

Original instructions

Rev.10 ENM238S5890F

EPSON RC+ 7.0 Option

Part Feeding 7.0
Introduction & Software

EPSO
N

 R
C

+ 7.0 O
ption Part Feeding 7.0 Introduction & Softw

are R
ev.10

Part Feeding 7.0 Introduction & Software Rev.10 i

EPSON RC+ 7.0 Option

Part Feeding 7.0
 Introduction & Software

Rev.10

Seiko Epson Corporation 2020-2023

ii Part Feeding 7.0 Introduction & Software Rev.10

FOREWORD
Thank you for purchasing our robot system.
This manual contains the information necessary for the correct use of the EPSON RC+
PartFeeding option.
Please carefully read this manual and other related manuals before installing the robot
system.
Keep this manual handy for easy access at all times.

The robot system and its optional parts are shipped to our customers only after being
subjected to the strictest quality controls, tests, and inspections to certify its compliance with
our high performance standards. Please note that the basic performance of the product will
not be exhibited if our robot system is used outside of the usage conditions and product
specifications described in the manuals.

This manual describes possible dangers and consequences that we can foresee. Be sure to
comply with safety precautions on this manual to use our robot system safety and correctly.

TRADEMARKS

Microsoft, Windows, Windows logo, Visual Basic, and Visual C++ are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other brand and product names are trademarks or registered trademarks of the
respective holders.

TRADEMARK NOTATION IN THIS MANUAL

Microsoft® Windows® 8 operating system
Microsoft® Windows® 10 operating system
Microsoft® Windows® 11 operating system
Throughout this manual, Windows 8, Windows 10 and Windows 11 refer to above respective
operating systems. In some cases, Windows refers generically to Windows 8, Windows 10
and Windows 11.

NOTICE

No part of this manual may be copied or reproduced without authorization.
The contents of this manual are subject to change without notice.
Please notify us if you should find any errors in this manual or if you have any comments
regarding its contents.

MANUFACTURER

CONTACT INFORMATION

Contact information is described in “SUPPLIERS” in the first pages of the following
manual:
 Robot System Safety Manual Read this manual first

Table of Contents

Part Feeding 7.0 Introduction & Software Rev.10 iii

Introduction
1. Introduction 3
1.1 Overview of Part Feeding ... 3
1.2 Required Basic Knowledge of EPSON RC+ 7.0 6
1.3 Related Manuals ... 6
1.4 Symbols Used in this Manual ... 7

2. Safety 8
2.1 Safety Precautions .. 8
2.2 Robot Safety ... 8
2.3 Vision System Safety .. 8
2.4 Feeder Safety .. 8
2.5 Hopper Safety ... 8

3. Definition of Terms 9

4. System Overview 11
4.1 Overall Configuration .. 11
4.2 Feeder ... 12
4.3 Robot ... 12
4.4 Vision System ... 12
4.5 Lighting .. 13
4.6 PC ... 13
4.7 Hopper ... 13

5. Hardware 14
5.1 Check Included Items ... 14
5.2 System Configuration .. 15
5.3 Installation and Adjustment ... 17
5.4 Electric Wiring ... 20

6. Operation Overview 22
6.1 Part Feeding Process ... 22
6.2 Supplying Parts to the Feeder .. 23
6.3 Feeder Operation .. 25
6.4 Part Pick Positions on Platform .. 26
6.5 Preventing End Effector and Platform Interference 26

Table of Contents

iv Part Feeding 7.0 Introduction & Software Rev.10

7. Parts 27
7.1 Conditions for Usable Parts ... 27
7.2 Examples of Parts .. 29

8. Let’s Use the Part Feeding Option 34
8.1 Workflow .. 34
8.2 Requirements ... 35
8.3 Enable the Part Feeding Options Key ... 36
8.4 Configure Feeder Communications ... 37
8.5 Create a Project for Part Feeding .. 37
8.6 Create a New Part ... 38
8.7 Configure the Lighting Settings ... 39
8.8 Create the Vision Sequences .. 39
8.9 Configure the Vision Settings .. 42
8.10 Configure the Pick Settings ... 43
8.11 Teach Pick Z and Posture ... 44
8.12 Calibration & Test .. 45
8.13 Create the Part Feeding Process Starting Program 47
8.14 Create the PF_Robot Callback Function ... 48
8.15 Check Robot Operation ... 50

Software

1. Introduction 53
1.1 Part Feeding Software Configuration .. 53
1.2 Part Feeding Projects .. 57
1.3 SPEL Programming ... 60

2. Part Feeding GUI 71
2.1 System Configuration .. 71
2.2 Part Wizard .. 74
2.3 Part Feeding Dialog ... 84
2.4 Calibration&Test .. 96
2.5 [File] Menu ... 117

3. Part Feeding SPEL+ Command Reference 118
PF_Abort .. 119
PF_AccessFeeder.. 120
PF_ActivePart .. 122
PF_Backlight .. 123
PF_BacklightBrightness ... 124
PF_Center .. 125

Table of Contents

Part Feeding 7.0 Introduction & Software Rev.10 v

PF_CenterByShift .. 126
PF_Flip .. 127
PF_Info Function ... 128
PF_InitLog ... 129
PF_IsStopRequested Function ... 130
PF_Name$ Function ... 131
PF_Number Function .. 132
PF_Output ... 133
PF_OutputOnOff ... 135
PF_PurgeGate .. 136
PF_PurgeGateStatus Function ... 137
PF_Purge Function ... 138
PF_QtyAdjHopperTime Function .. 140
PF_QueAdd ... 142
PF_QueAutoRemove .. 143
PF_QueAutoRemove Function ... 144
PF_QueGet Function .. 145
PF_QueLen Function .. 146
PF_QueList.. 147
PF_QuePartOrient ... 148
PF_QuePartOrient Function .. 149
PF_QueRemove .. 150
PF_QueSort... 151
PF_QueSort Function.. 152
PF_QueUserData .. 153
PF_QueUserData Function ... 154
PF_ReleaseFeeder ... 155
PF_Shift ... 157
PF_Start .. 159
PF_Stop ... 161

4. Part Feeding Callback Functions 162
4.1 Common Items .. 162

PF_Robot .. 163
PF_Control .. 166
PF_Status .. 168
PF_MobileCam .. 172
PF_Vision .. 173
PF_Feeder... 175
PF_CycleStop ... 179

Table of Contents

vi Part Feeding 7.0 Introduction & Software Rev.10

5. Part Feeding Log File 180
5.1 Summary .. 180
5.2 Enabling the Log Function ... 180
5.3 Log File Format .. 180
5.4 Log Sample .. 188

6. Vision Sequences Used With the Part Feeding Option 189
6.1 Vision Calibration ... 189
6.2 Part Vision Sequence .. 190
6.3 Part Blob Vision Sequence .. 199

7. How to Adjust the Hopper 201
7.1 How to Adjust .. 201
7.2 How to Adjust the IF-80 Hopper .. 202

8. Errors that Occur While Using EPSON RC+ 203

9. Application Programming Examples 205
9.1 One Robot Per Feeder & One Part Per Feeder 205
9.2 One Robot – Multiple Parts ... 232
9.3 Two Robots – One Part ... 234
9.4 Two Robots – Multiple Parts .. 242
9.5 User Processes Vibration for Part via PF_Feeder Callback 249
9.6 Error Handling .. 256
9.7 Multiple Cameras ... 268
9.8 Improving Vision Results ... 277

Advanced

1. Multiple Parts & Multiple Robots 291
1.1 Specifications & Requirements for Multiple Parts & Multiple Robots 291
1.2 Key Concepts for Multiple Parts and Multiple Robots 293
1.3 Tutorials ... 298
1.4 Multi-Part / Multi-Robot Summary ... 308

2. Platform Types 309
2.1 Standard Platform Types ... 309
2.2 Custom Platforms .. 312
2.3 Platform Selection .. 316

Table of Contents

Part Feeding 7.0 Introduction & Software Rev.10 vii

Troubleshooting
Troubleshooting

Don’t know the IP address of the feeder
Feeder does not vibrate or vibration is weak
Parts in the feeder do not move smoothly or are separated unevenly
Hopper does not vibrate
Parts completely fill up the platform
Parts on the platform run out
Trouble questionnaire

Table of Contents

viii Part Feeding 7.0 Introduction & Software Rev.10

Introduction

Introduction 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 3

1. Introduction

1.1 Overview of Part Feeding
The Part Feeding option for EPSON RC+ 7.0 (“Part Feeding option” hereinafter) can be
used for easily developing a system in which parts are separated by a part feeder and a
robot picks up the parts from the feeder.

1.1.1 Background

Types of manufacturing are becoming more diversified in response to the growing trends
of shorter product life and multi-product diversification, “Just-in-time” manufacturing
(small lots with short turnarounds), and similar factors. In contrast, factors such as
continuously increasing wages, persons moving away from production site areas, and the
aging of the worker population make it increasingly difficult to perform manufacturing,
resulting in the issue of how to achieve the flexibility necessary to respond to
diversification.

Let’s look at part feeding as one element in creating automated production lines.
Part feeding is actually a key element for production equipment because you cannot
increase productivity beyond the part feeding capacity. Currently, the main method used
for part feeding is the comparatively inexpensive vibrating bowl feeder which provides
great diversity of use.
However, it is necessary to create bowls corresponding to the fed parts and, moreover, to
manually replace bowls for each part type, which requires the coordination of specialized
technical personnel for such purposes. These requirements make it difficult to respond to
diversification and short turnaround times due to the necessity for advanced engineering
capabilities and experience.

One device that resolves some of the shortcomings of a bowl feeder is the “intelligent
parts feeder” (“feeder” hereinafter) that was first put in use a few years ago. This device
allows you to easily handle various types of fed parts just by changing the feeder settings.
There are also products that combine this feeder with image processing that is capable of
identifying parts and a robot that handles the recognized parts.
However, these types of products require users to specify settings for themselves for
feeder adjustment and operation, image processing, and robot parts handling because
individual operations of the feeder can only be performed from the robot system. Time
and experience are necessary for comprehensively studying and designing part feeding.
For example, the cycle time greatly varies depending on the number of parts fed and the
position where the robot picks up parts. Failure to provide a proper design will prevent the
feeder from operating at full functionality and a high-performance level even if, for
example, a high-performance/high-functioning feeder is used, and thereby prevent any
improvement to the cycle time. These current feeder products cannot just be used right
away by any person.

Introduction 1. Introduction

4 Part Feeding 7.0 Introduction & Software Rev.10

1.1.2 Merits of the Part Feeding Option

The Part Feeding option is a product that brings innovation to these current part feeders.
Introducing this option provides the following merits.

- Complete Integration of Feeder, Vision System, and Robot
All the necessary elements for part feeding are provided in a single package. The
complete integration of the feeder, robot, and vision system requires less labor time at
introduction in comparison with having to prepare and evaluate each of these separately.

- Reduced Labor Time for Device Development/Startup

Feeder and vision system operations are performed automatically so that the user does
not have to perform any programming. The robot operation needs to be described by the
user, but this can be simply done by writing in a template code. The feeder, vision
system, and robot operations are subject to automatic simultaneous control so that device
development can be performed with minimal programming. It is simple to integrate into
whatever environment the user is currently using.
Feeder, robot, and vision system settings can be easily specified by using the GUI.

- Reduced Downtime and Running Costs

The Part Feeding option supports a great variety of parts. There is no need to change
equipment each time you change parts, thereby reducing production downtime.
There is also no need for newly producing equipment to reduce long-term running costs.

Introduction 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 5

1.1.3 Functions of the Part Feeding Option

Use of the following representative functions allows you to readily achieve full feeder
functionality and performance to create a highly efficient part feeding system.

 Feeder and Communication I/F
Communication programs for specifying feeder settings and performing control are
incorporated into this system.
You do not have to perform any programming for communication.

 Automatic Feeder Adjustment Function
This system includes a function that automatically adjusts feeder parameters (such as
vibration amplitude and time) according to the parts fed. Feeder adjustment can be
performed easily even by persons with no knowledge of feeders just by performing a few
simple procedures.

 Feeder Control Algorithms
Algorithms for controlling the feeder are included in the system. These algorithms take
into account reducing as much as possible the time required by the robot to pick parts in
order to provide efficient operation with no effort on the part of the user.

 Cycle Time Log Output Function for Ascertaining Robot and Feeder Operating
Status
This system includes a function to output the robot, feeder, and vision system operating
times to a file. This can be used for more efficient operation by changing the parameter
settings, and then obtaining the log to analyze operation. The Controller must be
connected to a PC with the EPSON RC+ installed in order to use this function.

 Multi-feeder operation
Up to 4 feeders can be connected to and controlled by a single controller. For T/VT
series, up to 2 feeders can be controlled. When you want to link multiple feeder
operations, you can control them with a single controller, so it makes programming
easier.

 Multi-part operation
Up to four different parts can be processed in a single feeder at the same time. The
number of feeders can be reduced, which results in lower costs and space savings. In
multi-part operation, up to two robots can be used per feeder.

 Purge operation
This system includes a built-in purge operation for parts on the feeder. When you want to
automatically eject a part from the feeder by switching parts, or when you want to use it
for damaged parts or overfeeding.
The IF-80 includes a platform for the purge operation and a container for storing the
ejected parts. (Optional)
The IF-240, IF-380 and IF-530, the ejection mechanism is provided by the customer.
This includes a door that opens and closes when the part is ejected, a mechanism to open
and close the door, a container to store the ejected part etc.

Introduction 1. Introduction

6 Part Feeding 7.0 Introduction & Software Rev.10

1.2 Required Basic Knowledge of EPSON RC+ 7.0
The Part Feeding option operates within the EPSON RC+ 7.0 environment.

Knowledge of the EPSON RC+ 7.0 development environment, Epson’s robots, and
EPSON RC+ 7.0 Option Vision Guide 7.0 is required for using the Part Feeding option.
The information in this manual is for persons with knowledge of the following items.

 General knowledge of the EPSON RC+ 7.0 project management and procedures for use

 Procedures for creating and editing SPEL+ programs using the EPSON RC+ 7.0

 Procedures for executing SPEL+ programs from the Run window

 Basic language structure, functions, and procedures for use of SPEL+

 Vision Guide 7.0 functions and procedures for use

1.3 Related Manuals

Refer to the following related manuals along with the Part Feeding option manuals for
using the Part Feeding option.

“EPSON RC+ 7.0 Option Part Feeding 7.0 IF-*** ”

***: Feeder robots (IF-80, IF-240, or IF-380/530)

This manual contains information on using each feeder robots.

“EPSON RC+ 7.0 Option Part Feeding 7.0 Hopper IF240, 380, 530”

This manual contains information on using hopper.

EPSON RC+7.0 User's Guide
This manual contains information on using the EPSON RC+ Robot Control System.

SPEL+ Language Reference Manual
This manual contains a complete description of all commands for the SPEL+ language.

Each Robot Manual
Each robot manual contains information on our robots.

Introduction 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 7

1.4 Symbols Used in this Manual
In this manual, important matters are shown with the symbols below. Each symbol is
described below.

WARNING

This symbol indicates that a danger of possible serious injury or
death exists if the associated instructions are not followed
properly.

WARNING

This symbol indicates that a danger of possible harm to people
caused by electric shock exists if the associated instructions are
not followed properly.

CAUTION

This symbol indicates that a danger of possible harm to people or
physical damage to equipment and facilities exists if the
associated instructions are not followed properly.

 The “NOTE” sections describe important information to be
followed for operating the Robot system.

 The “TIP” sections describe hints for easier or alternative
operations.

NOTE

TIP

Introduction 2. Safety

8 Part Feeding 7.0 Introduction & Software Rev.10

2. Safety
Be sure to read this manual before use and operate the product accordingly in the proper
manner.
After reading this manual, store it in a readily accessible location and refer to it whenever
you have any questions or doubts.

2.1 Safety Precautions

WARNING

■ Do not use this product for the purpose of ensuring safety.

■ Use this product according to the use conditions indicated in
this manual.
Use of this product in an environment that does not satisfy the
usage conditions can not only reduce product service life but
may also result in serious safety problems.

CAUTION

■ Purchase the feeder from an authorized distributor.

■ Purchase the camera and camera cable from an authorized
distributor.
Components not purchased from an authorized distributor are
not subject to warranty.

2.2 Robot Safety

Make safety the top priority when operating a robot and other automated equipment. The
Controller and EPSON RC+ 7.0 are equipped with many safety functions. Be sure to use
the various safety functions such as emergency stop and safety door input. Use these
safety functions when designing robot cells.

For safety information and guidelines, refer to the Safety section in the EPSON RC+ 7.0
Users Guide.

2.3 Vision System Safety

For vision system safety, refer to section 2.2 Safety Precautions in Vision Guide 7.0
Hardware & Setup manual.

2.4 Feeder Safety

For feeder safety, refer to following either manual of section “1.2 Safety precautions”.
 EPSON RC+ 7.0 Option Part Feeding 7.0 IF-80
 EPSON RC+ 7.0 Option Part Feeding 7.0 IF-240
 EPSON RC+ 7.0 Option Part Feeding 7.0 IF-380, IF-530

2.5 Hopper Safety

For hopper safety, refer to the following sections.
 EPSON RC+ 7.0 Option Part Feeding 7.0 Hopper IF240, 380, 530
 “1.1 Safety Instructions for Hopper”

 「1.2 Safety Instructions for Hopper Controller」

Introduction 3. Definition of Terms

Part Feeding 7.0 Introduction & Software Rev.10 9

3. Definition of Terms
The following terms are used in the manual as defined below.

Hardware

Term Explanation

Feeder Equipment that vibrates bulk parts to separate them for easy
transfer to by the robot.

Platform Component part of the feeder that serves as a parts-receiving tray.

Parts Parts handled by the robot. Provided by the user.

Add-in feeding Feeding method in which parts are added to the feeder from the
hopper in order to constantly maintain an optimal number of
parts in the feeder.

Run-out feeding Feeding method in which parts are fed from the hopper to the
feeder only after all the parts in the feeder have been fed.

Pick from anywhere All parts that can be picked among the separated parts in the
feeder are picked.

Pick from region Parts within the specified regions of the separated parts in the
feeder are picked. With the Part Feeding option, you can select
from four regions defined in the feeder from which to perform
picking.

User lighting Lighting provided by the user. Use this lighting if there are
parts that cannot be identified by the feeder backlight or you
want to identify the orientation of a part (such as front/back).

Hopper Equipment that supplies parts to the feeder platform.

Purging To purge the parts remaining on the feeder.

Purging Gate The gate that opens and closes to purge the parts remaining on
the feeder.
It is connected to the feeder, and opening and closing can be
controlled by commands.
It can be used to switch part types for high-mix low-volume
production and to purge defective parts.

Feeder calibration Procedures for adjusting the feeder parameters so that parts are
moved properly in the feeder.

Multi-feeder Multiple feeders can be connected to a single controller.
Up to four feeders can be supported with this option.

Multi-part Process multiple types of parts in a single feeder at the same
time. Up to four different parts can be supported with this
option.

Introduction 3. Definition of Terms

10 Part Feeding 7.0 Introduction & Software Rev.10

Software
Term Explanation

Pick Refers to the gripping of a part in the feeder by the robot.

Place Refers to when a part gripped by the robot is dropped or placed at
the specified position.

Part Feeding process This automatic process is built into the Part Feeding option to
provide automated vision system and feeder operation, and
invoke robot operations.

Callback function SPEL+ function invoked by the Part Feeding process under the
specified conditions. Function content is indicated by the user.
The processing specific to the user’s device is described
(example: picking and placing of parts by the robot).

Part coordinates
queue

Used for obtaining coordinates for parts in the feeder.
Coordinates are defined in the local coordinate system.

UPM Unit per minute
Number of parts handled by robot per minute.

Active part Main part of a multi-part operation. The feeder operation
parameters of this part are used.

Introduction 4. System Overview

Part Feeding 7.0 Introduction & Software Rev.10 11

4. System Overview
Use the Part Feeding option to easily create a system for picking and placing parts.
This section explains how to configure a system.

4.1 Overall Configuration

The figure below shows an example configuration of a system using the Part Feeding
option. Feeder IF-80 has built-in hopper .

The figure shows an example layout around the Manipulator.

Manipulator

Feeder

Camera

Part Place Location
(Pallet, Tray, etc.)

Introduction 4. System Overview

12 Part Feeding 7.0 Introduction & Software Rev.10

4.2 Feeder
Use of a feeder is necessary for this system. Be sure to prepare one to use.

The IF-80, IF-240, IF-380 or IF-530 can be used. No other feeder type is supported.

Multiple feeders can be controlled by one Controller.

Use a feeder purchased from Epson.
Use of a feeder not purchased from Epson can result in inability to connect with the
Controller and failure to achieve full functionality.

4.3 Robot

Use of a robot is necessary for this system. Be sure to prepare one to use.

4.3.1 Manipulator

A SCARA or 6-axis Manipulator that can be connected to an RC700 series or RC90 series
Controller or T/VT series can be used. X5 series and PG are not supported.

One Manipulator can only be controlled by one Controller. You cannot use one Controller
for two or more Manipulators.

4.3.2 End Effector

An end effector is used to grasp parts. There are various types such as those using suction
by vacuum/pressure and those using a chuck mechanism. Select one appropriate to your
parts and needs.

Epson does not manufacture or distribute any end effectors. Be sure to prepare proper
hands for use.

4.4 Vision System

A vision system is necessary for this system. Be sure to prepare one to use.

4.4.1 Vision System

You can use any of the following vision systems.

- PC Vision PV1 (For required specifications, refer to 4.6. PC.)

- Compact Vision CV2-SA, CV2-HA (Firmware Ver. 3.0.0.0 or later)

CV1 or CV2-S/H/L is not supported.

Vision systems of other manufacturers are not supported.

Introduction 4. System Overview

Part Feeding 7.0 Introduction & Software Rev.10 13

4.4.2 Camera

You can use any cameras that can be connected to the vision system.

