-653PR | G6-453PR-II | G6-553PR-II | G6-653PR-II |
| G6-453PW | G6-553PW | G6-653PW | G6-453PW-II | G6-553PW-II | G6-653PW-II |

When connecting to Virtual Controller, the following models can be set as an alternative model. However, external dimensions and motion range of arms may differ.

Standard model : G6-\*\*\*S\*, G6-\*\*\*S\*-II Cleanroom model : G6-\*\*\*C\*, G6-\*\*\*C\*-II

For more details, refer to the following manual: SCARA Robot G series Manipulator Manual

### G10 series Manipulators

| Protected models as descri              | ibed in the table below | w do not support the | simulator functions. |
|-----------------------------------------|-------------------------|----------------------|----------------------|
| 110100000000000000000000000000000000000 |                         |                      |                      |

| G10-651D  | G10-851D  | G10-651D-II  | G10-851D-II  |
|-----------|-----------|--------------|--------------|
| G10-651DR | G10-851DR | G10-651DR-II | G10-851DR-II |
| G10-651DW | G10-851DW | G10-651DW-II | G10-851DW-II |
| G10-651P  | G10-851P  | G10-651P-II  | G10-851P-II  |
| G10-651PR | G10-851PR | G10-651PR-II | G10-851PR-II |
| G10-651PW | G10-851PW | G10-651PW-II | G10-851PW-II |
| G10-654D  | G10-854D  | G10-654D-II  | G10-854D-II  |
| G10-654DR | G10-854DR | G10-654DR-II | G10-854DR-II |
| G10-654DW | G10-854DW | G10-654DW-II | G10-854DW-II |
| G10-654P  | G10-854P  | G10-654P-II  | G10-854P-II  |
| G10-654PR | G10-854PR | G10-654PR-II | G10-854PR-II |
| G10-654PW | G10-854PW | G10-654PW-II | G10-854PW-II |

When connecting to Virtual Controller, the following models can be set as an alternative model. However, external dimensions and motion range of arms may differ.

Standard model : G10-\*\*\*S\*, G10-\*\*\*S\*-II Cleanroom model : G10-\*\*\*C\*, G10-\*\*\*C\*-II

For more details, refer to the following manual: SCARA Robot G series Manipulator Manual

# G20 series Manipulators

Protected models as described in the table below do not support the simulator functions.

| G20-851D  | G20-A01D  | G20-851D-II  | G20-A01D-II  |
|-----------|-----------|--------------|--------------|
| G20-851DR | G20-A01DR | G20-851DR-II | G20-A01DR-II |
| G20-851DW | G20-A01DW | G20-851DW-II | G20-A01DW-II |
| G20-851P  | G20-A01P  | G20-851P-II  | G20-A01P-II  |
| G20-851PR | G20-A01PR | G20-851PR-II | G20-A01PR-II |
| G20-851PW | G20-A01PW | G20-851PW-II | G20-A01PW-II |
| G20-854D  | G20-A04D  | G20-854D-II  | G20-A04D-II  |
| G20-854DR | G20-A04DR | G20-854DR-II | G20-A04DR-II |
| G20-854DW | G20-A04DW | G20-854DW-II | G20-A04DW-II |
| G20-854P  | G20-A04P  | G20-854P-II  | G20-A04P-II  |
| G20-854PR | G20-A04PR | G20-854PR-II | G20-A04PR-II |
| G20-854PW | G20-A04PW | G20-854PW-II | G20-A04PW-II |

When connecting to Virtual Controller, the following models can be set as an alternative model. However, external dimensions and motion range of arms may differ.

Standard model : G20-\*\*\*S\*, G20-\*\*\*S\*-II Cleanroom model : G20-\*\*\*C\*, G20-\*\*\*C\*-II

For more details, refer to the following manual: SCARA Robot G series Manipulator Manual