Be sure to provide one camera to find parts in the feeder. The camera will be installed
either as a fixed downward camera or a mobile camera mounted to a movable axis of the
robot.

You can also add other cameras such as one facing upward for correcting the position of
grasped parts or one for positioning parts in their place position.

4.5 Lighting

Lighting is necessary for accurately identifying parts on the platform.

You can use either or both of the following lighting methods.

- Backlight incorporated into feeder

- User’s own custom lighting (I/O control, Ethernet control, etc.)

4.6 PC

A PC is required for the following tasks.

- Viewing/Editing of Part Feeding option settings

- Feeder calibration

- SPEL+ programming

- Log retrieval

The Part Feeding process operations can be performed without connecting a PC.
Required PC specifications are as follows.

- When using CV: Must be possible to install the EPSON RC+

- When using PV: Per 4.3.1 System Requirements of the Vision Guide 7.0 Hardware &
Setup manual

4.7 Hopper

The hopper supplies parts to the feeder. It is an optional device.

Hoppers purchased from Epson can be connected to the feeder.

Connect any hopper you provide to the Controller via I/O or Ethernet.

Feeder IF-80 has built-in hopper.

Introduction 5. Hardware

14 Part Feeding 7.0 Introduction & Software Rev.10

5. Hardware

5.1 Check Included Items
Depending on your specific purchase order, the following items are included for the Part
Feeding option.

After the items arrive, please check that all items are included and there is no damage to
the items.

- Part Feeding license document (There are cases in which it may be shipped separately.)

- Feeder with embedded Backlight

- Platform

- Power cable for the feeder

- Ethernet cable

Optional items are as follows:

- Hopper

- Hopper controller

- Hopper attached cable

- Others Optional items

Introduction 5. Hardware

Part Feeding 7.0 Introduction & Software Rev.10 15

5.2 System Configuration
5.2.1 Configuration Example

The illustration below shows the system configuration using the PartFeeding option.
Feeder IF-80 has built-in hopper .

Ethernet hub

Feeder

Hopper Controller
(Option)

Hopper
(Option)

Hopper auxiliary cable
(Option)

Ethernet cable
(Requires
preparation by users)

Hopper auxiliary cable
(Option)

Vision System
CV2-SA, CV2-HA

or
PV1

PC

Robot Controller

Manipulator
SCARA or 6-Axis

T, VT series
(Controller

+
Manipulator)

¥

Up to four feeders can be installed in one controller.
For T/VT series, up to two feeders can be controlled at the same time.

In the case of multi-part operation, up to two manipulators can be installed per feeder.

Ethernet should be connected using Ethernet hub.
Use the following vision system.

Compact Vision
CV2A series

CV2-HA (Firmware Ver.3.0.0.0 or later)
CV2-SA (Firmware Ver.3.0.0.0 or later)

PC Vision PV1
CV1 or CV2-S/H/L is not supported.

Vision systems of other manufacturers are not supported.

Introduction 5. Hardware

16 Part Feeding 7.0 Introduction & Software Rev.10

5.2.2 Considerations for Configuration Selection

- Available manipulators for the Part Feeding option are SCARA and 6-axis robot series.
This option does not support PG and X5 series robots.

- When using PV (PC Vision), make sure not to perform the feeder’s communication
and the camera’s communication by the same network port. If the feeder’s
communication and the camera’s communication are performed simultaneously, it may
affect imaging or feeder operations. We recommend adding the network card to PC or
using the network card with multi-port and connect the camera and the network port
directly.

- No error occurs even if you connect more than one robot controller to a feeder.
However, pay attention to IP address assignment and be careful not to connect more
than one robot controller to a feeder when you set the network.

- Up to two hoppers can be installed in one feeder. However, it is not possible to control
two feeders at the same time.

- It is possible to display CAD data of the feeder or hopper on Simulator. The CAD data
file is in following folder.
C: \EpsonRC70\Simulator\CAD\PartFeeder

5.2.3 Select a Camera Lens

Select a lens and an extension tube based on field of view and working distance by using
the Vision Guide attached camera select tool.

Camera select tool:
C:\EpsonRC70\Tools\CamSelectTool\CamSelectTool.exe

Introduction 5. Hardware

Part Feeding 7.0 Introduction & Software Rev.10 17

5.3 Installation and Adjustment
5.3.1 Manipulator and Controller

For installation of manipulator, refer to each manipulator’s manual. Install the
manipulator properly according to Robot System Safety manual.

Please make or prepare a robot hand (gripper).

For installation of the controller, refer to the controller manual.

5.3.2 Camera and Lens

Install the downward facing camera so that it can display the entire feeder platform. We
recommend using a fixed downward camera. Support for a mobile camera is also
provided.

Camera (fixed downward)

Platform

Feeder

Position to place

The feeder’s longitudinal direction and the horizontal direction of the camera’s field of
view (green squares below) need to be matched. Otherwise, the PartFeeding system will
not work properly. You can set the feeder regardless of its direction.

Correct

Wrong

Introduction 5. Hardware

18 Part Feeding 7.0 Introduction & Software Rev.10

When using a mobile camera, teach (create a point data) a position where the feeder’s
longitudinal direction and the horizontal direction of the camera’s field of view match as
shown above. Then, set it as the imaging position.

Adjust focus and aperture of the camera lens so that the camera can recognize the part
clearly and the brightness of the platform will be uniform when taking the part image.

5.3.3 Feeder and Hopper

Please note the following points of installation.

- Mount on a horizontal surface.

- Mount on a solid underground.

- Fasten tightly with four M6 screws.

If the installation surface is not flat and level, or stiffness of the mounting base is low,
parts will not be dispersed fully. The number of the parts that can be picked up decrease
and it may result in lowering the cycle time.
For details on the installation, refer to the following each feeder manuals.
 EPSON RC+ 7.0 Option Part Feeding 7.0 IF-*** “3. Environment and Installation”

***: Feeder robot (IF-80, IF-240, or IF-380, IF-530)

Install the hopper on the flat and level surface. Securely fix it on the base with high
stiffness.
Be careful not to set the hopper over the feeder platform. By making the platform access
as wide as possible, the number of the parts that can be picked up increase and the cycle
time improves.
For more details on installation or adjustment, refer to following manual.

 EPSON RC+ 7.0 Option Part Feeding 7.0 Hopper IF240, 380, 530

「2.4 Names of each Part and Outer Dimension, Mounting Dimension」

Set the hopper so that the position to feed parts on the feeder faces to the position to place.
Feed the parts to the red shaded area in the following examples. By setting the hopper as
shown below, you can use the parallel feeding function and the cycle time is improved.

Introduction 5. Hardware

Part Feeding 7.0 Introduction & Software Rev.10 19

Alignment example 1

Position to place Hopper Feeder

Alignment example 2

Position to place Hopper

Feeder

If a fed part rolls into the area where the robot picks up the parts, it may result in a bad
effect on the pick-up operation. To prevent this, the following alignment is effective.

Alignment example 3

Position to place

Hopper

Feeder

When feeding the parts from the hopper, feeding the proper amount to the proper position
is important. Therefore, please consider the following:

- To adjust the part feeding amount, make a dam structure on the hopper.

- To control the part feeding position, make a guide at the end of the hopper.

Introduction 5. Hardware

20 Part Feeding 7.0 Introduction & Software Rev.10

5.4 Electric Wiring
5.4.1 Cautions for Power Supply

The following describes cautions for the power supply to the robot controller, CV2A, feeder,
and hopper.

According to JIS B 9960-1(IEC 60204-1) Safety of machinery - Electrical equipment of
machines - 5.1 Incoming supply conductor terminations, we recommend connecting electric
equipment of the machine designed by the user to a single power source. When using a
different power source from the input power source on the particular part such as a feeder
or a hopper, we recommend supplying the power from an electric transformer or a converter
inside the electric equipment of the machine.

When connecting to single AC200V power source, the following is an example of electronic
equipment which is designed by user. For more details, refer to JIS B 9960-1(IEC 60204-
1) Safety of machinery -Electrical equipment of machines-.

Attached cable

hopper controller hopper

Attached cable

Robot controller

CV2A, HA

Requires preparation by users

Power source
AC200V-240V

Single phase 50/60Hz

Circuit breaker

Circuit breaker
and

AC/DC converter
AC200V→DC24V

Circuit breaker
and

Transformer
AC200V→

hopper electric
voltage

(AC100V,AC200V,
AC220V)

Attached
cable

Circuit breaker
and

Transformer
AC200V→DC24V

Feeder

Leakage circuit breaker

Attached
cable

Introduction 5. Hardware

Part Feeding 7.0 Introduction & Software Rev.10 21

5.4.2 Power Wiring for the Feeder

For details on wiring, refer to following manual.
 EPSON RC+ 7.0 Option Part Feeding 7.0 IF-*** “3.6 Connecting Cable”

***: Feeder robot (IF-80, IF-240, or IF-380, IF-530)

We recommend designing a circuit which turns OFF the power of the feeder and the
hopper by external safety relay when holding down the emergency stop switch. Refer to
Controller Manual “Emergency” - Circuit Diagrams.
Reference diagram is as follows:

5.4.3 Power wiring for the Hopper

For more details on wiring, refer to following manual.
 EPSON RC+ 7.0 Option Part Feeding 7.0 Hopper IF240, 380, 530

“1.2.3 Safety Instructions of AC Power Cable”

5.4.4 Robot Wiring

Refer to manuals of each robot and controller to perform the wiring.

5.4.5 Camera Wiring

Refer to the following manual to perform wiring.
 EPSON RC+ 7.0 Option Vision Guide Hardware

Introduction 6. Operation Overview

22 Part Feeding 7.0 Introduction & Software Rev.10

6. Operation Overview
This section provides an overview of the operations of the Part Feeding option.

6.1 Part Feeding Process

The Part Feeding process is the process of operations incorporated into the Part Feeding
system in which the vision system and feeder operations are automatically controlled.
You can start the Part Feeding process by executing the PF_Start command from your
program.

The Part Feeding process is as shown below.

 Start

Identify parts in the feeder
- Lighting operation
- Vision system execution

Process parts
- Feeder is operated
- Hopper is operated (PF_Control callback function)

Robot is moved
- Parts coordinates queue is generated
- Pick/Place operation (PF_Robot callback function)

Is part available for pick up?

1. Identify parts in the feeder
Use the vision system to check the quantity and distribution of parts on the platform.

2. Process parts
The feeder is controlled and parts are moved in order to make it easier for them to be
grasped by the robot. When the parts are low in quantity or there are none remaining,
the PF_Control callback function is invoked to supply parts from the hopper.

3. Robot is moved
A parts coordinates queue (list of coordinates of parts in the feeder) is generated.
The PF_Robot callback function is invoked to perform pick/place of parts.

The Part Feeding process can be stopped by invoking the PF_Stop command from your
program.

Introduction 6. Operation Overview

Part Feeding 7.0 Introduction & Software Rev.10 23

6.2 Supplying Parts to the Feeder
The following methods are used for supplying parts to the feeder.

- Using the hopper

- Manually supply

6.2.1 Quantities of Supplied Parts

The quantity of parts supplied to the platform is an important element in determining
operation cycle time.

- An excessively large quantity of parts negatively affects the cycle time due to parts
overlapping and the need to vibrate the feeder numerous times.

- An excessively small quantity of parts also negatively affect the cycle time because
you have to supply parts to the platform numerous times.

Accordingly, there is an ideal quantity of parts to be supplied (quantity of parts on the
platform after feeder operation). This quantity can be calculated during feeder calibration.

The three methods (timing-related) described below can be used for supplying parts to the
feeder.

1. Run-Out Feeding
Parts are supplied from the hopper to the feeder only after all the parts in the feeder have
been fed.

We recommend using this method for parts that are sensitive to vibration (easily affected
by vibration) because retention time of parts in the feeder maintains fairly uniform.
However, this method increases the cycle time because it reduces the average quantity of
parts that can be retrieved by a robot during one feeder operation.

Supply Pick & Place

Introduction 6. Operation Overview

24 Part Feeding 7.0 Introduction & Software Rev.10

2. Add-In Feeding
Parts are additionally supplied from the hopper when all the parts in the feeder that can be
retrieved are depleted.

Cycle time is shortened because the average quantity of parts that can be retrieved by a
robot during one feeder operation is relatively large, thereby improving efficiency.
However, this method cannot be used for parts that are sensitive to vibration because the
parts retention time can be long.

Supply Pick & Place

3. Parallel Feeding
This method is used together with a function for specifying the pick locations of parts.

While the robot is picking parts, parts are added to the region on the opposite side of the
parts picking position. This method decreases the cycle time because the average quantity
of parts that can be retrieved by a robot during one feeder operation is increased.
Cycle time is further reduced because both the hopper and robot can operate in parallel
(simultaneously). However, this method cannot be used for parts that are sensitive to
vibration because some parts remain in the feeder for a long period of time. It is necessary
to write your own program so that the hopper and robot can operate in parallel.

Separation Shift

Pick & Place Pick & Place

Introduction 6. Operation Overview

Part Feeding 7.0 Introduction & Software Rev.10 25

6.3 Feeder Operation
The Part Feeding option is executed by selecting feeder operation automatically depending
on the conditions of the parts in the feeder. This makes it easier for the robot to grasp
parts.

Feeder operations are described below. Explanatory drawing shows the outline.
It might be different from actual movement.

6.3.1 Flip and Separation

Parts are spaced out and flipped appropriately so that they can be easily grasped by the
robot.

Flip and Separation

Supply Back Front

There may be an operation to move parts to the center before flip and separation.
This is called centering.

6.3.2 Shift

Moves all parts in one direction while maintaining the spacing (distribution) of the parts.

Moving parts closer to the place position reduces the robot movement distance and
improves the cycle time.

Shift

Shift can be performed either forwards (closer to the pick position) or backwards (further
from the pick position).

Introduction 6. Operation Overview

26 Part Feeding 7.0 Introduction & Software Rev.10

6.4 Part Pick Positions on Platform
The following two positions are available for parts picked by the robot.

To determine which position, pick all or pick some, is most efficient for your system, we
recommends first performing actual operation and retrieving the log because the efficiency
of the position used depends on your equipment configuration such as the parts, end
effector, and hopper you are using.

6.4.1 Pick From Anywhere

Picking is performed for all parts on the entire surface of the platform.

Select this if parts are large for the size of the platform (e.g. approx. 2 cm2 or more for the
IF-240).

6.4.2 Pick From Region

Picking is performed in a region near the place position.

Using this method, shifting of parts to the picking region is performed automatically
according to the distribution of parts. Robot operation in parallel with parts supply is
possible within any region where picking is not performed (this is performed by user's own
program). Use of this function generally reduces the robot cycle time in comparison with
the pick all method.

6.5 Preventing End Effector and Platform Interference

To prevent physical interference of the end effector by the platform, it is necessary to
specify the region where it is possible to pick parts in the feeder so that it falls within the
outer circumference of the platform. That distance can be easily specified using the Part
Feeding option. Parts that are detected to be too close to the feeder tray are not added to
the part queue for pick up.

Introduction 7. Parts

Part Feeding 7.0 Introduction & Software Rev.10 27

7. Parts
This section explains the parts that can be used with the Part Feeding option.

Epson has created a system for evaluating whether your parts are compatible with this Part
Feeding option at our authorized distributors. For details, please contact an authorized
distributor.

7.1 Conditions for Usable Parts

Parts that can be used with the feeder are subject to the conditions indicated below.

7.1.1 Vision System Compatibility

It is necessary that parts can be correctly identified by the vision system.

- It may not be possible to identify the shape of parts made of transparent plastic because
light passes through them. Such cases can possibly be resolved by changing the
lighting to outside the visible spectrum or by using reflected lighting.

- It might not be possible to identify parts by front/back due to their shape. Such cases
can possibly be resolved by adding reflected lighting.

7.1.2 Size and Weight

Larger part size reduces the quantity of parts that fit on the platform (when spread out
across the platform with no overlapping). If this quantity is small, the number of feeder
operations increases resulting in a relative reduction of the robot operating time, thereby
negatively affecting cycle time. The ideal quantity of parts is 50 pieces or more to be
loaded to the feeder.

The gross weight of parts (Weight of one part × Quantity of parts that can fit on the
platform with no overlapping) must be less than the load capacity of the feeder.
Exceeding this weight overloads the feeder, negatively affecting the ability to separate
parts and the cycle time, as well as reducing the service life of the feeder.

For the feeder load capacity, refer to the corresponding feeder manual.

7.1.3 Materials and Characteristics

- Parts made of flexible or light material are difficult to use.
Examples: Paper and fibrous materials

- Parts easily damaged or deformed by vibrated parts that generate dust when rubbed are
difficult to use.
Examples: Parts made of hardened powder or that are painted

- Parts that are sticky or leaking liquid are difficult to use.
Examples: Food products

NOTE

Introduction 7. Parts

28 Part Feeding 7.0 Introduction & Software Rev.10

7.1.4 Parts Shape and Other

- It is difficult to pick spherical parts because they do not remain still in the feeder.
Examples: Bearing balls

- Parts that easily become entangled are difficult to separate.
Examples: Coil Springs

- It may not be possible to identify front/back of parts with different cross-sectional
shapes made of material that is not transparent by using transmitted light. The
following are some examples of such parts.

Parts with different external shape of plane surfaces can be selected by front/back

Plane

Correct

Plane

Wrong
Correct Wrong

Wrong

Parts with different cross-sectional shapes cannot be selected

Cross
Section

Plane

Cross
Section

Plane

Correct Wrong

Front

Back

- The best part to use when picking up parts by use of a suction system is one that has

the suction surface that is parallel to the feeder base where the suction pad can move
straight downward when picking up the part, and that secures the surface area for the
suction pad. The following are some examples of such parts.

Parts that prevent the suction
surface being parallel to the
feeder base

If suction position is
an uneven surface

Ball

- If using a suction method for feeding, it is best if the parts do not have any differences

in their center of gravity. The following are some examples of such parts.

Parts that cannot ensure a
smooth surface
(If using suction for feeding
parts)

Parts that prevent a
sufficient suction surface Parts where light passes

through from below

Correct Wrong

Introduction 7. Parts

Part Feeding 7.0 Introduction & Software Rev.10 29

- If used in an assembly process, it is best to provide some measure to prevent the part
position from becoming misaligned after being picked up. This measure can consist of
making guide holes in the parts and placing a pin on the end effector to prevent the
position from becoming misaligned. Other measures consist of installing an upward-
facing fixed camera to align part position after picking.

7.2 Examples of Parts

Some examples of parts that can be used with the Part Feeding option are shown below.

Parts No. 1 to 3 are appropriate for the IF-240.
No. 4 and 5 are not appropriate for IF-240 because they are too large and heavy.
No.6 and 7 are not appropriate for IF-240 or IF-380 or IF-530 because they are too small
and light.

No Photo Characteristic Size [mm] Weight [g] Comment

1

Metal press part 10 × 10 × 0.2 0.088 IF-240 is suitable

2

Metal press part 11 × 5.5 × 0.2 0.029 IF-240 is suitable

3

Plastic part 10 × 9 × 2.1 0.127 IF-240 is suitable

4

Nylon connector 21 × 29.9 × 21 7.1 IF-380 is suitable

5

Long nut 36 × 11 × 9.5 14.0
IF-380 or IF-530 are
suitable

6

IC 5 × 4.4 × 1.5 0.082 IF-80 is suitable

7

Metal Bush ø4 × 1 0.102 IF-80 is suitable

Note that No. 1 and 2 cannot be identified front/back by use of backlight only.

No. 3 can be identified front/back by use of backlight only.

Introduction 7. Parts

30 Part Feeding 7.0 Introduction & Software Rev.10

7.2.1 Relation of the Quantity of Parts Loaded to the Feeder and the
Quantity Detected by Image Processing

The relation between the quantity of parts loaded to the feeder and the quantity detected by
image processing is upward-convex shaped.

It is not possible to detect all parts in the feeder if the parts are such that they contact
neighboring parts and overlap each other when loaded. The graph varies depending on
how easily the parts contact neighboring ones or how easily they become overlapped. You
can use the Part Feeding option to apply the optimal quantity of parts to load by use of
calibration based on testing performed by Epson.

The graph shows the relation between the quantity of parts loaded to the feeder and the
quantity detected by image processing for parts No. 1 and 3.

Be sure to pay attention to the facts that not all parts loaded to the feeder can be detected,
and that the quantity detected changes depending on the quantity loaded.

20

40

60

80

100

120

140

50 100 150 200 250 300 350
Quantity Loaded to Feeder

No.1 No.3

Optimum number

Q
ua

nt
ity

 D
et

ec
te

d

Introduction 7. Parts

Part Feeding 7.0 Introduction & Software Rev.10 31

7.2.2 Relation of Quantity Loaded to Feeder and Average UPM

The average quantity of parts picked up for a certain amount of time when performing
pick-up operation is the average Units Per Minute (UPM). UPM is number of parts
handled by robot per minute.

The graph shows the relation between the quantity of parts loaded to the feeder and the
average UPM for parts No. 1 and 3. Both the graphs for parts No. 1 and 3 are upward-
convex shaped. Values for the vertical axis are not indicated because the average UPM
varies depending on the robot speed, acceleration, and movement amount. In addition to
robot operating conditions, it is important to keep in mind that the UPM changes
depending on the quantity of parts loaded to the feeder and that there is an optimal
quantity of parts to load to the feeder to increase the UPM.

0 50 100 150 200 250
Quantity Loaded to Feeder

No.1 No.3

Optimum number

Fe
ed

er
 S

ys
te

m
 A

vg
. U

PM

Introduction 7. Parts

32 Part Feeding 7.0 Introduction & Software Rev.10

7.2.3 Relation Between Feeder Operation and UPM

The operation timing of each operating device (Robot, Vision & Feeder, and Hopper) is
plotted in the figure below with time plotted along the horizontal axis. When operation
starts, Vision & Feeder operation detect there are no parts in the feeder, resulting in the
hopper being moved to load parts to the feeder.

O
pe

ra
tin

g
D

ev
ic

es

Vision
&

Feeder

After this, the feeder operates, parts are separated, detection is performed by the vision
system, and the robot then picks up the parts. When all parts that can be picked up are
gone, parts are once again separated and detected by Vision & Feeder operation. After
that, the robot operates again.

The quantity of parts in the feeder decreases as Vision & Feeder operation and Robot
operation are repeated. The hopper is operated to feed parts according to the timing for
hopper operation corresponding to the specified threshold value. The graph presupposes
parallel feeding operation.

UPM is zero (= 0) during Vision & Feeder operation because Vision & Feeder operation
and Robot operation are repeated. The UPM while the robot is operating is a value larger
than the average UPM indicated in section 6.2.2. Note that the average UPM is the hourly
average of the momentary UPM (= 0) while the Vision & Feeder are operating and the
momentary UPM while the robot is operating.

Also note that the length of the blue lines of Robot operation in the figure are not uniform.
This is because the quantity of parts that can be picked up differs depending on the
separation status of parts in the feeder and because repeating pick-up operation reduces the
quantity of parts in the feeder and the parts that can be picked up.

It is necessary to maintain a uniform quantity of parts in the feeder in order to stably
perform part feeding.

Introduction 7. Parts

Part Feeding 7.0 Introduction & Software Rev.10 33

7.2.4 Relation Between Quantity of Parts in Feeder and Hopper
Operation

For stable part feeding, the graph below shows the momentary UPM and quantity of parts
in the feeder at each feeder operation when performing run-out feeding from the hopper
and when performing parallel feeding of an optimal 180 parts with 90 parts loaded in the
hopper.

M

om
en

ta
ry

 U
PM

Momentary UPM: Parallel Feeding
Parts Quantity: Parallel Feeding

Momentary UPM: Run-Out Feeding
Parts Quantity: Run-Out Feeding

In run-out feeding, parts are not loaded from the hopper until the parts run out, resulting in
the momentary UPM gradually decreasing, and when there are no more parts, parts are
then supplied from the hopper and the momentary UPM returns to the original value.

In parallel feeding, the hopper operates when the feeder operates two to four times, and
this reduces variations in the momentary UPM as the quantity of parts in the feeder does
not drop below the lower limit.

Introduction 8. Let’s Use the Part Feeding Option

34 Part Feeding 7.0 Introduction & Software Rev.10

8. Let’s Use the Part Feeding Option
Let’s configure the system that picks and place parts, using the Part Feeding option.

8.1 Workflow

The workflow is as follows.

Enable the Part Feeding Option Key

Configure feeder communications

Create a Part Feeding project

Create a new part

Configure the lighting settings

Create the Vision sequences

Configure the Vision settings

Configure the pick settings

Teach pick Z and posture

Perform the part calibration

Create the Part Feeding process starting program

Create the PF_Robot callback function

Check robot operation

Check "7.2 Requirements"

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 35

8.2 Requirements
8.2.1 Device Configuration

- A SCARA robot is used as the manipulator.
The required operation for 6-axis robots stays the same as that for SCARA robots.
A hand suited for the parts is connected.

- A camera fixed downward is used.

- The feeder’s backlight is used.

- A hopper is not used.

Manipulator

Feeder

Camera fixed
downward

Part Place Location
(Pallet, Tray, etc.)

8.2.2 Connection and Adjustment

- EPSON RC+ is connected with the controller.

- The manipulator is connected with the controller.

- The feeder is connected with the controller.

- Vision Guide (PV or CV) is connected with the controller.

- The manipulator, camera, and the feeder are installed correctly.

- The adjustments of position, focus, and brightness have been completed.

8.2.3 Part

- The part ID is “1”.

- The part is simply shaped and its surface features are the same on both sides.
Parts are detected by the Vision’s Blob object (detection using area values).

Introduction 8. Let’s Use the Part Feeding Option

36 Part Feeding 7.0 Introduction & Software Rev.10

8.2.4 Settings

- The manipulator is registered in the system settings.

- The calibration for the Vision Guide has been completed.

- The tool setting for a robot has been completed.

8.2.5 Others

Handling of the errors described in the template code for the callback functions is
implemented.

8.3 Enable the Part Feeding Options Key

To use the Part Feeding functions, the Option key for Part Feeding must be enabled. The
Option key must be purchased from your Epson dealer.

(1) In EPSON RC+ 7.0, select Menu-[Setup], then select [Options] to open the Options
dialog box.

(2) Copy and paste or write down the [Controller Options Key Code].

(3) Call your distributor to purchase the enable key code for the desired option.

(4) You will receive a code to enable the option from your distributor.

(5) Select the option to be enabled and select the <Enable> button.

(6) Enter the code you received from your distributor.

The key code is case sensitive.

(7) Click the <OK> button.

NOTE

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 37

8.4 Configure Feeder Communications
(1) In EPSON RC+ 7.0, select Menu-[Setup] to open the [System Configuration] dialog

box.

(2) In the tree, select [Controller]-[Part Feeders]-[Feeder 1].

(3) Change the settings for the following items.

Items How to make settings
Enabled Check the box.
Model Select a feeder type which

connected to the controller.
Name Enter feeder name
IP Address Enter 192.168.0.64
IP Mask Enter 255.255.255.0
Backlight installed Check the box.

(4) Click the <Apply> button when the settings for all the items have been completed.

When the IP address of the feeder is changed, refer to the following section.
Software 2.1.1 Part Feeding Page

Though 4 feeders can be configure to the T/VT series controller, the number of feeders
that can be controlled at the same time is up to 2.

8.5 Create a Project for Part Feeding

In EPSON RC+ 7.0, select Menu-[Project]-[New] and create a new project.

Otherwise, open an existing project and make a copy of it.

TIP

TIP

Introduction 8. Let’s Use the Part Feeding Option

38 Part Feeding 7.0 Introduction & Software Rev.10

8.6 Create a New Part
(1) In EPSON RC+ 7.0, Select Menu-[Tool] to open the [Part Feeding] dialog box.

Click the <Add> button.

(2) The Part Wizard appears.

(3) Follow the steps of the Part Wizard to complete the part setting. For details, refer to
the Software 2.2 Part Wizard.
The Part Wizard configures the basic part setup. For this tutorial, exit the wizard
configure the settings.

When the first part is created in a project, a program file named PartFeeding.prg and an
include file named PartFeeding.inc are added to the project automatically.

TIP

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 39

8.7 Configure the Lighting Settings
(1) In the tree on the left, click [Lighting].

(2) Click the <Turn On> button to turn on the backlight of the feeder.

8.8 Create the Vision Sequences

This section describes how to create two Vision sequences.

Be sure to create a Vision sequence for part detection and another Vision sequence for
feeder calibration.

8.8.1 Creating a Vision sequence for Part Detection

Create a Vision sequence for part detection.

(1) Click the <Vision Guide>button to display the Vision Guide dialog.

(2) Place a part on the feeder.

Introduction 8. Let’s Use the Part Feeding Option

40 Part Feeding 7.0 Introduction & Software Rev.10

(3) Create a new Vision sequence. Set the property as follows.

Properties How to make settings

Name Set an adequate name. (Example: VS_Part1)
Calibration Make settings for Vision calibration.
ExposureTime Make the settings, bearing the following in mind.

- The part is clearly identifiable.
- The brightness of the center of the platform and that of the

surrounding area are almost the same.

(4) Add a Blob object. Make the settings for the properties as follows.

Properties How to make settings

SearchWindow Set the detection area to the entire platform.

NumberToFind Set to “All.”
MaxArea Set a value as 1.3 times as the part’s Area value.
MinArea Set a value as 0.7 times as the part’s Area value.
ThresholdHigh Make the setting so that the part will be certainly detected

and the dark areas outside the platform will not be
mistakenly detected.

If the part is not detected correctly, readjust the other properties and the properties of the
Vision sequences.

(5) On completion of the settings, click the <Run> button and check that the part is
identifiable correctly and the background is not mistakenly detected.

(6) Select Vision Guide menu-[File]-<Save> button to save the settings.

For details on creating for a Vision sequence for part detection, refer to the following
section.
 Software 6.3. Parts Detection Vision Sequence

TIP

TIP

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 41

8.8.2 Create a Vision Sequence for Feeder Calibration

(1) To create a new Vision sequence, set the properties as follows.

Properties How to make settings

Name Set an adequate name. (Example: VS_Part1_Cal)
Calibration Set this for Vision.
ExposureTime Set this to identify the part clearly.

(2) Add a Blob object. Set the properties as follows.

Properties How to make settings

SearchWindow Set the detection area to the entire platform.

MaxArea Leave as the default value.
MinArea Set to around 0.9 times that of the parts area.

Use the following procedure to confirm the size of the parts area.
1. Turn on the feeder backlight
2. Place several parts on the platform so that they do not overlap
3. Run the vision sequence
4. The parts area is the average area for Blob results

NumberToFind Set to “All.”
ThresholdHigh Make the setting so that the part will be certainly detected and the

dark areas around the platform will not be mistakenly detected.

If the part is not detected correctly, readjust the properties and the properties of the Vision
sequences.

TIP

Introduction 8. Let’s Use the Part Feeding Option

42 Part Feeding 7.0 Introduction & Software Rev.10

(3) When you have finished the settings, click the <Run> button and check that the part
is identifiable correctly and the background is not mistakenly detected.

(4) When you have confirmed the settings are correctly made, select Vision Guide menu
- [File] - <Save> button to save the settings.

(5) Close the Vision Guide screen.

For details on creating for a Vision sequence for Feeder Calibration, refer to the following
section.
 Software 6.2. Feeder Calibration Vision Sequence

8.9 Configure the Vision Settings

(1) In the tree, click [Vision].

(2) Change the settings for the following items.

Items How to make settings

Part Vision
Sequence

Specify the Vision sequence created in the following
section.

7.8.1 Creating a Vision sequence for part detection.

Vision object
for front of part

Specify the Blob object included in the Vision sequence
created in the following section.

7.8.1 Creating a Vision sequence for part detection.

Part Blob
Vision Sequence

Specify the Vision sequence created in the following
section.

7.8.2. Creating Vision sequence for feeder calibration.

Part Blob
Vision Object

Specify the Blob object included in the Vision sequence
created in the following section.

7.8.2. Creating Vision sequence for feeder calibration.

(3) Click the <Apply> button.

TIP

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 43

TIP

8.10 Configure the Pick Settings
(1) In the tree, click [Pick].

(2) Change the settings for the following items.

Items How to make settings

Feeder Orientation

Select the orientation of the feeder installation viewed
from the camera. It is important to set this correctly so
the system knows the orientation of the feeder with
respect to the camera.

Pick Region
Select a position closest from the placing position.
Select “B” here.
The selectable items vary depending on the feeder.

(3) Click the <Teach> button.

Feeder Orientation: Choose either direction.

Select “Pick Region” closest from the placing position.

For the IF-240, the Pick Region can be selected from A to D.

For the IF-530, the Pick Region can be selected from A to B.

For the IF-80, the Pick Region “Anywhere” can only be selected.

Introduction 8. Let’s Use the Part Feeding Option

44 Part Feeding 7.0 Introduction & Software Rev.10

8.11 Teach Pick Z and Posture

(1) Place a part on the feeder.

(2) Move the robot by the Jog operation, etc. and bring the hand into contact with the
part on the feeder. In case of a hand with chuck mechanism, hold the part.

(3) Click the <OK> button.
The Z coordinate will be saved.

(4) In the [Pick] dialog box, click the <Apply> button.

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 45

8.12 Calibration & Test
(1) In the tree, click “Calibration”.

Then, click the < Calibrate & Test > button.

(2) The [Calibrate & Test] wizard starts.
Select [Part Area] tab.

(3) Put one part in the center of the platform.

(4) Click < Run > button.

(5) Next message displayed.
Click <Yes> button.

(6) Check the value displayed in the “Part Area”

(7) Click < Apply > button.

Following both Calibration (8) [Separate] ([Flip & Separate] when flip is enabled) and
(14) [Region] are optional. However, recommend running calibration.

(8) Select [Flip & Separation] tab.

NOTE

Introduction 8. Let’s Use the Part Feeding Option

46 Part Feeding 7.0 Introduction & Software Rev.10

(9) Put the same number of parts deisplyed, on the platform.

(10) Click the < Run > button.

(11) Next message displayed.
Click <Yes> button.

(12) After several times of running feeder vibration and vision processing, check each
value of [Results] has been updated.

(13) Click the < Apply > button.

(14) Select [Region] tab.

(15) Change the number of input parts to one.

(16) Next message displayed.
Click the < Run > button.

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 47

(17) After several times of running feeder vibration and vision processing, check each
value of [Results] has been updated.

(18) Click the < Apply > button.

8.13 Create the Part Feeding Process Starting Program
Write the program code to prepare the robot for pick & place of the part in the PartFeeding
process starting program. The basic examples of the content to write are as follows.

1. If using a multi-robot system, change the current robot to the one for pick & place of
parts.
Use the Robot command.

2. Add statements to set the speed, acceleration, power mode, etc. for the robot.
Use “Speed,” “Accel,” “Power,” and so on.
LimZ is set in consideration of Z coordinates to which teaching is done by 7.11
Teach pick Z and posture and depth of platform (28mm), Z direction margin when
platform's jumping over, height of Z direction of unit set up around feeder.

3. Turn the robot motor on.
Use “Motor.”

4. Move the robot to the position where imaging by Vision is possible
(When using a camera fixed downward, move it to a position where the camera would
not interfere with imaging by the vision system.)
Use “Home,” etc.

5. Add statements to initialize the customer’s system devices, e.g. hopper, customized
lightings.

6. To obtain a log, add the PF_InitLog statement.

7. Add the PF_Start statement which specifies the part ID of the part you want to use.
Running PF_Start is executed in task 32 and immediately returns control to the caller.

The following is a sample program.
This program creates the following function in a program file main.prg
(The description for 5, 6 is omitted.)

Function test

 Robot 1

 Motor On

 Speed 100

 Accel 100, 100

 Power High

 LimZ -80.0

 Home

 PF_Start(1)

Fend

Introduction 8. Let’s Use the Part Feeding Option

48 Part Feeding 7.0 Introduction & Software Rev.10

8.14 Create the PF_Robot Callback Function
Write the processing in which the robot starts picking and placing of the part in the
PF_Robot callback function. The concrete example of the content to write is as follows.
(Steps 1 through 7 are repeated in a loop.)

1. Obtain the coordinate of the part on the platform through the part coordinate que.
Use “PF_QueGet.”

2. Move the robot to the position where the part is placed.
Use “Jump”, and so on (in case of a SCARA robot).

3. Hold the part by turn on the adsorption function, and so on.

4. Move the robot to where to place the part.
Use “Jump,” and so on (in case of a SCARA robot).

5. Release the part by turning of the adsorption function, etc.

6. Delete one of the data among the part coordinate que.
Use “PF_QueRemove.”

7. Check if the stop request is issued. If it is issued, leave the loop.
Use “PF_IsStopRequested.”

Introduction 8. Let’s Use the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 49

The following is a sample PF Robot call back function.
As the handling of a loop and steps 1, 6, 7 are described in automatically generated
PartFeeding.prg, this sample describes the handling of the rest of the steps.

The labels used in this program are as follows:
IO label: Chuck (adsorption of parts), UnVacumm (release of parts)
Point label: PlacePos (Place coordinate)

Function PF_Robot(partID As Integer) As Integer

 Do While PF_QueLen(partID) > 0

 ' Pick
 P0 = PF_QueGet(partID)
 Jump P0 ! Wait 0.1; Off UnVacumm !
 On Chuck
 Wait 0.1

 ' Place
 Jump PlacePos
 Off Chuck
 On UnVacumm
 Wait 0.1

 ' Deque
 PF_QueRemove partID

 ' Check Cycle stop
 If PF_IsStopRequested = True Then
 Exit Do
 EndIf

 Loop
 Off UnVacumm

Fend

Introduction 8. Let’s Use the Part Feeding Option

50 Part Feeding 7.0 Introduction & Software Rev.10

8.15 Check Robot Operation
Start the main program to check the robot operation.

In the first test, operate the robot at low power and low speed to thoroughly examine if it
operates as intended.

1. Build the project.

2. Start the Run window.

3. Run the test function.

4. Confirm that the robot picks and place the parts in the correct movements.

This completes the building of a system that picks and places the parts.

NOTE

Software

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 53

1. Introduction
This section provides an overview of the EPSON RC+ 7.0 Part Feeding 7.0 software.

1.1 Part Feeding Software Configuration

The Part Feeding software mainly consists of the following three components.

- Part Feeding Window

- Part Feeding SPEL+ Commands

- Part Feeding Callback Functions

1.1.1 Part Feeding Window

The Part Feeding dialog is opened by selecting EPSON RC+ 7.0-Menu-[Tools]-[Part
Feeding].

Here you can perform the following actions.

1. Configure part parameters.

Software 1. Introduction

54 Part Feeding 7.0 Introduction & Software Rev.10

2. Calibrate the feeder and manual adjustment/test.
Anyone can easily calibrate by following the on-screen instructions.
Manual adjustment / test allows fine adjustment of feeder parameters and can be
easily tested with the touch of a button.

The Part Feeding window will not appear if EPSON RC+ is not connected to the
Controller. An error will occur when attempting to open the Part Feeding window using a
virtual controller or when offline.

1.1.2 Part Feeding SPEL+ Commands

Part Feeding SPEL commands are SPEL commands provided to allow users to execute
and control the Part Feeding option from a user-prepared program. The following are
some typical examples of such commands.

Command Description/Application
PF_Start Starts the Part Feeding process
PF_Stop Issues a Part Feeding process stop request
PF_Abort Forces the Part Feeding process to stop
PF_QueGet function Returns coordinates data registered to the parts coordinates queue

(list of parts coordinates on the feeder)
PF_InitLog Specify the output destination path for log files
PF_Center Run the feeder centering operation
PF_Flip Run the feeder flip operation
PF_Shift Run the feeder shift operation

NOTE

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 55

1.1.3 Part Feeding Process

The Part Feeding process is a process of operations incorporated into the Part Feeding
system to automatically perform vision and feeder control.

The Part Feeding process begins with the PF_Start command. The process is stopped
using a PF_Stop or other such command.

An overview of the Part Feeding process is provided below.

 Start

Identify parts in the feeder
- Lighting operation
- Vision system execution

Process parts
- Feeder is operated
- Hopper is operated (PF_Control callback function)

Robot is moved
- Parts coordinates queue is generated
- Pick/Place operation (PF_Robot callback function)

Is part available for pick up?

1. Identify parts in the feeder
Use the vision system to check the quantity and distribution of parts on the platform.

2. Process parts
The feeder is controlled and parts are moved in order to make it easier for them to be
grasped by the robot. When the parts are low in quantity or there are none remaining,
the PF_Control callback function is invoked to supply parts from the hopper.

3. Robot is moved
A parts coordinates queue (list of coordinates of parts in the feeder) is generated.
The PF_Robot callback function (see the next section) is invoked to perform pick/place
of parts.

Software 1. Introduction

56 Part Feeding 7.0 Introduction & Software Rev.10

1.1.4 Part Feeding Callback Functions

Callback functions are SPEL+ functions called back from the Part Feeding process when
certain conditions are met. Callback functions are automatically generated within a
project when parts are added. Callback functions are to be modified by the user based on
the system in use.

Part Feeding process

Callback function 1

Callback function 2

Callback function 3

Condition 1

Condition 2

Condition 3

For example, let’s assume the user sets a robot command to pick and place parts to the
PF_Robot callback function. If the robot can pick up parts scattered randomly across the
feeder, the Part Feeding process will then call the PF_Robot callback function.
Therefore, it is important to note that callback functions are not called using user-prepared
functions. Rather, they are automatically called up from the Part Feeding process.

The following is a list of callback functions with a description of each.

Function name Description
PF_Robot Picks up and places parts
PF_Control Controls user device (hopper, user lighting)
PF_Status Processes errors
PF_MobileCam Moves robot while using the mobile camera
PF_Vision Performs user-defined vision processing
PF_Feeder Customer's own feeder operation
PF_CycleStop Performs processing when a stop command is issued

The following lists the conditions upon which callback functions are called.

Condition Function name
Able to pick up parts PF_Robot
Parts no longer found PF_Status
Turn on user lighting PF_Control
Mobile camera is moved to image capture position PF_MobileCam
An error occurs PF_Status

For more details on callback functions, refer to 4. Part Feeding Callback Functions.

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 57

1.2 Part Feeding Projects
This section describes SPEL projects for Part Feeding in detail.

1.2.1 Applying the Part Feeding Option to a Project

To apply the Part Feeding option to a project, follow the procedure below.

(1) Open the existing project you wish to apply the option to.
Or, create a new project.

(2) Open EPSON RC+ 7.0-Menu-[Tools]-[Part Feeding].
The following window is displayed.

(3) Click the <Add> button.
Run the Part Wizard.

(4) Follow the steps of the Part Wizard to complete the part setting. For details, refer to
the Software 2.2 Part Wizard.
This will create one part.
When this happens, a Part Feeding option-specific program file will be added to the
project. Refer to 1.2.2 Creating a Project for more details.

Software 1. Introduction

58 Part Feeding 7.0 Introduction & Software Rev.10

1.2.2 Creating a Project

This section describes the components added when enabling the Part Feeding option.

The following program file will be added when adding new parts on the Part Feeding
window.

PartFeeding.prg
This file includes a template code for callback functions.

PartFeeding.inc
This file includes constants used when programming with the Part Feeding option.

Do not exclude or delete these files from the project. Doing so will cause a build error.

With the following language settings, the comments in the program will be in the same
language as the language setting.

English

Japanese

German

Spanish

For all other language settings, the comments will be in English.

1.2.3 Configuration Files

The following files will be added as project configuration files.

PF file
A file that includes part setting details. This file is named [project name].pf.

Do not directly edit this file in a text editor. Doing so will render the file unreadable, and
cause errors to occur.

NOTE

NOTE

NOTE

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 59

1.2.4 Importing Files

PF files can be imported. Use this to copy parts information to other projects.
Refer to 2.5.1 [Import] (File Menu) for more details.

1.2.5 Backing up/Restoring the Controller

To back up Controller settings, navigate to EPSON RC+ 7.0-Menu-[Tools]-[Controller]
and select [Backup Controller]. This will also back up Part Feeding option data.

To restore Controller settings from a backup, navigate to EPSON RC+ 7.0-Menu-[Tools]-
[Controller] and select [Restore Controller]. At this time, Part Feeding option data is also
restored when put check in “Part feeders configuration” in following wizard.

Software 1. Introduction

60 Part Feeding 7.0 Introduction & Software Rev.10

1.3 SPEL Programming
1.3.1 Programming Overview

This section briefly describes the overall Parts Feeding programming code. Similar
information will be presented in more detail in forthcoming sections of the manual.

For most applications, Parts Feeding is handled by the system automatically. The basic
SPEL code for Parts Feeding is created for you. The code consists of SPEL+ functions
called “callbacks”.

Callback functions are user functions called by the system at runtime and are used to let
your program know the following:

PF_Robot function : When parts are available to be picked from the feeder

PF_Status function : When status has changed

PF_Vision function : When user vision processing is required

PF_Feeder function : When doing unique feeder operations

PF_Control function : When something needs to be controlled, such as hopper,
front light, etc.

PF_MobileCam
function

: When using a mobile camera and the robot needs to move
the camera above the feeder to search for parts

PF_CycleStop function : When the Part Feeding operation is stopped

Some modification to the callbacks will be required to handle the specific requirements of
your application.

Most applications will only require use of the PF_Robot and PF_Status callbacks.

Here is a brief overview of each of these callback functions:

PF_Robot callback Function

PF_Robot will be automatically executed when the feeding / vision operation has been
completed and parts are available to be picked. In general, this is the location in code
where you will add instructions for the pick and place operation. A simple Parts
Feeding application only requires adding a few lines of code to handle the robot’s pick
and place motion and gripper (mechanism grasp parts) actuation. When the PF_Robot
callback ends, the PF_Status callback will start.

PF_Status callback Function

PF_Status will be automatically executed after each callback function completes.
PF_Status tells the system how to proceed based upon the callback’s return value or
PF_Status will notify the operator that an error condition has occurred. The error
could be a system level error (like a robot over-torque error) or a Parts Feeding error
(like the quantity of parts supplied by the hopper are too little or too much). PF_Status
gives you the ability to decide how to handle error conditions. A simple Parts Feeding
application does not require modification to the PF_Status code.

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 61

For more complex applications, the user may need to handle the vision processing
themselves. In this case you will need to use the PF_Vision callback. Here is a brief
overview of the PF_Vision callback.

PF_Vision callback Function

When the customer performs the vision processing of the parts feeder instead of the
vision processing prepared by the system, write the processing required for the
PF_Vision callback function. You will need to execute VRun to acquire an image
from the camera and process the sequence that finds the parts, get the vision
RobotXYU results, and add then add the robot coordinate data into the Part coordinates
queue. A simple Parts Feeding application that processes vision by the system will not
require you to modify the PF_Vision callback.

In rare situations, you may need to use your own lighting rather than the built-in feeder
backlight. The PF_Control callback is required to control your own lighting. There
might also be situations where you want to use your own hopper. Whether you are
using Epson’s hopper or your own, you will need to control the hopper from the
PF_Control callback. Here is a brief overview of the PF_Control callback.

PF_Control callback Function

PF_Control will be automatically executed if the system needs to turn on the hopper or
if the system needs to turn on/off user supplied lighting. When using the Epson
supplied hopper, you will need to uncomment the PF_OutputONOFF statements in the
PF_Control callback.

PF_MobileCam callback Function

PF_MobileCam will be automatically executed if the camera is mobile mounted onto
the robot rather than fixed mounted downward above the feeder. PF_MobileCam
requests the robot to move the camera over the feeder so that the system can process
images. PF_MobileCam also notifies the robot that it is ok to move away from the
feeder when parts have been found and added to the Parts Feeding queue. A simple
Parts Feeding application that uses a Fixed Downward camera does not require you to
modify the PF_MobileCam callback.

PF_CycleStop callback Function

PF_CycleStop will be automatically started if the PF_Stop statement is executed. This
callback allows you to finalize any operations upon termination (like turning on/off
outputs or moving the robot to a safe location). A simple Parts Feeding application
does not require modification to the PF_CycleStop code.

PF_ Feeder callback Function

When your device or part cannot be processed well by automatic feeder control, you
can write the feeder operation in SPEL code using the PF_Flip command, PF_Shift
command, etc. in the PF_Feeder callback function. In general, there is no need to write
a PF_Feeder callback function.

Software 1. Introduction

62 Part Feeding 7.0 Introduction & Software Rev.10

All Part Feeding callback functions require you to return a value. To return a value
from a function, you assign a value to the function’s name (for example, PF_Robot =
PF_CALLBACK_SUCCESS where PF_CALLBACK_SUCCESS is a predefined
constant which has a value of 0). Normally the return value will indicate that the
operation has completed successfully (constant PF_CALLBACK_SUCCESS).
PF_Status tells the system how to proceed after any of the callback functions have
completed or after an error has occurred. The system needs to know what you want it
to do – continue, exit, restart etc…. For example, you may want to set the return value
to constant PF_EXIT to terminate the Parts Feeding operation after an error. For a
simple Parts Feeding application, you can use the callback return values that are
automatically generated in the code for you.
Refer to Software 4. Part Feeding Callback Functions for a detailed explanation of
each of the callbacks.

The next page is an overview of the pick and place program.

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 63

Operator / Host Controller / SPEL+ Program / Callback function Part Feeding process

Move to RB to the image
capture position

Part coordinates queue length > 0

Get data from the queue 1

Pick and place action

Start

Initialize

PF_Start execute

PF_MobileCam

PF_Vision

Light On

Run vision

Create Part coordinates queue

Light Off

Front light On

PF_Robot

Front light Off

PF_Control

Retract RB

PF_MobileCam

Use
front light?

Use
front light?

Process vision

Feeder action

No part on
feeder?

Stop request?

No stop requests

Part Feeding process

Use PF_Vision?

PF_Control

Part pick and
place OK?

Hopper motion

PF_Control

Feeder motion

PF_Feeder

Use
PF_Feeder?

Stop

PF_Stop execute

End

End operation

PF_CycleStop

YES

YES

YES

YES

YES

YES

YES

Start

Stop request

Software 1. Introduction

64 Part Feeding 7.0 Introduction & Software Rev.10

1.3.2 Starting the Part Feeding Process

Requirements for starting the Part Feeding process are as described below.

1. Move the robot to a position where the vision system can capture images.
(For fixed downward-facing cameras, move the robot to where it will not interfere with
imaging)

2. Run the PF_Start command to start the Part Feeding process.

The following is an example program.
Function StartPickPlace()

 Home
 PF_InitLog 1, "C:\log.csv", True
 PF_Start 1

End function

The following processes are written to be performed when starting up the system.

- Speed, acceleration, power mode and other settings relating to the robot used to pick up
and place parts

- Hopper settings, user lighting settings, end effector attitude initialization, etc.

NOTE

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 65

1.3.3 Pick and Place Processing

The following describes the programming process used for pick and place processing.

Create (add) PF_Robot callback function

Create (add) PF_Control callback function Hopper will be used

Create (add) PF_Control callback function User lighting will be
used

Vision processing will be
prepared by the user

Error processing will be
added

Create (add) PF_Vision callback function

Mobile camera will be
used Create (add) PF_MobileCam callback function

Create (add) PF_Status callback function

YES

YES

YES

YES

YES

Feeder processing will be
prepared by the user

YES
Create (add) PF_Feeder callback function

END

A PF_Robot callback function must be created (added).
Other callback functions are used based on user system specification requirements.

1. PF_Robot callback function
Write a command for the robot to pick and place parts to the PF_Robot callback
function. A specific example is provided below. (Repeat steps 1 through 7 on a loop)

(1) Retrieve the coordinates of parts on the platform from the parts coordinates queue.
Use PF_QueGet.

(2) Move the robot to the part position.
Use Jump or similar commands. (For SCARA robots)

(3) Turn suction on and grip the part.

(4) Move the robot to the position where the part will be placed.
Use Jump or similar commands. (For SCARA robots)

(5) Turn suction off, or release the part using some other method.

(6) Delete one data entry in the parts coordinates queue.
Use PF_QueRemove.

Software 1. Introduction

66 Part Feeding 7.0 Introduction & Software Rev.10

(7) Check whether a stop command has been issued. Discontinue the loop if issued.
Use PF_IsStopRequested.

For more programming examples, refer to the following examples.

4. Part Feeding Callback Functions PF_Robot and 9. Application Programming
Examples

2. Supply parts to the feeder (PF_Control) *Optional
Program commands to use a hopper to supply parts to the feeder. Use the PF_Control
callback function (PartFeeding.prg). Program details are provided below.

(1) Write the hopper command (supply parts) when no parts are on the platform. When
doing so, the Control parameter for the PF_Control callback function is
PF_CONTROL_SUPPLY_FIRST.

(2) Write the hopper command (supply parts) to add parts to the platform. When doing
so, the Control parameter for the PF_Control callback function is
PF_CONTROL_SUPPLY.

For more programming examples, refer to 4. Part Feeding Callback Functions
PF_Robot.

3. Control a user lighting (PF_Control) *Optional
Program commands to use a user lighting. Use the PF_Control callback function
(PartFeeding.prg). Program details are provided below.

(1) Write a command to turn on the user lighting. When doing so, the Control
parameter for the PF_Control callback function is PF_CONTROL_LIGHT_ON.

(2) Write a command to turn off the user lighting. When doing so, the Control
parameter for the PF_Control callback function is PF_CONTROL_LIGHT_OFF.

For more programming examples, refer to 4. Part Feeding Callback Functions
PF_Robot.

Write both commands to turn the user lighting on and off.
When only the turn on command is added, the vision system may have difficulty
recognizing parts, resulting in errors.

NOTE

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 67

1.3.4 Processing Errors

This section describes how to process errors that occur while using the Part Feeding
option.

1. Processing errors occurring in the callback function

Operator / Host Controller / SPEL+ program Part Feeding process Callback function

Part Feeding process

Callback function

Process

End

Vision operation
Feeder operation

Pick and place action

Return
value

Start

Error?

Error warning

Restore/stop operation

Restoration method instructions

Error processing

End

Error display

Error restoration processing

Error
processing

Yes

End

Pick and
place

processing

Detect and process errors occurring within the callback function inside the function itself.
Use this error processing method if you wish to proceed without returning control to the
Part Feeding process.

Example: A parts suction error occurs with the PF_Robot callback function, initiating a
retry process

Software 1. Introduction

68 Part Feeding 7.0 Introduction & Software Rev.10

2. Processing errors occurring in the PF_Status callback function

Operator / Host Controller / SPEL+ program Part Feeding process

Part Feeding process

Callback function

Callback function

Process

End

PF_Status

End

Error warning

Restore/stop operation

Restoration method instructions

Error processing

End

Error display

Error restoration processing

Continue?

Error
processing

Vision operation
Feeder operation

Pick and place action

End

Start PF_Status

Return
value

Pick and
place

processing

Return
value

Yes

Yes

Start

Start

Error?

Yes

Set error value to return value

Return value
error?

Set a value other than PF_CALLBACK_SUCCESS to the return value (user error 8000-
8999) if an error occurs in the callback function.
The Part Feeding process will set this value to the Status parameter of the PF_Status
callback function at startup.
Use this error processing method to share error processes.

For more details, refer to 4. Part Feeding Callback Functions PF_Status.

Software 1. Introduction

Part Feeding 7.0 Introduction & Software Rev.10 69

3. Processing errors occurring inside the Part Feeding process

Operator / Host Controller / SPEL+ program Part Feeding process

Part Feeding process

Callback function

PF_Status

End

Error warning

Stop operation

End

Error display Error
processing

Vision operation
Feeder operation

Pick and place action

End

Pick and
place

processing

Start

Error?

Start PF_Status

Yes

An error may occur inside the Part Feeding process due to incomplete Part Feeding
parameter settings (unspecified PF_Start parameter), incomplete vision system settings, or
other deficiencies.
The Part Feeding process will set PF_STATUS_ERROR to the Status parameter at startup.
The Part Feeding process will terminate once the PF_Status function ends.

For more details, refer to 4. Part Feeding Callback Functions PF_Status and 9.6 Error
Handling.

Software 1. Introduction

70 Part Feeding 7.0 Introduction & Software Rev.10

1.3.5 End Processing

Use one of the following methods to terminate a Part Feeding process from a user-
prepared program.

1. Execute a PF_Stop command
Execute a PF_Stop command from a user-prepared program.
The Part Feeding process will end the callback function currently being processed,
and will terminate once the PF_CycleStop callback function has ended.
For more details, refer to 3. Part Feeding SPEL+ Command Reference PF_Stop.

2. Execute a PF_Abort command

Execute a PF_Abort command from a user-prepared program.
This immediately terminates the Part Feeding process. When this happens, the
callback function currently being processed will end immediately.
For more details, refer to 3. Part Feeding SPEL+ Command Reference PF_Abort.

Feeder and hopper vibration will stop when the Safeguard is opened or Pause is executed.
The vibration will not resume after the Safeguard is closed and Continue is executed.

1.3.6 Functions used by Part Feeding process

The Part Feeding process occupies the following functions while running.
Do not set your program to use these functions while the Part Feeding process is running.

Feeder Number Task Timer SyncLock

1 32 63 63
2 31 62 62
3 30 61 61
4 29 60 60

System (reserved) 28 - 59

These functions may be used in following conditions.

- When the Part Feeding processing is stopped

- When not using multiple feeders
(e.g. when only one feeder is connected, the functions occupied by feeder number 2
or later can be used.)

The Reserved System Task and SyncLock should never be used.

NOTE

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 71

2. Part Feeding GUI
This section describes the EPSON RC+ 7.0 Part Feeding 7.0 GUI in detail.

2.1 System Configuration

Configure settings to connect the feeder to the Controller in EPSON RC+ 7.0-Menu-
[Setup]-[System Configuration].

2.1.1 Part Feeding Page

Item Description
Enabled Select this check box to enable the feeder.
Model Select the feeder model.
Name Set a name of your choice. (Half-width alphanumeric characters and

underscores only. Up to 32 characters in length)
IP Address Enter the IP Address currently set to the feeder.

Default IP Address 192.168.0.64
IP Mask Enter the IP Subnet Mask currently set to the feeder.

Default Subnet Mask 255.255.255.0
Port Enter the Port number currently set to the feeder.

Default Port number 4001
Backlight
Installed

Select this check box if a backlight has been installed inside the
feeder.

Hopper Installed Select this check box to use a hopper for the feeder option.
Purge Gate
Installed

If connecting the purge gate of the feeder option, check the check
box. (IF-240, IF-380 and IF-530 only)

Description Write a description (comments) for the feeder. This field is
optional. (Up to 256 characters in length)

To change network settings for the feeder, click the <Configure> button described in the
next section.

An error will occur when connecting to the feeder if an IP Address, IP Mask or Port that is
different from current feeder settings is entered. Note that the error will not occur when
the <Apply> button is pressed.

The “Purge gate installed” setting influences vibration parameters. If you are using a
Purge Gate, check the “Purge gate installed” checkbox prior to adding new Parts in the
Part Feeding dialog. If the checkbox is checked after adding new Parts, the feeder will not
perform properly.

NOTE

NOTE

NOTE

Software 2. Part Feeding GUI

72 Part Feeding 7.0 Introduction & Software Rev.10

Button Description
Close Closes the dialog.
Apply Applies changes.
Restore Undoes changes.
Test Tests the feeder’s communication
Configure Changes feeder network settings.

IP Address Sets a new IP address for the feeder.
IP Mask Sets a new subnet mask for the feeder.
Port Sets a new port number for the feeder.

Once settings are complete, click the <OK> button.

CAUTION

■ Set a private IP address (see below) for the feeder before use.

Class A: 10.0.0.0 - 10.255.255.255
Class B: 172.16.0.0 - 172.31.255.255
Class C: 192.168.0.0 - 192.168.255.255

■ When setting a global IP address for the feeder, be sure to
understand risks such as unauthorized access before use.

The controller and the feeder can only communicate if they are in the same network
segment.
You will not be able to connect to the feeder if network settings are configured for a
different subnet that is used for the Controller. If this is the case, you will need to change
the IP Address and IP Mask for the Controller.

These settings are found in EPSON RC+ 7.0-Menu-[Setup]-[System Configuration]-
[Controller]-[Configuration].
Refer to the following document for more details.
 EPSON RC+ User’s Guide “4.3.3 Ethernet communications”

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 73

2.1.2 Security Page

Configure security settings to restrict users from viewing or editing Part Feeding option
settings.

When the [Edit Part Feeding] check box is selected, users belonging to the corresponding
group are able to open the Part Feeding window.

When the Edit Part Feeding check box is not selected, an error will occur when users
belonging to the corresponding group attempt to open the Part Feeding window.

Refer to the following document for more details.
EPSON RC+ User’s Guide 15. Security

Software 2. Part Feeding GUI

74 Part Feeding 7.0 Introduction & Software Rev.10

2.2 Part Wizard
2.2.1 Add a new part

(1) In EPSON RC+ 7.0, select Menu-[Tool] to open the [Part Feeding] dialog box.

(2) Click the <Add> button. Run the Part Wizard.

2.2.2 General

This screen is used for configure general settings.

Item Description

Enter name for new part
Write the name of the part.
(Half-width alphanumeric characters and underscores only.
Up to 32 characters in length)

Select feeder number
Select the feeder number used with this part.
You can check the feeder number on the System
Configuration screen.

Select robot number Select the robot number.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 75

This table describes the basic operation of the part wizard.
The part wizard is controlled using the five buttons at the bottom of the window.

Button Description
Vision Guide Displays the Vision Guide screen.

Use this screen to create vision sequences.
Cancel Stops the Part Wizard.
Back Returns to the previous STEP.
Next Proceeds to the next STEP.
Finish Finish the Part Wizard.

If you click the <Finish> button in the middle of the wizard, the
default values will be applied to the subsequent settings.

2.2.3 Vibration

Setting feeder vibration.

Item Description
Platform Type Set the platform type.

a) A standard platform that can be purchased from Epson
Flat : Flat platform
Anti-rolling: Platform with anti-rolling processing
Anti-stick : Platform with anti-stick processing

b) Custom platforms must be designed and fabricated by the
customer.
Grooves : Platform with grooves for vertical parts
Holes : Platform with holes for vertical parts
Pockets : Platform with holes to align parts

System processes
vibration for part

Controlling feeder by system.
When selecting above b), this item can not be used.

User process
vibration for part
via PF_Feeder
callback

Using PF_Feeder callback function.

Software 2. Part Feeding GUI

76 Part Feeding 7.0 Introduction & Software Rev.10

Item Description

Centering
Method

When < System processes vibration for part > is selected, select
the type of part centering operation. (operation to center and
evenly distribute parts when the parts distribution is highly
biased, such as when parts are put in.)

No centering:
No centering operated.

Long axis centering+ Short axis centering:
Operate centering in the direction of long axis then, operate
centering in the direction of short axis.

Short axis centering+ Long axis centering:
Operate centering in the direction of short axis then, operate
centering in the direction of long axis.

Long axis centering:
Operate centering only in the direction of long axis.

Short axis centering:
Operate centering only in the direction of short axis.

Center by Shift:
Operate centering by shift

The best centering method depends on the type of parts and the position of the hopper. The
most effective method is one of the following methods.

Long axis centering+ Short axis centering

Short axis centering+ Long axis centering
However, the feeder operating time will be longer compared to other centerings (or “no
centering”). It is effective to select the one with the parts properly distributed and the
shortest centering time.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 77

2.2.4 Lighting

This screen is used to configure lighting settings.

Item Description
Backlight Set the backlight control method.

 Not used for
this part

Select this to not use the feeder backlight during vision image
capturing.
This item is optional.

Built-in
Backlight

Select this to use the feeder backlight during vision image capturing.
This option cannot be selected if the backlight is not installed.

Front light Set the optional front light control method.

 Not used Do not use a front light.
Custom
front light

Call the PF_Control callback function to control user-set custom
lighting.
This item is optional.
For more information on the PF_Control callback function, refer to 4.
Part Feeding Callback Function - PF_Control.

Software 2. Part Feeding GUI

78 Part Feeding 7.0 Introduction & Software Rev.10

2.2.5 Flip

This screen is used to configure whether the part needs to be flipped or not. If a part needs
to be picked up from a particular side, then “Part needs to be flipped” should be checked.

Item Description
Part needs to be flipped Select this check box for parts that require the front and

back sides to be orientated properly.
This enables a flip action used to change orientation at pick
up. This may increase the number of parts that can be
retrieved in a single feeder motion, improving cycle times.

2.2.6 Vision

This screen is used to configure vision settings.

Item Description
The system will automatically
run the part vision sequence
and add parts to the part queue

The system automatically performs vision processing.
This setting is selected under normal circumstances.

The user program will use the
vision system to find parts and
add to the part queue

This item is optional.
This enables the PF_Vision callback functions, and
allows users to customize vision operations.
For more information on the PF_Vision callback
function, refer to 4. Part Feeding Callback Functions
PF_Vision.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 79

2.2.7 Vision Calibration Sequence

This screen is used to configure vision settings.

Item Description
Part Blob
Vision Sequence

Required setting: This field is mandatory.
Select the name of the vision sequence used for feeder
calibration.

Part Blob
Vision Object

Required setting: This field is mandatory.
Select the name of the vision object used to detect parts
while using the feeder backlight during feeder calibration.
Only Blob can be selected.

Software 2. Part Feeding GUI

80 Part Feeding 7.0 Introduction & Software Rev.10

2.2.8 Vision Find Part Sequence

This screen is used to configure vision settings.

Item Description
Part
Vision Sequence

Required setting: This field is mandatory.
Select the name of the vision sequence used to detect parts.
Only sequence with robot calibrations can be selected.

Vision Object
for front of part

Required setting: This field is mandatory.
Select the name of the vision object used to detect parts for
picking up.
Only objects that return RobotXYU results are displayed.

Vision Object
for back of part

This field is mandatory when flip is required (refer to 2.3.1.
General).
Select the name of the vision object used to detect parts that
cannot be picked up because they are facing down.
Only objects that return RobotXYU results are displayed.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 81

2.2.9 Feeder Orientation and Pick Region

This screen configures settings relating to the feeder layout and part pick up.

Item Description
Feeder Orientation Sets the feeder orientation when seen from the camera.
Pick Region Sets the region for picking up parts when seen from the camera.

Select either of Anywhere, Region A, B, C or D.
The region that can be set differs depending on feeder model.
IF-80: Anywhere
IF-240: Anywhere, Region A, Region B, Region C, Region D
IF-380 & IF-530: Anywhere, Region A, Region B

2.2.10 Avoid Hand Interference

This screen is used to configure Avoid Hand Interference settings.

Item Description
Avoid interference with
robot hand

Select this check box to enable a function used to avoid
interference between the end effector and the platform.

Hand Clearance Radius Parts within this distance from the circumference of the
platform (set in the vision search window) will not be
included in the coordinates queue.
Units are in mm.

Software 2. Part Feeding GUI

82 Part Feeding 7.0 Introduction & Software Rev.10

2.2.11 Purge

This screen is used to configure purge.

Item Description
Enable Purge Select this check box to enable purge.

Enable Purge Gate Select this check box to enable Purge Gate.

Purge Location Sets the location for purge. Parts will move (shift) to arrow
direction during the purge operation. Select either of A, C or D.
The location that can be set differs depending on feeder model.
IF-80: A
IF-240, 380, 530: C, D

2.2.12 Feeder Calibration

This screen is used to configure feeder calibration.

Item Description
Copy calibration
from another part

Optional. Copies calibration results from another part to the part
selected. Use this feature if the new part is similar to a previously
calibrated part.

 Part Specify the part to copy calibration results from.
Copy Copy calibration results.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 83

2.2.13 Finish

Click the <Finish> button to proceed.

Software 2. Part Feeding GUI

84 Part Feeding 7.0 Introduction & Software Rev.10

2.3 Part Feeding Dialog
You can configure Part Feeding settings, calibration, adjustment and testing the feeder in
the EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding] dialog.

Connect the EPSON RC+ to the Controller.
The Part Feeding window will not appear if EPSON RC+ is not connected to a Controller.
An error will occur when attempting to open the Part Feeding window using a virtual
controller or when offline or if the controller firmware version does not support Part
Feeding. The Part Feeding license must also be enabled in the controller.

2.3.1 General

This screen is used to configure general settings.

Item Description
Enabled Select this check box to enable the part.

An error will occur if a disabled part is specified when running the
PF_Start command.

Part image Available to registrate parts image.
Click <…> button to select a file of part image.

Calibration If No, feeder calibration is required.
If Yes, feeder calibration has been completed.

Name Write the name of the part.
(Half-width alphanumeric characters and underscores only.
Up to 16 characters in length)

Description Write a description (comments) for the part.
This field is optional. (Up to 256 characters in length)

Feeder # Select the feeder number used with this part.
You can check the feeder number on the System Configuration
screen.

Robot # Select the robot number.
Needs Flip Select this check box for parts that require the front and back sides

to be orientated properly. This enables a flip action used to change
orientation at pick up. This may increase the number of parts that
can be retrieved in a single feeder motion, improving cycle times.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 85

Button Description
Close Closes the screen.
Apply Applies changes.
Restore Undoes changes.
Add Adds parts to the tree.

Up to 32 types of parts can be added.
Delete Deletes parts from the tree. Only parts at the bottom of the tree can

be deleted.
As parts in the middle of the tree cannot be deleted, deselect the
[Enabled] check box to disable them instead.

Delete all parts and build cause a build error. This is because Part Feeding commands and
functions are no longer available. In this case, comment out the line.

2.3.2 Vibration

Setting feeder vibration.

Item Description
Platform Set the platform type.

a) A standard platform that can be purchased from Epson
Flat : Flat platform
Anti-rolling: Platform with anti-rolling processing
Anti-stick : Platform with anti-stick processing

b) Custom platforms must be designed and fabricated by the
customer.
Grooves : Platform with grooves for vertical parts
Holes : Platform with holes for vertical parts
Pockets : Platform with holes to align parts

System process
vibration for part

Controlling feeder by system.
When selecting above b), this item can not be used.

User processes
vibration for part

Using PF_Feeder callback function.

NOTE

Software 2. Part Feeding GUI

86 Part Feeding 7.0 Introduction & Software Rev.10

Item Description

Centering
Method

When < User processes vibration for part > is selected, select the
type of part centering operation.(operation to center and evenly
distribute parts when the parts distribution is highly biased, such
as when parts are put in.)

No centering:
No centering operated.

Long axis centering+ Short axis centering:
Operate centering in the direction of long axis then, operate
centering in the direction of short axis.

Short axis centering+ Long axis centering:
Operate centering in the direction of short axis then, operate
centering in the direction of long axis.

Long axis centering:
Operate centering only in the direction of long axis.

Short axis centering:
Operate centering only in the direction of short axis.

Center by Shift:
Operate centering by shift

Wait time after
vibration

Specify a standby time to wait after the feeder stops vibrating
before the vision system starts image capturing. Units are in
milliseconds.
Try increasing this value if the vision system has difficulty
identifying parts, or if position aberrations occur when the robot
grips onto parts on the feeder.

The best centering method depends on the type of parts and the position of the hopper. The
most effective method is one of the following methods.

Long axis centering+ Short axis centering

Short axis centering+ Long axis centering

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 87

However, the feeder operating time will be longer compered to other centerings (or “no
centering”). It is effective to select the one with the parts properly distributed and the
shortest centering time.

There is no automatic calibration for “Center by Shift”.
(Refer to 2.4 Calibration & Test.)

Button Description

Close Closes the screen.

Apply Applies changes.

Restore Undo changes.

NOTE

Software 2. Part Feeding GUI

88 Part Feeding 7.0 Introduction & Software Rev.10

2.3.3 Lighting

This page is used to configure lighting settings.

Item Description
Backlight Set the backlight control method.

 Not used for this
part

Select this to not use the feeder backlight during vision image
capturing.
This item is optional.

Built-in Backlight Select this to use the feeder backlight during vision image
capturing.
This option cannot be selected if the backlight is not installed.

Turn On Turns the feeder backlight on.
Turn Off Turns the feeder backlight off.
Brightness Sets the brightness of the feeder backlight.

Set a value between 0 and 100%.
Front light Set the optional front light control method.

 Not used Do not use a front light.
Custom front light Call the PF_Control callback function to control user-set

custom lighting.
This item is optional.
For more information on the PF_Control callback function,
refer to 4. Part Feeding Callback Function - PF_Control.

Although the percentage of brightness can be set from 0 to 100%, the minimum, physical
intensity may be limited depending upon the feeder model. Refer to
[PF_BacklightBrightness] in 3. Part Feeding SPEL+ Command Reference.

Button Description

Close Closes the screen.
Apply Applies changes.
Restore Undoes changes.
Vision Guide Displays the Vision Guide screen.

Use this screen to create vision sequences.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 89

2.3.4 Vision

This screen is used to configure vision settings.
For more information on creating vision sequences, refer to 6. Vision Sequences Used
With the Part Feeding Option.

Item Description
System processes
vision for part

The system automatically performs vision processing.
This setting is selected under normal circumstances.

User processes
vision for part via
PF_Vision callback

This item is optional.
This enables the PF_Vision callback functions, and allows users
to customize vision operations. For more information on the
PF_Vision callback function, refer to 4. Part Feeding Callback
Functions PF_Vision.

Part Vision
Sequence

Required setting: This field is mandatory.
Select the name of the vision sequence used to detect parts Only
sequences with robot calibrations can be selected

Vision Object for
front of part

Required setting: This field is mandatory.
Select the name of the vision object used to detect parts for
picking up. Any object that supports multiple RobotXYU
results can be selected.

Vision Object for
back of part

This field is mandatory when performing a flip (refer to 2.3.1.
General), but it can also be specified when picking from front
and back is required
Select the name of the vision object used to detect parts that
cannot be picked up because they are facing down. Any object
that supports multiple RobotXYU results can be selected.

Part Blob Vision
Sequence

Required setting: This field is mandatory.
Select the name of the vision sequence used for feeder
calibration. Only sequences with robot calibrations can be
selected

Part Blob Vision
Object

Required setting: This field is mandatory.
Select the name of the vision object used to detect parts while
using the feeder backlight during feeder calibration. Only Blob
can be selected.

Software 2. Part Feeding GUI

90 Part Feeding 7.0 Introduction & Software Rev.10

All required settings must be configured. An error will occur during calibration or process
operation if required settings have not been configured.

Button Description

Close Closes the dialog.
Apply Applies changes.

This is unavailable when non-optional fields have not
been set.

Restore Undoes changes.
Vision Guide Displays the Vision Guide dialog.

Use this screen to create vision sequences.

2.3.5 Part Supply

This screen is used to set the part supply method to the feeder.
A user-created program must be embedded into the PF_Control callback function to
supply parts from a hopper. For more information on the PF_Control callback function,
refer to 4. Part Feeding Callback Functions PF_Control.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 91

Item Description
Supply parts when
threshold reached

Supply parts when the number of parts reaches the threshold.

Supply parts during
pick and place

Add parts to optimize the number of parts on the feeder.
This reduces robot cycle times compared to completely
depleting all parts.

Parts remaining in
tray when more
parts are supplied.

When the number of non-pickable parts remaining in the tray is
below this value, then more parts will be supplied. The default
value is 4.
If 0 is used, then all detected parts must be picked before more
parts are supplied.

Test Tests the hopper.

Hopper Number Output terminal number of Feeder

(It cannot be select when IF-80)
Hopper On Starts the hopper.
Hopper Off Stops the hopper.
Duration Specify the hopper operating time.

Increase the length of time to increase the
number of parts supplied.

Button Description

Close Closes the screen.

Apply Applies changes.

Restore Undoes changes.

Software 2. Part Feeding GUI

92 Part Feeding 7.0 Introduction & Software Rev.10

2.3.6 Pick

This page configures settings relating to the feeder layout and part pick up.

Item Description
Feeder Orientation Sets the feeder orientation as viewed by the camera.
Pick Region Sets the region for picking up parts when seen from the camera.

Select either of Anywhere, Region A, B, C or D. Note that when
Anywhere is not selected, then Shift calibration is required.
IF-80: Anywhere
IF-240: Anywhere, Region A, Region B, Region C, Region D
IF-380 & IF-530: Anywhere, Region A, Region B

Avoid interface with
robot hand

Select this check box to enable a function used to avoid
interference between the end effector and the platform tray
walls.

Hand Clearance
Radius

Parts within this distance from the circumference of the platform
tray (set in the vision search window) will not be included in the
coordinates queue.
Units are in mm.

Minimum pickable
parts required before
calling PF_Robot

Normally the system will call the PF_Robot callback even when
only 1 pickable part is found. The default value is 1. In general,
this is the best setting because feeder vibration can take a long
time to perform and there is no guarantee that more pickable
parts will be found after the vibration. Regardless of this setting,
the part queue is always loaded with the actual number of parts
that were found by vision. The system determines how to
vibrate based upon the quantity and distribution of parts. If the
"Minimum pickable parts required before calling PF_Robot" is
not satisfied, the system will perform an appropriate action. In
some cases, system performance can be improved if there are a
minimum number of pickable parts on the feeder before
PF_Robot is called.

Teach Opens the Teach dialog to allow teaching of the Z coordinate at
part pick up.
When using a 6-axis robot, the V and W orientations are taught
in addition to the Z coordinate.
Refer to 2.3.7 Teach Window for more details.

Pick Z This is the Z coordinate (local coordinates) at part pick up. The
Z coordinate used for teaching will be shown here. Enter a new
value to manually change this.
Units are in mm.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 93

Check that interference does not occur between the end effector and the platform when
“Avoid interface with robot hand” is enabled and the Hand radius has been adjusted.

When “User processes vision for part via PF_Vision callback” is selected on the Vision
screen and “Avoid interface with robot hand” is enabled, it is important to note that parts
within the Hand radius distance from the platform edge will be included in the parts
coordinates queue.

While V and W positional orientation values will not appear on the dialog when using a 6-
axis robot, these values will be stored in internal memory.

Button Description
Close Closes the screen.
Apply Applies changes.
Restore Undo changes.

2.3.7 Teach Window

This dialog is used to teach the robot Z coordinate when picking up parts.

(1) Place a part on the platform.

(2) Use the Jog buttons (+X, −X, +Y, −Y) to align the robot into the Z coordinate and
orientation used to pick up the part.

(3) Click the <OK> button.
Register the Z coordinate, V orientation and W orientation.

The robot selected here is the one that is referred to by the vision calibration set for the
part detection vision sequence.

NOTE

NOTE

TIP

NOTE

Software 2. Part Feeding GUI

94 Part Feeding 7.0 Introduction & Software Rev.10

If “User processes vision for part via PF_Vision callback” is selected on the Vision screen,
you will need to program Z coordinate processing within the PF_Vision callback function.
For more details, refer to 4. Part Feeding Callback Functions PF_Vision.

2.3.8 Purge

This screen configures settings relating to purge.

Item Description

Enable Purge Select this check box for enabling purge.
Purge Location Sets the location for purge. Parts will move (shift) to arrow

direction during the purge operation. Select either of A, C or D.
The location that can be set differs depending on feeder model.
IF-80: A
IF-240, 380, 530: C, D

Purge Gate Set the Purge Gate settings.
 Enabled Select this check box for enabling the purge gate for the part.

By default, the Purge Gate Enabled check box will be checked
if the Purge Gate Installed check box was checked in the
EPSON RC+ 7.0-Menu-[Setup]-[System Configuration]-
[Controller]-[Part Feeders].

Purge Gate Closed Status indicator for the Purge Gate sensor
Closed : Green, Not closed : Gray

Open / Close Allows opening and closing of the Purge Gate

The Purge Gate groupbox will only be visible if the “Purge Gate Installed” check box was
checked in the EPSON RC+ 7.0-Menu-[Setup]-[System Configuration]-[Controller]-[Part
Feeders].

If you try to move to another tab when the Purge Gate is not closed, the dialog “Purge gate
will now be closed. Continue?” is displayed. Press OK to close the Purge Gate.

NOTE

NOTE

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 95

2.3.9 Calibration

This page describes feeder calibration, parameter editing, and testing.

Item Description
Copy calibration results
from another part

Copies calibration results from another part to the part
selected.

 Part Specify the part to copy calibration results from.
Copy Copy calibration results.

Calibration&Test Operates feeder calibration, parameter editing, and testing.

Software 2. Part Feeding GUI

96 Part Feeding 7.0 Introduction & Software Rev.10

2.4 Calibration&Test
Calibration and testing allow you to:

- Feeder calibration for a part
- Adjusting feeder parameters for a part
- Feeder operation test

First, select the operation of the feeder you want to adjust from the tab on the left.

1. Description of each tab

Tab Description Calibration
Required/Optional

Part Area Perform a part area calibration. Required

Optimum Part
Count

Adjust the optimal number of parts. Optional

Separate Adjust and test of Separate (part distribution). Optional
Flip &
Separate

Adjust and test of Flip (Re-orient the parts)
and Separate (part distribution).
This is displayed when flip is enabled. (see
“2.3.1 General”.)

Optional

Centering Adjust and test centering Optional

Region Adjusts and tests the pick region (the
movement of the part when picking from a
specific region).
On the pick screen (see 2.3.6 Pick), select A,
B, C, or D areas for the part region.

Optional

Shift Adjust and test shifting (movement of the
parts).

Optional

Purge Adjust and test the purge (discharging the part
from the feeder). (Only IF-80)
The Purge tab appears when Enable Purge is
checked on the Purge page (see 2.3.8 Purge)

Optional

Hopper Test the IF-80 hopper.
Displayed when the feeder is IF-80.

(None)

When registering a new part, you cannot select anything other than the [Part Area] tab and
the [Hopper] tab.

First, select the [Part Area] tab and perform the calibration.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 97

If you have selected a “Pick Region”, it is strongly recommended that you perform the
Automatic Region Calibration.

If you are using an IF-80 and you enabled purge, it is strongly recommended that you
perform the Automatic Region Calibration.

If calibration is not performed for optional calibrations, then the default values will be
used.

2. Description of each button

Button Description

Close Close the window.

Run / Abort Start calibrating or testing the current screen. During execution, the
display changes to “Abort”. Clicking the <Abort> button interrupts the
currently running behavior.

Apply Save your changes.

Undo Undoes the changed value.

Defaults Returns the value of the selected screen to its default value.
Backlight
On/Off

Turn the feeder backlight on or off.

I/O Monitor Start the I/O monitor.
Used to control custom lighting, etc.

Jog Robot Open the window jog the robot.
Used to move a mobile camera to an image-capturing position.

In the case of a system with a safeguard, when the <Run> button has been clicked and the
safeguard is opened, the feeder will stop. The wizard screen does not change.

In this case, click the <Abort> button to stop calibration then close the safeguard and start
calibration again.

3. Preparation

- Prepare the parts to be calibrated for feeder calibration. A specific quantity of parts will
be used. The quantity could be determined by referring 2.4.2 Optimal Part Count.

- When using a mobile camera:
Click the <Jog Robot> button to move the robot to the image-capturing position.

- When you want to use custom lighting controlled by I/O:
Click the <I/O Monitor> button that appears in the wizard to turn on the light.

- When adding a new part:
Perform the “Part Area” calibration before any other calibration can be performed.
Click the [Part Area] tab and <Run> the calibration.

NOTE

Software 2. Part Feeding GUI

98 Part Feeding 7.0 Introduction & Software Rev.10

2.4.1 Part Area

Calibrate the part area (the number of pixels per part).

1. Description of display items

Item Description

Part Area Number of pixels in the part area

2. Calibration

(1) Place one part on the platform.

(2) Click the <Run> button.
The number of pixels in the part area is measured.

(3) Click the <Apply> button.
Result saved.

2.4.2 Optimal Part Count

Calculate the optimal number of parts that should run on the feeder.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 99

1. Description of display items

Item Description

Optimal number of
parts

The calculated value of the optimal
number of input parts.
This value can be manually edited.

2. Guidelines for adjustment

This parameter is calculated on the assumption that the part is simple geometric shape like
a square or circle. Therefore, if the part has an elongated shape or a hollow part in the
center, set a smaller value than the calibration.
When used with a hopper, this value determines whether a part needs to be added or not. If
you feel that the number of parts being provided by the hopper is too little, then increase
this value.

3. Calibration

(1) Click the <Run> button.
The optimal number of parts is calculated.

(2) Click the <Apply> button
The result saved.

Software 2. Part Feeding GUI

100 Part Feeding 7.0 Introduction & Software Rev.10

2.4.3 Flip & Separate - Automatic Calibration

To perform the flip and separate calibration, select the [Automatic Calibration] tab on the
screen below.

This item is displayed as “Sparate” when Flip is disabled. (See “2.3.1 General”)

The [Automatic Calibration] tab will not appear if the platform type (see 2.3.2 Vibration)
is set to “Grooves”, “Holes”, or “Pockets”.

1. Description of display items

Item Description

Amplitude Displays the strength of the amplitude of the vibration after the
Automatic Calibration.
Unit: %

Duration Displays the duration time of the vibration after the Automatic
Calibration.
Unit: ms

2. Calibration

(1) Place the number of parts displayed in the instruction.
(2) Click the <Run> button.

Feeder starts vibrating and the optimal Amplitude and Duration will be determined.
The process can take several minutes to perform depending upon the physical
characteristics of the part (weight, size, material, surface friction etc…).

(3) Click the <Apply> button
The result saved.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 101

2.4.4 Flip & Separate - Test & Adjust

Test and adjust the flip and separate parameters.
This item is displayed as “Sparate” when Flip is disabled. (See “2.3.1 General”)
[Test & Adjust] tab on the screen below.

1. Description of display items

Item Description

Perform
centering before
separation

If checked, perform the centering operation before the separation
operation during the test operation.
This applies only to test operation.

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Duration Set the duration of the vibration.
Unit: ms

Frequency Set the frequency of the vibration.
Unit: Hz

2. Guidelines for adjustment

The objective is to have the parts evenly distributed across the platform.
Adjust the amplitude and frequency so that the part can disperse or reorient itself as
quickly as possible and do not fly off the platform.

Set the vibration time to the shortest time that the part can be fully dispersed or reoriented.

3. Test
(1) Put in an appropriate number of parts (e.g., optimal number of parts).
(2) Click the <Run> button.
(3) Check the operation.

Adjust the parameters as needed and click the <Run> button again.
(For more detail, see 2.4.14 How to adjust feeder parameters.)

Software 2. Part Feeding GUI

102 Part Feeding 7.0 Introduction & Software Rev.10

2.4.5 Centering - Automatic Calibration

Perform centering calibration.
Select the [Automatic Calibration] tab on the screen below.

The [Automatic Calibration] tab will not appear if the platform type (see 2.3.2 Vibration)
is set to “Grooves”, “Holes”, or “Pockets”.

The [Automatic Calibration] tab is not displayed for the IF-80.

1. Description of display items

Item Description

Short axis centering time The duration of the short axis centering is displayed.
Unit: ms

Long axis centering time The duration of the long axis centering is displayed.
Unit: ms

2. Calibration

(1) Place the number of parts displayed in the instruction.
(2) Click the <Run> button.

Feeder starts vibrating and the optimal centering times will be determined.
(3) Click the <Apply> button

The result saved.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 103

2.4.6 Centering - Test & Adjust

Test and adjust the centering parameters.

Select the [Test & Adjust] tab on the screen below.

1. Description of display items

Item Description

Centering to test Select the type of centering behavior you want to test.
 Long Axis + Short Axis

 Short Axis + Long Axis

 Long Axis

 Short Axis

Center By Shift

Long axis parameters
Short axis parameters

Choose which centering axis you want to adjust.
It is not displayed when “Center By Shift” is selected.

Amplitude Set the strength of the amplitude of the vibration.
Unit: %
It is not displayed when “Center By Shift” is selected.

Software 2. Part Feeding GUI

104 Part Feeding 7.0 Introduction & Software Rev.10

Item Description

Duration Set the duration of the vibration.
Unit: ms
It is not displayed when “Center By Shift” is selected.

Frequency Set the frequency of the vibration.
Unit: Hz
It is not displayed when “Center By Shift” is selected.

2. Guidelines for adjustment

Adjust the amplitude and frequency so that the parts concentrate in the specified direction
as quickly as possible.
Set the vibration time to the time it takes centering to complete.

3. Test

(1) Put in an appropriate number of parts (e.g., optimal number of input parts).
(2) Click the <Run> button.
(3) Check the operation.

Adjust the parameters as needed and click the <Run> button again.
(For more detail, see 2.4.14 How to adjust feeder parameters.)

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 105

2.4.7 Region - Automatic Calibration

Performs the calibration of the pick region shifting.
This item is displayed when “Pick region” selected. (See 2.3.6 Pick)

Select the [Automatic Calibration] tab on the screen below.

The [Automatic Calibration] tab will not appear if the platform type (see 2.3.2 Vibration)
is set to “Grooves”, “Holes”, or “Pockets”.

1.Description of display items

Item Description

Forward Duration Displays the time that is required to shift parts into the pick region.
Unit: ms

Forward Amplitude Displays the strength of the amplitude of the vibration.
Unit: %

Forward Frequency Displays the frequency of the vibration.
Unit: Hz

Back Duration Displays the time required to shift parts that have accumulated
against the platform wall back into the pick region.
Unit: ms

Back Amplitude Displays the strength of the amplitude of the vibration.
Unit: %

Back Frequency Displays the frequency of the vibration.
Unit: Hz

2. Calibration

(1) Place one part in the platform as displayed in the instruction
(2) Click the <Run> button.

Feeder starts vibrating and the optimal shift durations and amplitudes will be
determined.

(3) Click the <Apply> button.
The result saved.

NOTE

Software 2. Part Feeding GUI

106 Part Feeding 7.0 Introduction & Software Rev.10

2.4.8 Region - Test & Adjust

Test and adjust the parameters for pick region shifting.
This item is displayed when “Pick region” selected. (See 2.3.6 Pick)

Select the “Test & Adjust” tab on the screen below.

1. Description of display items

Item Description

Move parts forward into
region x
Move parts backward
into region x

Select a shifting direction.
“x” is the pick region (either A, B, C, or D) selected on the
Pick screen (see 2.3.6 Pick).
The shift direction will vary depending on the feeder
installation direction. The actual shift direction is displayed
in the upper right corner of the screen.

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Duration Set the duration of the vibration.
Unit: ms

Frequency Set the frequency of the vibration.
Unit: Hz

2. Guidelines for adjustment the Shift Forward and test

The Shift Forward is the process of moving parts into the specified pick region.
When the number of parts in the pick region decreases, the Shift Forward operation moves
parts from the standby area into the pick region.
The figure below shows the ideal result of the previous shift operation to region B.

Shift Forward

A B
Adjust the duration time so that the part moves the proper distance (half the length of the
platform’s edge). If the part moves too far, they will get stuck at the edge of the platform.
If the part is not moved enough, the area will not be supplied with enough parts, resulting
in inefficiency.

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 107

Adjust the amplitude and frequency so that the parts move properly (keep the distance of
each parts before the movement). If the part does not move smoothly, they will touch or
overlap each other, resulting in low efficiency.

(1) Put an appropriate number of parts (e.g. 1/2 of the optimal number of parts) into the
displayed region.

(2) Click the <Run> button.
(3) Check the operation.

Adjust the parameters as necessary and click the <Run> button again.
(For more details, see 2.4.14 How to adjust feeder parameters.)

3. Guidelines for adjustment the Shift Backward and test
The Shift Backward operation moves parts that have accumulated against the platform
wall back into the pick region.
The figure below shows the ideal result of the Shift Backward operation to region B.

Shift Backward

A B
Adjust the duration time (and amplitude or frequency) so that the part moves an
appropriate distance (enough so that the part near the corner of the platform returns to the
pick region). Moving the part too far will cause the part to move out of the region, which
is inefficient.

(1) Put an appropriate number of parts (e.g. 4 pcs) into the corner of the displayed region.
(near the edge the platform)

(2) Click the <Run> button.
(3) Check the operation.

Adjust the parameters as necessary and click the <Run> button again.
(For more detail, see 2.4.14 How to adjust feeder parameters.)

Software 2. Part Feeding GUI

108 Part Feeding 7.0 Introduction & Software Rev.10

2.4.9 Shift - Test & Adjust (Simple)

Test and adjust the shift parameters.

Select the [Test & Adjust (Simple)] tab on the screen below.

1. Description of display items

Item Description

Shift direction Select the direction of the shift you want to test.
Shift direction Direction to move parts
Forward

Forward Left

Forward Right

Left

Right

Backward

Backward Left

Backward Right

The shift direction will vary depending on the feeder installation
direction. The actual shift direction is displayed in the upper right
corner of the screen.

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Duration Set the duration of the vibration.
Unit: ms

Frequency Set the frequency of the vibration.
Unit: Hz

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 109

2. Guidelines for adjusting
Adjust the amplitude and frequency so that the part moves as quickly and smoothly as
possible in the specified direction.
Set the duration time to the time it takes to complete the intended motion.

3. Test

(1) Put an appropriate number of part (e.g., 4 pcs).
(2) Click the <Run> button.
(3) Check the operation.

Adjust the parameters as necessary and click the <Run> button again.
(For more detail, see 2.4.14 How to adjust feeder parameters.)

Software 2. Part Feeding GUI

110 Part Feeding 7.0 Introduction & Software Rev.10

2.4.10 Shift - Test & Adjust (Advanced)

Test and adjust the shift parameters.

Select the [Test & Adjust (Advanced)] tab on the screen below.

1. Description of display items

Item Description

Shift direction Select the direction of the shift you want to test.
Shift direction Direction to move parts
Forward

Forward Left

Forward Right

Left

Right

Backward

Backward Left

Backward Right

The shift direction will vary depending on the feeder installation
direction. The actual shift direction is displayed in the upper right
corner of the screen.

Duration Set the duration of the vibration. This value is common to all
actuators.
Unit: ms

Actuator 1
Actuator 2
Actuator 3
Actuator 4

Select the actuator (the vibrating element inside the feeder) to be set.
The position of the actuator will be displayed in the upper right
corner of the screen.

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 111

Item Description

Frequency Set the frequency of the vibration. This value is common to all
actuators.
Unit: Hz

2. Guidelines for adjustment
Adjust the amplitude and frequency so that the part moves as quickly and smoothly as
possible in the specified direction.
Set the duration time to the time it takes to complete the intended motion.

3. Test

(1) Put an appropriate number of part (e.g., 4 pcs).
(2) Click the <Run> button.
(3) Check the operation.

Adjust the parameters as necessary and click the <Run> button again.
(For more detail, see 2.4.14 How to adjust feeder parameters.)

Software 2. Part Feeding GUI

112 Part Feeding 7.0 Introduction & Software Rev.10

2.4.11 Purge - Automatic Calibration (for IF-80)

To perform the purge calibration (IF-80 feeder only), select the [Automatic Calibration]
tab on the screen below.
This item is displayed when Purge enabled. (See 2.3.8 Purge)

The [Automatic Calibration] tab will not appear if the platform type (see 2.3.2 Vibration)
is set to “Grooves”, “Holes”, or “Pockets”.

1. Description of display items

Item Description

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Duration Set the duration of the vibration.
Unit: ms

Frequency Set the frequency of the vibration.
Unit: Hz

2. Calibration

(1) Empty the purge box (optional).
(2) Place the number of parts displayed in the instruction.
(3) Click the <Run> button.

Feeder starts vibrating, the optimal Amplitude, Duration and Frequency will be
determined.
The process can take several minutes to perform depending upon the physical
characteristics of the part (weight, size, material, surface friction etc…).

(4) Click the <Apply> button.
The result saved.

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 113

2.4.12 Purge - Test & Adjust

Test and adjust the purge parameters.
This item is displayed when Purge enabled. (See 2.3.8 Purge)

1. Description of display items

Item Description

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Duration Set the duration of the vibration.
Unit: ms

Frequency Set the frequency of the vibration.
Unit: Hz

Purge Gate Operate the Purge Gate.

 Purge Gate Closed Status indicator for the Purge Gate sensor
Closed : Green, Not closed : Gray

Open / Close Allows opening and closing of the Purge Gate

Even if the vibration amplitude is set to 0%, the feeder will still vibrate slightly.
This is a specification.

Purge Gate Closed will only be visible if the “Purge Gate Installed” check box was
checked in the EPSON RC+ 7.0-Menu-[Setup]-[System Configuration]-[Controller]-[Part
Feeders].

If you try to move to another tab when the Purge Gate is not closed, the dialog “Purge gate
will now be closed. Continue?” is displayed. Press OK to close the Purge Gate.

NOTE

NOTE

NOTE

Software 2. Part Feeding GUI

114 Part Feeding 7.0 Introduction & Software Rev.10

2. Guidelines for adjustment
Adjust the amplitude and frequency so that the part is ejected from the feeder as quickly as
possible.
Set the vibration time to the time it takes for the parts to be completely ejected.

3. Test

(1) Put the appropriate number of parts (e.g., the optimum number of parts).
(2) Open the purge gate (provided by the customer).

In the case of the IF-80, empty the purge box (optional).
(3) Check the operation.

Adjust the parameters as necessary and click the <Run> button again.
(For more detail, see 2.4.14 How to adjust feeder parameters.)

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 115

2.4.13 Hopper - Test & Adjust (for IF-80)

Adjust the hopper parameters (IF-80 feeder only).

1. Description of display items

Item Description

Amplitude Set the strength of the amplitude of the vibration.
Unit: %

Duration Set the duration of the vibration.
Unit: ms

Frequency Set the frequency of the vibration.
Unit: Hz

2. Guidelines for adjustment

Adjust the amplitude and frequency so that the part moves smoothly.
Adjust the amount and condition of the parts in the hopper so that the parts are fed at a
constant speed. In some cases, a divider plate can be attached to the hopper outlet to adjust
the speed.

3. Test

(1) Load the appropriate number of parts (e.g., 5 to 10 times the optimal number of parts)
into the hopper.

(2) Empty the purge box (optional).
(3) Click the <Run> button.
(4) Check the operation.

Adjust the parameters as necessary, return the part to the hopper, and click the <Run>
button again.

Software 2. Part Feeding GUI

116 Part Feeding 7.0 Introduction & Software Rev.10

2.4.14 How to adjust feeder parameters

Each parameter is pre-set to the appropreate value.
Therefore, you usually do not need to adjust these parameters manually.

1. Vibration amplitude

Setting a higher value speeds up the movement of the part. This reduces the time it takes to
distribute and move parts and reduces cycle times.
On the other hand, if you increase the value too much, parts may jump out of the platform.
The preferred method is to set a minimum value that is determined to be sufficient to move
or distribute the part.

2. Vibration duration

Setting a longer time increases the amount of variance and movement of the part. This has
the effect of increasing the number of parts that can be obtained in a per feeder operation.
On the other hand, if you increase the value too much, the cycle time will be longer. The
preferred method is to set a minimum value that is determined to be sufficient to move or
distribute the part.

3. Vibration frequency

This value is preset to the resonant frequency, which is based on the weight of the
platform and the spring constant of the feeder. Therefore, when working with heavy parts
(such as metal), setting a value that is a little smaller than the set value may improve
operation. In addition, changing the frequency when using a custom platform may improve
the behavior of the part.
If you change this value, side effects such as changes in the movement behavior of the part
may occur, so be careful when changing the value.

If the frequency is changed, the vibration noise produced may become louder. This is not a
fault.

If you are concerned about the vibration noise, change the frequency by a few Hz from the
frequency at which the noise is loudest (= the resonance frequency).

NOTE

Software 2. Part Feeding GUI

Part Feeding 7.0 Introduction & Software Rev.10 117

2.5 [File] Menu
You can work with Part Feeding files in the EPSON RC+ 7.0 - Menu - [File].

2.5.1 [Import] (File Menu)

You can import parts from other EPSON RC+ 7.0 projects.

(1) Select EPSON RC+ 7.0 - Menu - [File] - [Import].

(2) Select “PartFeeding (*.pf)” for file type.

(3) Use the following screen to import files.

Item Description

Select part to import Selects the part to import.

Add as a new part Select this to add the part as a new part.
Overwrite an existing part Select this to overwrite existing part data.

Select part to overwrite Select the part to overwrite when “Overwrite an
existing part” is selected.

Software 3. Part Feeding SPEL+ Command Reference

118 Part Feeding 7.0 Introduction & Software Rev.10

3. Part Feeding SPEL+ Command Reference
This section provides a description of Part Feeding SPEL+ commands that can be used
from user-created SPEL+ programs. The following is the list of commands.

Command/Function Description/Application
PF_AccessFeeder Get a lock for robot accessing feeder
PF_ActivePart Switching the active part when operating multiple parts
PF_Abort Forces the Part Feeding process to stop
PF_Backlight Used to control backlight on and off at runtime when

the vision callback is used
PF_BacklightBrightness Sets the backlight brightness at runtime
PF_Center Operate Centering behavior
PF_CenterByShift Operate Centering behavior by shift
PF_Flip Operate flip behavior
PF_Info function Retrieves Part Feeding properties
PF_InitLog Enables log file output and specifies the destination

path
PF_IsStopRequested function Returns whether the PF_Stop command has been

issued
PF_Name$ function Retrieves the part name from the part ID
PF_Number function Retrieves the part ID from the part name
PF_Purge function Starts purge motion
PF_Output Turns the feeder output terminal on or off Used when

controlling two hoppers.
PF_OutputOnOff Turns the feeder output terminal on or off Used when

controlling an individual hopper.
PF_PurgeGate Controls the opening and closing of the purge gate
PF_PurgeGateStatus Get the status of the purge gate close sensor.
PF_QtyAdjHopperTime function Returns the estimated amount of time that is required

to supply the optimal number of parts.
PF_QueAdd Adds data (point data, part orientation, user data) to the

coordinates queue
PF_QueAutoRemove Configures the auto remove function for the

coordinates queue
PF_QueAutoRemove function Returns the status of the auto remove function for the

coordinates queue
PF_QueGet function Retrieves point data from the coordinates queue
PF_QueLen function Returns the data quantity registered to the coordinates

queue
PF_QueList Displays the coordinates queue data list
PF_QuePartOrient Resets and displays the part orientation (integer)

registered to the coordinates queue
PF_QuePartOrient function Returns the part orientation registered to the

coordinates queue
PF_QueRemove Deletes data in the coordinates queue
PF_QueSort Sets and displays the coordinates queue sorting method
PF_QueSort function Returns the coordinates queue sorting method
PF_QueUserData Resets and displays the user data (real) registered to the

coordinates queue
PF_QueUserData function Returns the user data (real) registered to the

coordinates queue
PF_ReleaseFeeder Release the lock getting by PF_AccessFeeder
PF_Shift Operate shift behavior
PF_Start Starts the Part Feeding process
PF_Stop Issues a Part Feeding process stop request

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 119

PF_Abort

Forces the Part Feeding process to stop for the specified part.

Syntax

PF_Abort part ID

Parameters
part ID Specify the part ID (integer number from 1 to 32).

Return Values

None

Description
Immediately aborts the Part Feeding process for the specified part.
Unlike PF_Stop, this aborts the callback function in progress.
Nothing will occur when using this function when the Part Feeding process has not been started.
When operating in multi-part, any PartID set in PF_Start can be specified.
Cannot be executed from a virtual controller or command window.

Example

PF_Abort 1

Software 3. Part Feeding SPEL+ Command Reference

120 Part Feeding 7.0 Introduction & Software Rev.10

PF_AccessFeeder

PF_AccessFeeder locks access to a feeder to prevent potential collisions on a multi-robot / one feeder
system. This statement is required when two robots are sharing the same feeder at the same time.
PF_AccessFeeder gets a lock for the robot accessing a feeder. When the lock has already been acquired,
PF_AccessFeeder pauses the task until the lock is released or until the specified timeout (optional) is
reached. After the robot finishes using a feeder, it must release the lock using the PF_ReleaseFeeder
statement in order to relinquish the feeder to the other robot (please refer to the PF_ReleaseFeeder
Statement for more information).

Example:
Task 1 executes PF_AccessFeeder 1, then Task 1 continues.
Task 2 executes PF_AccessFeeder 1, then Task 2 is paused.
Task 1 executes PF_ReleaseFeeder 1, then Task 2 is resumed.

This command is used for exclusive control in a multi-robot configuration.

Syntax
PF_AccessFeeder feeder number / feeder name [, timeout]

Parameters
feeder number Specify the feeder number (integer number) as an expression or a numerical value.
feeder name Specify the feeder name as a character string.
timeout Specify the timeout (in seconds) for waiting for the lock to be released as an expression

or a number (real number). Optional.

Return Values
None

Description
When timeout is specified, the result can be determined by the return value of the TW function (see
EPSON RC+ 7.0 SPEL+ Language – TW Function).
 False - The lock was released or the lock was successfully acquired.
 True - Timeout has been reached .
The behavior of the feeder is unaffected by the acquisition/release of locks.
At the end of the task, the locks acquired in that task are automatically released.
If the PF_AccessFeeder is executed twice in a row for the same feeder in the same task, an error occurs.
Cannot be executed from a virtual controller or command window.

Example

Here is an example of picking a part on one feeder with two robots.
Robot 1 gets the part on the feeder and moves to point place1.
When robot 1 reaches 50% of the movement path, robot 2 moves to get the part.

Function Main

 MemOff PartsToPick

Motor On

 PF_Start 1

 Xqt Robot1PickPlace
 Xqt Robot2PickPlace
Fend

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 121

Function Robot1PickPlace
 Robot 1
 Do
 If MemSw(PartsToPick) = On
 If PF_QueLen(1) > 0 Then
 PF_AccessFeeder 1
 P0 = PF_QueGet(1)
 PF_QueRemove 1
 Jump P0 /R
 On 5
 Wait .5
 Jump place ! D30; PF_ReleaseFeeder 1 !
 Off 5
 Wait .25
 Else
 MemOff PartsToPick
 EndIf
 EndIf
 Wait 0.1
 Loop
Fend

Function Robot2PickPlace
 Robot 2
 Do
 If MemSw(PartsToPick) = On Then
 If PF_QueLen(2) > 0 Then
 PF_AccessFeeder 1
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /R
 On 5
 Wait .5
 Jump place ! D30; PF_ReleaseFeeder 1 !
 Off 5
 Wait .25
 Else
 MemOff PartsToPick
 EndIf
 EndIf
 Wait 0.1
 Loop
Fend

Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 MemOn PartsToPick
 Wait MemSw(PartsToPick) = Off
 Case 2
 MemOn PartsToPick
 Wait MemSw(PartsToPick) = Off
 Send
 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 3. Part Feeding SPEL+ Command Reference

122 Part Feeding 7.0 Introduction & Software Rev.10

PF_ActivePart

Switch the active part during multi-part operation. The PF_ActivePart Statement tells the system what part
is currently desired. The system will vibrate or supply parts so that the PF_ActivePart is available for the
robot to pick up.

Syntax
PF_ActivePart part ID

Parameters
part ID Specify the part ID (integer number from 1 to 32).

Return Values
None

Description
In the case of multi-part operation, the first Part ID in PF_Start Statement is the initial Active Part. When a
different part is desired, you can use this command to switch the Active Part. The system will feed (use the
correct vibration settings, supply parts from the hopper etc…) for the Part ID that was specified in the
PF_ActivePart Statement.
The ActivePart is normally set prior to exiting the PF_Robot callback so that the feeding action will be
specific to the desired part.
If no Part Feeding operation has started, this command has no effect.
When it is not a multi-part operation (i.e., when only one ID is specified at the time of PF_Start execution),
this command has no effect.
When you specify a Part ID that was not used in the multi-part operation, this command has no effect.
Cannot be executed from a virtual controller or command window.

Example
This example illustrates how to alternate between Parts 1 and 2 using the PF_ActivePart
statement.

Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 If PF_QueLen(1) > 0 Then
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 PF_ActivePart 2 ‘Switch to Part 2
 Else
 PF_ActivePart 1 ‘Part 1 is still needed
 EndIf
 Case 2
 If PF_QueLen(2) > 0 Then
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 PF_ActivePart 1 ‘Switch to Part 1
 Else
 PF_ActivePart 2 ‘Part 2 is still needed
 EndIf
 Send
 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 123

PF_Backlight

Turns the built-in backlight on or off.

Syntax

PF_Backlight feeder number | feeder name, On | Off

Parameters
feeder number Specify the feeder number (integer number from 1 to 4) as an expression or a numerical

value.
feeder name Specify the feeder name as a character string.
On/Off Set On/Off.

Return Values

None

Description
When the system is controlling vision, the backlight is automatically turned on and off as needed. Use this
command to control the built-in backlight on status when the system is not controlling vision.
In the case of IF-80, the backlight turns off automatically after 30 seconds. (The time changes depend to the

brightness) If the backlight turns off automatically, PF_Backlight Off command must be executed before
the backlight can be turned on again.

Cannot be executed from a virtual controller or command window.

Example
PF_Backlight 1, On

Software 3. Part Feeding SPEL+ Command Reference

124 Part Feeding 7.0 Introduction & Software Rev.10

PF_BacklightBrightness

Sets the brightness for the built-in backlight.

Syntax

PF_BacklightBrightness feeder number | feeder name, brightness

Parameters
feeder number Specify the feeder number (integer number from 1 to 4) as an expression or a numerical

value.
feeder name Specify the feeder name as a character string.
brightness The percentage of brightness (integer number) from 0 to 100%.

Return Values

None

Description
Normally, the built-in backlight brightness to be used for a part is set in the Part Feeding Configuration
dialog. If changes to brightness are required at runtime, you can use this command to change it.
Cannot be executed from a virtual controller or command window.

Although the percentage of brightness can be set from 0 to 100%, the minimum, physical intensity may
be limited depending upon the feeder model. The physical brightness is limited because even
illumination cannot be achieved below certain brightness settings.

Feeder Model Brightness Setting Physical Brightness Intensity
IF-80 No limitation No limitation
IF-240 <=25% 25%
IF-380 <=1% 1%
IF-530 <=1% 1%

If you would like 0% backlight brightness, use the PF_Backlight statement to turn off thebacklight.

Example
PF_BacklightBrightness 1, 80

NOTE

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 125

PF_Center

Perform the feeder centering operation.
Available with IF-240, 380 and 530. Not available on IF-80.

Syntax
PF_Center Part ID, Direction [, Duration]

Parameters
Part ID Specifies the part ID (integer value 1 to 32).
Direction Specifies the direction of the centering.

Direction Value (defined by PartFeeding.inc) Direction to move parts
Long axis PF_CENTER_LONG_AXIS

Short axis PF_CENTER_SHORT_AXIS

Duration Specifies the operating time (integer value 1 to 30000 in milliseconds).

When omitted, the value calculated by feeder calibration is used.
When integer value is -1, the operation is same as omitted one.

Return Values

None

Description
Performs the centering operation of the IF series feeder.
PF_Center is used in the following cases:

- The parts need to be centered before separation
- Align the direction of the long and thin parts.

This command can be used directly within your functions. It can also be executed inside any part feeding
callback functions when PF_Start has been executed.

It cannot be run under the following conditions:
- When executed in a user function

The feeder specified in this command (specified by the Part ID) is used in the PartFeeding process
(PF_Start command) (Error 7733)

- When executed in a callback function
Specified part ID is not set for the PF_Start command (Error 7733)

- When executed from a virtual controller or command window. (Error 2582)

This command uses SyncLock for internal processing. For details, please refer to 1.3.6 Functions used by
Part Feeding process .

Example
PF_Center 1,1

Software 3. Part Feeding SPEL+ Command Reference

126 Part Feeding 7.0 Introduction & Software Rev.10

PF_CenterByShift

Perform centering by shifting.

Syntax
PF_CenterByShift Part ID

Parameters
Part ID Specifies the part ID (integer value 1 to 32).

Return values
None

Description
Perform centering by shifting.

This command is executed in following situation.
- Collect parts in the center before distributing
- Collect parts in the center when hand interferes with platform

When this command is executed, the Part Blob vision sequence is run. The combined center of gravity of
all parts on the feeder is calculated. The combined center of gravity is shifted to the center of the feeder.
If the combined center of gravity is already near the center of the feeder then no shifting will be performed.

It cannot be run under the following conditions.

- When executed in a user function:
The feeder specified in this command (specified by the Part ID) is used in the PartFeeding process
(PF_Start command) (Error 7733)

- When executed in a callback function:
Specified part ID is not set for the PF_Start command (Error 7733)

- When executed from a virtual controller or command window. (Error 2582)

This command uses SyncLock for internal processing. For details, please refer to 1.3.6 Functions used in
PartFeeding process .

Example
PF_CenterByShift 1

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 127

PF_Flip

Perform the flip operation.

Syntax
PF_ Flip Part ID [, Duration]

Parameters
Part ID Specifies the part ID (integer value 1 to 32).
Duration Specifies the operating time (integer value 1 to 30000 in milliseconds).

When omitted, the value calculated by feeder calibration is used.
When integer value is -1, the operation is same as omitted one.

Return value

None

Description
Performs the Flip operation.
PF_Flip is used in the following cases.
- Dispersing parts (by long operation time)
- Re-orient the parts (by short operation time)

It cannot be run under the following conditions.

- When executed in a user function:
The feeder specified in this command (specified by the Part ID) is used in the PartFeeding process
(PF_Start command) (Error 7733)

- When executed in a callback function:
Specified part ID is not set for the PF_Start command (Error 7733)

- When executed from a virtual controller or command window. (Error 2582)

This command uses SyncLock for internal processing. For details, please refer to 1.3.6 Functions used in
PartFeeding process .

Example
PF_Flip 1,500

Software 3. Part Feeding SPEL+ Command Reference

128 Part Feeding 7.0 Introduction & Software Rev.10

PF_Info Function

Retrieves part properties.

Syntax

(1) PF_Info(part ID, property ID)
(2) PF_Info(part name, property ID)

Parameters

part ID Specify the part ID (integer number 1 to 32).
part name Specify the part name (character string).
property ID Specify the property ID.

Properties that can be retrieved are as follows.

Property ID Details

PF_INFO_ID_FEEDER_CALIB_CORRECT_MAXNUM

Results of calibration for the optimum
number of parts
Used to calculate the number of parts to
feed.

PF_INFO_ID_FEEDER_NO Returns the feeder number used by the
part.

PF_INFO_ID_ROBOT_NO Returns the robot number used by the
part.

Return Values

Returns the value of the property specified.

Description
Returns part property values. Use this value to customize system behavior within the callback function.
Cannot be executed from a virtual controller or command window.

Example

Refer to 4. Part Feeding Callback Functions PF_Control for more details.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 129

PF_InitLog

Enables Part Feeding log file output and specifies the destination path.
This should be executed before PF_Start.
To output log files, the Controller must be connected to the PC on which RC+ is installed.
For more information on Part Feeding log files, refer to 5. Part Feeding Log File.

Syntax

PF_InitLog part ID, output path, append

Parameters
part ID Specify the part ID (integer number from 1 to 32).
output path Specify the log file output destination path (file path on the PC + file name).
append Set to True to append data when the specified output path exists.

Set to False to overwrite the file.

Return Values

None

Description
Run this function from the same task as the task running PF_Start. A log will not be created when this
function is run from a different task.
Nothing will occur when using this function if the Part Feeding process has not been started.
A log will not be created when running this function while the Controller is not connected to the PC. Note
that this will not cause an error to occur.
An error will occur when running PF_Start and the path does not exist, or when the system fails to write
data to the file. Note that an error will not occur when running this function.
Cannot be executed from a virtual controller or command window.
User vibration commands (PF_Center, PF_CenterByShift, PF_Flip, PF_Shift) will be logged when they are
executed inside of part feeding callback functions and PF_Start has been executed.
If user vibration commands are executed when PF_Start is not running then the vibrations will not be
logged.
This command uses Timer for internal processing. For details, please refer to 1.3.6 Functions used in
PartFeeding process .

Example

Refer to the usage example provided for PF_Start.

Software 3. Part Feeding SPEL+ Command Reference

130 Part Feeding 7.0 Introduction & Software Rev.10

PF_IsStopRequested Function

Checks whether a Part Feeding process end request has been issued (whether PF_Stop has been executed).
This is normally used within a callback function.

Syntax

PF_IsStopRequested(part ID)

Parameters
part ID Specify the part ID (integer number from 1 to 32).

Return Values

True is returned when PF_Stop has been called while the Part Feeding process is running.
False is returned in all other circumstances.

Description

This is used to determine whether a Part Feeding end request has been issued within a callback function.
When running loop processing, etc., code the program so that this function is called for each loop,
discontinuing the loop and ending the callback function when an end request is issued.

In the case of multi-part operation, you can specify one of the part IDs specified by PF_Start.
For example, if you run PF_Start 1, 2, 3, 4, then PF_Stop 2 is executed, you can check exit request with
this function by using Part ID1,2,3 or 4.
Cannot be executed from a virtual controller or command window.

Example

Refer to 4. Part Feeding Callback Functions PF_Robot for more details.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 131

PF_Name$ Function

Returns the part name from a part ID.

Syntax

PF_Name$(part ID)

Parameters

part ID Specify the part ID (integer number from 1 to 32).

Return Values
Returns the name of the specified part ID as a character string.

Description
This will return “” (blank string) if the specified part ID is invalid.
Cannot be executed from a virtual controller or command window.

Example

Print PF_Name$(1)

Software 3. Part Feeding SPEL+ Command Reference

132 Part Feeding 7.0 Introduction & Software Rev.10

PF_Number Function

Returns a part ID from a part name.

Syntax

PF_Number(part name)

Parameters

Part name Specify the part name (character string).

Return Values
Returns the part ID (integer number from 1 to 32) for the specified part name.

Description
Returns −1 if the corresponding part name does not exist.
If multiple parts with the same name exist, the part with the smallest ID will be retrieved.
Cannot be executed from a virtual controller or command window.

Example

Print "Part1 part number = ", PF_Number("Part1")

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 133

PF_Output

Turns the feeder output terminal on and off.
When two hoppers are connected to a feeder and parts are fed from each hopper, the ON time of each
hopper can be specified.

Syntax

PF_Output feeder number/feeder name, Output 1 duration, Output 2 duration

Parameters

feeder number Specify the feeder number (integer number from 1 to 4) as an expression or a numerical
value.

feeder name Specify the feeder name as a character string.
Output 1 duration Specifies the ON time (integer value). 1 - 30000[ms] can be specified.

0 means that the device remains OFF.
Output 2 duration Specifies the ON time (integer value). 1 - 30000[ms] can be specified.
 0 means that the device remains OFF.

Return Values

None

Description
Control will return immediately after this command is executed. If you wish to wait for the hopper
operation to finish, use the Wait command immediately after executing this command.
If this command is executed during feeder vibration or hopper operation, those operations will be stopped
and the operation specified by this command will be started.
If you want to execute feeder vibration and hopper operation at the same time, please use the
PF_OutputOnOff command.
When the PF_Abort command or PF_Stop command is executed, it will turn OFF.
Cannot be executed from the virtual controller or command window.
If “Hopper installed” is not checked in [System Configuration] - [Controller] - [Parts Feeder], error 2584
(Purge Gate is not valid.) will occur.
Cannot be used with IF-80 (error 2589 “Action command call that the feeder cannot execute” occurred),
please use PF_OutputOnOff command.

Software 3. Part Feeding SPEL+ Command Reference

134 Part Feeding 7.0 Introduction & Software Rev.10

Example
PF_Output 1, 700, 1000

The output from the output terminal will be as follows:

PF_Output 1, 0, 700

The output from the output terminal will be as follows:

OUT1

OUT2

0 700 1000 ms

OUT1

OUT2

0 700 ms

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 135

PF_OutputOnOff

Turns the feeder output terminal on and off.
Set this command to On to supply parts from a hopper. Set the value to Off to stop supplying parts from a
hopper.
The IF-80 has a built-in hopper. Optional hoppers are available for other feeder models.

Syntax

(1) PF_OutputONOFF feeder number/feeder name, On, output number [, duration] [, wait]
(2) PF_OutputONOFF feeder number/feeder name, Off

Parameters

feeder number Specify the feeder number (integer number from 1 to 4) as an expression or a numerical
value.

feeder name Specify the feeder name as a character string.
On/Off Set On/Off.
output number Specify the output destination. This can be specified when the command is set to On.

1: Out terminal 1
2: Out terminal 2

duration Specify the duration to turn On.
Specify an integer value between 1 - 30000 [ms].
Setting this to 0 or omitting this value will set this command to always remain On.

wait Specify whether waiting the operation completed or not. Only for IF-80.
0: Does not wait for hopper operation to be completed.
1: Wait for hopper operation to be completed.

Return Values

None

Description
Control will return immediately after running this command (including the case where the wait setting is 0
for IF-80). Use the Wait command as shown in the example to wait for the hopper to complete its actions.
Output terminals 1 and 2 cannot both be turned On at the same time. For example, turning terminal 1 On
will turn terminal 2 Off.
When set to Off, both terminals 1 and 2 will be Off.
Output will turn Off when the PF_Abort command or the PF_Stop command is run.
If “Hopper installed” is not checked in [System Configuration]-[Controller]-[Parts Feeder], error 2584
(Purge Gate is not valid.) will occur.
Cannot be executed from a virtual controller or command window.
When a purge gate is used with the IF-240, Out pin 2 is used to control the purge gate. Therefore, setting
the output number to 2 will not change the output of Out 2, although it can be executed.

Example

Refer to 4. Part Feeding Callback Functions PF_Control for more details.

Software 3. Part Feeding SPEL+ Command Reference

136 Part Feeding 7.0 Introduction & Software Rev.10

PF_PurgeGate

Controls the opening and closing of the purge gate (optional).

Syntax

PF_PurgeGate feeder number/feeder name, On/Off

Parameters

feeder number Specify the feeder number (integer number from 1 to 4) as an expression or a numerical
value.

feeder name Specify the feeder name as a character string.
On/Off Set On(1) / Off(0).

When On is specified, the purge gate opens.
When Off is specified, the purge gate closes.

Return Values

None

Description
Control will be returned immediately after this command is executed.
If you wish to wait for the hopper operation to finish, please refer to the Example of PF_PurgeGateStatus.
If “Purge gate installed” is not checked in [System Configuration] - [Controller] - [Parts Feeder], error
2593 (Feeder purge output is not valid) will occur.
This function cannot be executed from the virtual controller or command window.
PF_Stop, Abort, emergency stop and safeguard open does not immediately stop the purge gate open and
close.

Example 1

Wait for the purge gate to open, and then perform the next operation.

PF_PurgeGate 1, On
Wait 5.0

‘ Next action

Example 2
Wait for the purge gate to close, and then perform the next operation.
Note: If the purge gate becomes overloaded during the closing operation (e.g. a part gets caught), it will
automatically switch to the opening operation. The following program is an example of using
PF_PurgeGateStatus to detect this.

Integer looplim
looplim = 50
PF_PurgeGate 1, Off
Do While PF_PurgeGateStatus(1) = On And looplim > 0
 Wait 0.1
 looplim = looplim -1
Loop
If looplim <= 0 Then
 ‘ Error Purge gate cannot close
EndIf

‘ Next action

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 137

PF_PurgeGateStatus Function

Get the close sensor status of the purge gate (optional).

Syntax

PF_PurgeGateStatus(feeder number/feeder name)

Parameters

feeder number Specify the feeder number (integer number from 1 to 4) as an expression or a numerical
value.

feeder name Specify the feeder name as a character string.

Return Values

False if the close sensor is On (the gate is closed).
True if the close sensor is Off (the gate is not closed).

Description
The purge gate has a close sensor, but no open sensor. In other words, when the purge gate is even slightly
open, this function returns True.
Control will be returned immediately after this command is executed.
If “Purge gate installed” is not checked in [System Configuration] - [Controller] - [Parts Feeder], error
2593 (Feeder purge output is not valid) will occur.
This function cannot be executed from the virtual controller or command window.

Example

Refer to the Example of PF_PurgeGate.

Software 3. Part Feeding SPEL+ Command Reference

138 Part Feeding 7.0 Introduction & Software Rev.10

PF_Purge Function

Purging (ejecting the parts on the feeder) is performed.
When the purge operation is performed (without success or not), the coordinate queue of the part specified
by the part ID is cleared.

Syntax
PF_Purge partID, type[, duration[, remain[, retry]]]

Parameters
partID Specify the part ID (integer number from 1 to 32).
type Specify the process.

Value (defined by PartFeeding.inc) Details

PF_PURGETYPE_NOVISION Without vision feedback.
Not count the number of remaining parts.

PF_PURGETYPE_VISION
With vision feedback.
Counts the number of remaining parts using
vision.

duration Specifies the purge time (in milliseconds)
This can be omitted. When omitted, the value set in “2.4.12 Purge - Test & Adjust” is
used.
When integer value is -1, the operation is same as omitted one.

remain Specifies the number of parts to retry purging operation.
This can be omitted.
When the operation type is PF_PURGETYPE_NOVISION, operation is not going to be
changed regardless of settings. When the operation type is PF_PURGETYPE_NOVISION,
retry is operated until remain is 0 if remain omitted.

retry Specifies the maximum number of retries to achieve that remain number of parts.
This can be omitted.
When the operation type is PF_PURGETYPE_NOVISION, operation is not going to be
changed regardless of settings. When the operation type is PF_PURGETYPE_VISION, if
the number of retries is omitted then purging will be performed until the “remain” number
of parts are remaining on the platform or all parts have been removed from the platform (in
the case that “remain” and “retry” have been omitted).

Return Values

Returns True when purging has completed successfully. Returns False if the number of parts remaining on
the feeder exceeds the remain value within the specified number of retries.

Description
The IF-80 has an available purge option (which consists of a special platform and a removable purge box).

The IF-240, IF-380 and IF-530 have an available Purge Gate option. The Purge Gate installation is enabled
from [Setup] – [System Configuration] – [Controller] – [Part Feeding] – [Feeder]. Each part that uses a
feeder with the Purge Gate installed, can either use or not use the Purge Gate. If the Purge Gate is used for
the part then the opening, the closing and the sensor detection will be automatically handled by the
PF_Purge statement.
The customer can also make their own purge door mechanism. In that case, the PF_Purge statement will
simply shift parts off of the feeder platform.
When the type is “PF_PURGETYPE_VISION”, the Part Blob Sequence is used to approximate the number
of parts on the platform.
To enable/disable purging and to determine the direction of the purge, refer to 2.2.11 Purge.
The IF-80 must be calibrated for purging. Set up in 2.4.11 Purge - Automatic Calibration (for IF-80).
When the purge is disabled and this function is called, an error occurs and the PF_Startus callback function
will be called with PF_STATUS_PURGENOTENABLED.
Cannot be executed from a virtual controller or command window.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 139

In EPSON RC+ 7.5.0, the remain and retry parameters were not optional even if the type = 1. For EPSON
RC+ 7.5.0, specify a value of “0” for remain and retry when type =1.

Examples
Example 1:

Purge Part #1 using vision feedback. Each purge duration is 1500 msec. 3 parts can remain on the
platform. 5 retries will be attempted.
Boolean purgeStatus

purgeStatus = PF_Purge(1, PF_PURGETYPE_NOVISION, 1500, 3, 5)
Print purgeStatus

Example 2:
Purge Part #1 without vision feedback. Purge for 2000 msec.

PF_Purge 1, PF_PURGETYPE_VISION, 2000

Software 3. Part Feeding SPEL+ Command Reference

140 Part Feeding 7.0 Introduction & Software Rev.10

PF_QtyAdjHopperTime Function

Returns the estimated amount of hopper operation time that is required to supply the optimal number of
parts.

Syntax

PF_QtyAdjHopperTime(partID, SupplyQty, SupplyTime)

Parameters
part ID Specify the part ID (integer number from 1 to 32).
SupplyQty Specify the quantity of parts (number of parts) that are supplied in the SupplyTime.
SupplyTime Specify the hopper operating time in milliseconds that is required to supply the quantity of

parts (number of parts) specified by SupplyQty.

Return Values

Returns the estimated amount of hopper operation time (ms).
The return value will be between 1 - 30000 [ms].
In the case of error, the return value will be 1.

Description
PF_QtyAdjHopperTime uses vision, to calculate the hopper operation time required to ensure that the
platform has the optimal number of parts (determined by feeder calibration). The return value is used as
the duration parameter for the PF_OutputOnOff statement.
The SupplyQty and SupplyTime are determined by the developer (using the Test Hopper button on the Part
Feeding Supply page). These values indicate how many parts are supplied in a given amount of time.

In the case of multi-part operation, the calculated operating time assumes that an equal quantity of each part
type is optimal. If PF_QtyAdjHopperTime is executed while parts are running on the feeder, then the Part
Blob vision sequence (for the supplied PartID) is run as well as each individual Part Sequence (for each
part in the PF_Start grouping). If PF_QtyAdjHopperTime is executed when no parts are running on the
feeder, then only the Part Blob Sequence (for the supplied PartID) is used.

This command cannot be executed from a virtual controller or command window.
This command cannot be used with mobile cameras.
If the User processes vision (i.e., the PF_Vision callback function is used) for any part running on the
feeder then PF_QtyAdjHopperTime will only use the Part Blob Sequence to determine the hopper
operation time for the part specified by the Part ID parameter.
Please note that if “Supply parts during pick and place” is selected (see “2.3.5 Part Supply”) and this
command is executed while the robot arm is in the camera’s field of view, the arm will be recognized as a
part and an incorrect hopper operation time may be returned.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 141

Example
This example uses the PF_Control callback to turn on the optional hopper for the estimated amount of time
that is necessary to supply the optimal quantity of parts. The hopper is adjusted to deliver 10 parts per
second (1000ms).

Function PF_Control(PartID As Integer, Control As Integer) As Integer
 Integer hopperOnTime

 Select Control
 'Request for part supply (add up to optimum number)
 Case PF_CONTROL_SUPPLY
 hopperOnTime = PF_QtyAdjHopperTime(PartID, 10, 1000)
 PF_OutputONOFF 1, On, 1, hopperOnTime
 Wait hopperOnTime / 1000
 Send

 PF_Control = PF_CALLBACK_SUCCESS
Fend

Software 3. Part Feeding SPEL+ Command Reference

142 Part Feeding 7.0 Introduction & Software Rev.10

PF_QueAdd

Adds data (point data, part orientation, user data) to the parts coordinates queue.

Syntax

PF_QueAdd part ID, point data [, part orient [, user data]]

Parameters
part ID Specify the part ID (integer number from 1 to 32).
point data Specify point data.
part orient Optional. Integer expression used to register the part orientation along with the point

data.
PF_PARTORIENT_FRONT=1 The part faces up.
PF_PARTORIENT_BACK=2 The part faces down.

user data Optional. Real expression used to register the user data along with the point data.

Return Values
None

Description
This is used to register data (point data, part orientation, user data) to the parts coordinates queue.
Under normal circumstances, PF_QueAdd is not needed as the parts coordinates queue is generated
automatically within the Part Feeding process. This is used when using unique vision processes (using the
PF_Vision callback function).
Data is added to the end of the parts coordinates queue for the specified part ID.
However, data will be registered according to the sorting method set should one be applied using
PF_QueSort.
Up to 1,000 data items can be retained in a parts coordinates queue.

Example
Refer to 4. Part Feeding Callback Functions PF_Vision for more details.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 143

PF_QueAutoRemove

Configures the auto remove function for the parts coordinates queue specified.

Syntax

PF_QueAutoRemove part ID, {True | False}

Parameters
part ID Specify the part ID (integer number from 1 to 32).
True | False False: Disables the auto remove function (default).

True: Enables the auto remove function.

Return Values

None

Description

Configures the auto remove function for the parts coordinates queue.
When the auto remove function is enabled, point data is automatically deleted from the parts coordinates
queue when using PF_QueGet to retrieve point data from the parts coordinates queue.
Point data is not deleted when the auto remove function is disabled. Use PF_QueRemove to delete point
data.
The auto remove function can be enabled/disabled for each part ID.

Example
PF_QueAutoRemove 1, True

Software 3. Part Feeding SPEL+ Command Reference

144 Part Feeding 7.0 Introduction & Software Rev.10

PF_QueAutoRemove Function

Returns the status of the auto remove function set for the parts coordinates queue.

Syntax

PF_QueAutoRemove (part ID)

Parameters
part ID Specify the part ID (integer number from 1 to 32).

Return Values
This is returned as “True” if the parts coordinates queue auto remove function is enabled, and “False” if it
is disabled.

Description
Refer to the description for PF_QueAutoRemove.

Example
Boolean autoremove
autoremove = PF_QueAutoRemove (1)

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 145

PF_QueGet Function

Returns point data from the parts coordinates queue.

Syntax

PF_QueGet (part ID [, index])

Parameters
part ID Specify the part ID (integer number from 1 to 32).
index Specify the index of the queue data to retrieve as an integer number.

The initial index value is 0. This can be omitted.

Return Values
Returns the point data.

Description

PF_QueGet retrieves point data from the parts coordinates queue. If the index is omitted, this function will
retrieve the initial queue data entry. If an index is specified, point data for the index specified will be
returned.
Point data is deleted by executing PF_QueGet when PF_QueAutoRemove is used to enable the auto
remove function for queue data.
Point data is not deleted when the auto remove function is disabled. Use PF_QueRemove to delete point
data.

Example
Refer to 4. Part Feeding Callback Functions PF_Robot for more details.

Software 3. Part Feeding SPEL+ Command Reference

146 Part Feeding 7.0 Introduction & Software Rev.10

PF_QueLen Function

Returns the amount of parts coordinates queue data registered to the parts coordinates queue.

Syntax

PF_QueLen (part ID)

Parameters
part ID Specify the part ID (integer number from 1 to 32).

Return Values
Returns the number of valid parts coordinates queue data entries registered as an integer number.

Description
Returns the current number of registered entries of parts coordinates queue data.
This can also be used as a Wait command parameter.

Example
Refer to 4. Part Feeding Callback Functions PF_Robot for more details.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 147

PF_QueList

Displays a list of parts coordinates queue data (point data) for the parts coordinates queue specified.

Syntax
PF_QueList part ID, [display count]

Parameters
part ID Specify the part ID (integer number from 1 to 32).
display count Specify the number of displayed data items as an integer number. This can be omitted.

All queue data will be displayed when this parameter is omitted.

Description
This can only be used on the Command window.

Example

Command window usage example

> PF_QueList 1
Queue 0 = XY(1.000, 1.000, 0.000, 0.000) /R /0 (1) (0.000)
Queue 1 = XY(3.000, 1.000, 0.000, 0.000) /R /0 (1) (2.000)
Queue 2 = XY(4.000, 1.000, 0.000, 0.000) /R /0 (1) (3.000)
Queue 3 = XY(5.000, 1.000, 0.000, 0.000) /R /0 (2) (4.000)
Queue 4 = XY(6.000, 1.000, 0.000, 0.000) /R /0 (2) (5.000)

Software 3. Part Feeding SPEL+ Command Reference

148 Part Feeding 7.0 Introduction & Software Rev.10

PF_QuePartOrient

Resets and displays the part orientation (integer number) registered to the parts coordinates queue.

Syntax
PF_QuePartOrient part ID [, index [, part orient]]

Parameters
part ID Specify the part ID (integer number from 1 to 32).
index Integer expression that represents the index of the parts coordinates queue data. (the

beginning of the index number is 0). Optional when executing from the command
window.

part orient Integer expression that represents the part orientation to be set again. This can be
omitted when executed from the command window. If omitted, the current part
orientation (integer expression) is displayed.
PF_PARTORIENT_FRONT=1 The part faces up.
PF_PARTORIENT_BACK=2 The part faces down.

Description

Resets and displays the part orientation currently registered to the parts coordinates queue.

If the Sort method is specified by PF_Sort, the order of the parts coordinates queue data is changed
according to the specified Sort method.

QUE_SORT_POS_PARTORIENT : Part orientation (integer expression) ascending order
QUE_SORT_INV_PARTORIENT : Part orientation (integer expression) descending order

See Also

PF_QuePartOrient Function

Example
PF_QuePartOrient 1, 1, PF_PARTORIENT_FRONT

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 149

PF_QuePartOrient Function

Returns the part orientation (integer value) registered to the parts coordinates queue.

Syntax

PF_QuePartOrient (part ID [, index])

Parameters

part ID Specify the part ID (integer number from 1 to 32).
index Optional. Integer expression that represents the index of the parts coordinates queue data.

(the first index number is 0).

Return Values
Returns part orient (integer value).

Description

PF_QuePartOrient retrieves the part orientation from the parts coordinates queue. If the index is omitted,
this function will retrieve the initial queue data entry. If an index is specified, part orientation for the index
specified will be returned.

Example
Refer to 4. Part Feeding Callback Functions PF_Robot for more details.

Software 3. Part Feeding SPEL+ Command Reference

150 Part Feeding 7.0 Introduction & Software Rev.10

PF_QueRemove

Deletes parts coordinates queue data (point data) from the parts coordinates queue specified.

Syntax

PF_QueRemove part ID [, index | All]

Parameters
part ID Specify the part ID (integer number from 1 to 32).
index Specify the index of the parts coordinates queue data to delete as an integer number.

The initial index value is 0. This can be omitted.
Specify All to delete all data items.

Return Values

None

Description
Deletes data (point data) from the parts coordinates queue.
This is used to delete data used from the parts coordinates queue.

Example
Refer to 4. Part Feeding Callback Functions PF_Robot for more details.

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 151

PF_QueSort

Sets and displays the sorting method applied to the parts coordinates queue specified.

Syntax

PF_QueSort part ID [,sort method]

Parameters

part ID Specify the part ID (integer number from 1 to 32).
sort method Set the sorting method using integer numbers (0 to 8), or with the constants described

below.
This can be omitted when running from the Command window.
When omitted, the current sorting method in use will be displayed.

Constant Value Description
QUE_SORT_NONE 0 Do not sort

(use the parts coordinates queue registration order)
QUE_SORT_POS_X 1 Sort in ascending order by the X coordinate
QUE_SORT_INV_X 2 Sort in descending order by the X coordinate
QUE_SORT_POS_Y 3 Sort in ascending order by the Y coordinate
QUE_SORT_INV_Y 4 Sort in descending order by the Y coordinate
QUE_SORT_POS_USER 5 Sort in ascending order by the user data.
QUE_SORT_INV_USER 6 Sort in descending order by the user data.
QUE_SORT_POS_PARTORIENT 7 Sort in ascending order by the part orientation.
QUE_SORT_INV_PARTORIENT 8 Sort in descending order by the part orientation.

Return Values
None

Description

Sets the sorting method applied to the parts coordinates queue. Point data added using PF_QueAdd will be
registered to the parts coordinates queue according to the sorting method set.
Therefore, you must run PF_QueSort before using PF_QueAdd. Note that data will not be resorted if this
function is used after the data has already been added.

Example
PF_QueSort 1, QUE_SORT_POS_X

Software 3. Part Feeding SPEL+ Command Reference

152 Part Feeding 7.0 Introduction & Software Rev.10

PF_QueSort Function

Returns the sorting method set to the parts coordinates queue specified.

Syntax
PF_QueSort (part ID)

Parameters
part ID Specify the part ID (integer number 1 to 32).

Return Values
Returns the sorting method set to the parts coordinates queue as an integer number.

Value Description
0 Do not sort (use the parts coordinates queue registration order)
1 Sort in ascending order by the X coordinate
2 Sort in descending order by the X coordinate
3 Sort in ascending order by the Y coordinate
4 Sort in descending order by the Y coordinate
5 Sort in ascending order by the user data.
6 Sort in descending order by the user data.
7 Sort in ascending order by the part orientation.
8 Sort in descending order by the part orientation.

Example
Integer quesort

quesort = PF_QueSort(1)

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 153

PF_QueUserData

Resets and displays the user data (real number) registered to the parts coordinates queue.

Syntax
PF_QueUserData part ID [, index [, user data]]

Parameters
part ID Specify the part ID (integer number from 1 to 32).
index Integer expression that represents the index of the parts coordinates queue data. (the

beginning of the index number is 0). Optional when executing from the command
window.

user data Real expression that represents the user data to be set again. This can be omitted when
executed from the command window. If omitted, the current user data (real expression)
is displayed.

Description

Resets and displays the user data currently registered to the parts coordinates queue.

If the Sort method is specified by PF_Sort, the order of the parts coordinates queue data is changed
according to the specified Sort method.

QUE_SORT_POS_USER : User data (real expression) ascending order
QUE_SORT_INV_USER : User data (real expression) descending order

See Also

PF_QueUserData Function

Example
Real r
r = 0.1
PF_QueUserData 1, 1, r

Software 3. Part Feeding SPEL+ Command Reference

154 Part Feeding 7.0 Introduction & Software Rev.10

PF_QueUserData Function

Returns the user data (real value) registered to the parts coordinates queue

Syntax

PF_QueUserData (part ID [, index])

Parameters
part ID Specify the part ID (integer number from 1 to 32).
index Optional. Integer expression that represents the index of the parts coordinates queue data.

(the first index number is 0).

Return Values
Returns user data (real value).

Description

PF_QueUserData retrieves the user data from the parts coordinates queue. If the index is omitted, this
function will retrieve the initial queue data entry. If an index is specified, part orientation for the specified
index will be returned.

Example
Real r
r = PF_QueUserData(1, 1)

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 155

PF_ReleaseFeeder

Release the lock acquired by PF_AccessFeeder. PF_AccessFeeder & PF_ReleaseFeeder lock and unlock
access to a feeder to prevent potential collisions on a multi-robot / one feeder system. These commands are
required when two robots are sharing the same feeder at the same time.

Example:
Task 1 executes PF_AccessFeeder 1, then Task 1 continues.
Task 2 executes PF_AccessFeeder 1, then Task 2 is paused.
Task 1 executes PF_ReleaseFeeder 1, then Task 2 is resumed.

This command can be written in parallel processing (!...!) in motion commands.

Syntax
Format 1: F_ReleaseFeeder feeder number/ feeder name
Format 2: MotionCommand ! [Dn;] PF_ReleaseFeeder feeder number/ feeder name !

Parameters
feeder number Specify the feeder number as an expression or a numerical value.
feeder name Specify the feeder name as a character string.
MotionCommand Any of Arc, Arc3, Go, Jump, Jump3, Jump3CP, Move, BGo, BMove, TGo, and

TMove.
Dn Specify where in the path of the robot's movement to start parallel processing in %.

(See EPSON RC+ 7.0 SPEL+ Language Reference ! Parallel Processing)

Return Values
None

Description
The lock can only be unlocked within the same task.
Cannot be executed from a virtual controller or command window.

Software 3. Part Feeding SPEL+ Command Reference

156 Part Feeding 7.0 Introduction & Software Rev.10

Example
This is an example of getting the last part on the feeder and when 50% of the path to the place position is
reached, control is returned to PF_Start to start vision imaging and feeder operation.

Function main
 Motor On
 PF_Start(1)
Fend

Function PF_Robot(partID As Integer)
 Xqt Task_PF_Robot(partID)
 Wait 1.0
 AccessFeeder 1
 ReleaseFeeder 1
 PF_Robot = PF_SUCCESS
Fend

Function Task_PF_Robot(partID As Integer)
 AccessFeeder 1

 Integer i
 For i = 1 to numToPick
 pick = PF_GetQue(PartID)
 PF_QueRemove(PartID)
 Jump pick
 On gripperOutput
 Wait .1
 If i < numToPick And PF_QueLen(PartID) > 0 Then
 Jump place
 Else
 ' Last part, so release the feeder at 50%
 Jump place ! D50; PF_ReleaseFeeder 1!
 EndIf
 Off gripperOutput
 Wait .1
 Next i
Fend

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 157

PF_Shift

Perform a shift operation.

Syntax
PF_ Shift Part ID, Direction, [, Duration]

Parameters
Part ID Specifies the part ID (integer value 1 to 32).
Direction Specifies the direction of shift.

Direction Value (defined by PartFeeding.inc) Work
Forward PF_SHIFT_FORWARD

Forward Left PF_SHIFT_FORWARD_LEFT

Forward
Right

PF_SHIFT_FORWARD_RIGHT

Left PF_SHIFT_LEFT

Right PF_SHIFT_RIGHT

Backward PF_SHIFT_BACKWARD

Backward
Left

PF_SHIFT_BACKWARD_LEFT

Backward
Right

PF_SHIFT_BACKWARD_RIGHT

Duration Specifies the shift operating time. (in milliseconds)

This can be omitted. When omitted, the value in the Calibrate & Test dialog (See 2.4.9
Shift - Test & Adjust (Simple), or 2.4.10 Shift - Test & Adjust (Advanced)) will be used.
When integer value is -1, the operation is same as omitted one.

Return value

None

Description
Performs the shifting operation of IF series.

Software 3. Part Feeding SPEL+ Command Reference

158 Part Feeding 7.0 Introduction & Software Rev.10

Shifting operation is used in the following cases.
- Move the part closer to the place position to increase the pick and place efficiency of the robot.
- When a using custom platform, dropping parts into grooves or holes to make them stand up or align

them.

It cannot be run under the following conditions.

- When executed in a user function, the feeder specified in this command (specified by the Part ID) is
used in the PartFeeding process (PF_Start command) (Error 7733)

- When executed in a callback function, specified part ID is not set for the PF_Start command (Error
7733)

- When executed from a virtual controller or command window. (Error 2582)

This command uses SyncLock for internal processing. For details, please refer to 1.3.6 Functions used in
PartFeeding process .

Use cases
PF_Shift 1, PF_SHIFT_FORWARD, 500

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 159

PF_Start

Starts the Part Feeding process for a specified part.

Syntax

PF_Start part ID1[, part ID2 [, part ID3 [, part ID4]]]

Parameters

part ID Specify the part ID (integer number from 1 to 32).
When taking a variable as an argument and do not specify the part ID, set the value to 0.

Return Values

None

Description
Perform the following before starting PF_Start (refer to the usage example).

- Select the robot in use
- Configure robot settings (Power, Speed, Accel, etc.)
- Turn the motors on
- Run PF_InitLog when outputting a log

Running PF_Start generates a new task (task number 32) and the part feeding process is started.
The control returns to the caller without waiting the end of the part feeding process.

In the following conditions, an error occurs and the Status callback function will be run.
The Part Feeding process will not start.

Condition Status callback function Status parameter value
The part ID is not exist
Try to start a multi-part operation with
parts from different feeders
Duplicate part IDs are set

PF_STATUS_BAD_ID

Part parameter settings are invalid
(Enabled check box not selected, etc.)

PF_STATUS_BAD_PARAMETER

Feeder calibration not complete PF_STATUS_CAL_NOT_COMPLETE
The part is disabled PF_STATUS_PARTNOTENABLED
The feeder is in use PF_STATUS_FEEDERINUSE_ERROR
An system error occurred PF_STATUS_ERROR

Multi-feeder operation :
The Part Feeding process can be run simultaneously on parts that belong to different feeders.
For example, if part 1 belongs to feeder 1 and part 2 belongs to feeder 2, you can run PF_Start 1 at first,
then PF_Start 2 can be executed.
PF_Start creates a task for each feeder. The Task Number that is used depends upon the Feeder Number.

Feeder Number Task
1 32
2 31
3 30
4 29

Each callback function (PF_Robot, PF_Control, PF_Status. PF_Vision, PF_MobileCam) is executed in the
same task as PF_Start creates.

For T/VT series controller, up to two feeders can be controlled at the same time. If using three or more
feeders, “the error 7731: The maximum number of simultaneous feeders for the controller type has been
exceeded.” occurs.

Software 3. Part Feeding SPEL+ Command Reference

160 Part Feeding 7.0 Introduction & Software Rev.10

Multi-part operation:
When you want to run the multi-part operation, you should specify multiple part IDs as arguments. Up to
four part IDs can be specified.
In this case, the feeder vibration is performed the Part ID (active part) specified by the first argument of
PF_Start. You can use the PF_ActivePart command to switch the active part.
Only parts that belong to the same feeder can be specified in a multi-part operation. If a part from a
different feeder is specified and PF_Start is executed, an error occurs and the PF_Status callback function
is called with PF_STATUS_BAD_ID.
Up to two robots can share a single feeder at the same time. If you attempt to PF_Start a grouping of parts
(i.e., PF_Start 1, 2, 5) and the parts are assigned to more than 2 robots, an error will occur.

Other notes:
While the Part Feeding process is running on a feeder, another Part feeding process cannot be executed for
the same feeder.
For example, if part 1 belongs to feeder 1 and part 2 belongs to feeder 1, run PF_Start 1 and then PF_Start
2, an error occurs and the and the PF_Status callback function is called with
PF_STATUS_FEEDERINUSE_ERROR. At this time PF_Start 1 continues processing with no error.
PF_Start must be executed from a normal task. If PF_Start is executed from the background task, an error
will occur.
Cannot be executed from a virtual controller or command window.

Example

Robot 1
Motor On
Power High
Speed 100
Accel 100, 100
LimZ -80.0

PF_InitLog 1, "C:\log.csv", True
PF_Start 1

Software 3. Part Feeding SPEL+ Command Reference

Part Feeding 7.0 Introduction & Software Rev.10 161

PF_Stop

Issues a Part Feeding process end request.
This will wait for running callback functions to finish.
Once complete, the PF_CycleStop callback function will run and the process will stop.

Syntax

PF_Stop part ID

Parameters

part ID Specify the part ID (integer number from 1 to 32).

Return Values

None

Description
Stops the Part Feeding process for the specified part.
Unlike the PF_Abort command, PF_Stop will wait for running callback functions to finish.
Once callback functions are complete, the PF_CycleStop callback function will run.
Nothing will occur when using this function when the Part Feeding process has not been started.
When using PF_Stop in a multi-part operation, any of the partID that specified with PF_Start can stop the
Part Feeding process.
You cannot execute PF_Start immediately after executing PF_Stop. If PF_Start is executed before the
PF_CycleStop callback function has completed, a PF_STATUS_FEEDERINUSE_ERROR will occur.
This is because you are trying to run a new part on the feeder before the current part has completed.
To correct this situation, add code like to the following.

PF_Stop 1 ‘For this example, Part 1 is running on Feeder 1 which uses task 32
TaskWait 32 ‘Wait for the current part to finish
PF_Start 2 ‘Now you can start a new part

Cannot be executed from a virtual controller or command window.

Example
PF_Stop 1

Software 4. Part Feeding Callback Functions

162 Part Feeding 7.0 Introduction & Software Rev.10

4. Part Feeding Callback Functions
Callback functions are SPEL functions that are automatically called from the PF_Start
command process when predetermined conditions are met.

Program files (PartFeeding.prg, PartFeeding.inc) that include templates for each callback
function will be added to the project when registering the first part as a new entry. Users
describe the required commands in SPEL based on the specifications of the user’s system
setup in use.

Function Description / Application

PF_Robot Syntax for robot behavior (pick, place).
PF_Control Syntax for hopper, user lighting operations.
PF_Status Syntax for error processing.
PF_MobileCam Syntax for moving/retracting the mobile camera to the image capture

position.
PF_Vision Syntax for unique vision processing

(e.g.: determining parts based on multiple vision sequence results).
PF_Feeder Syntax for unique feeder operation (e.g. Processing parts by platform

customer manufactured.
PF_CycleStop Syntax for processing after PF_Stop has been executed.

4.1 Common Items

The robot number inside callback functions is the robot number specified in 2.2.2
General.

Callback functions are run as normal tasks while the Part Feeding process is running.
The task number used starts at 32 and decrements for each additional feeder.

Do not delete PartFeeding.prg and PartFeeding.inc. Further, do not delete or comment out
callback functions not in use. Doing so will result in a build error.

Do not call callback functions from user code while the Part Feeding process is running.
Doing so may have unexpected consequences. Callback functions can be executed
individually for testing purposes.

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 163

PF_Robot

Describe robot behavior for retrieving parts from the feeder and placing them in a designated location.
Make sure this function is written.

Syntax

Function PF_Robot(part ID As Integer) As Integer
 ' Robot movement
Fend

Parameters

part ID The part ID (integer number from 1 to 32) goes here.
When multi-part operation, the active part goes here.

Return Values

To control the PartFeeding process after the PF_Robot function exits, set the following values.
(Each constant is defined in PartFeeding.inc)

PF_CALLBACK_SUCCESS

Normally, you should specify this value.
When there is no data in the part coordinate queue (in the case of multi-part operation, there is no data
of the active part), the PartFeeding process continues.
When there is data left in the queue (in case of multipart operation, there is some data of the active part),
the PF_Robot callback function is restarted with no changing the contents of the part coordinate queue.

PF_CALLBACK_RESTART

The PartFeeding process continues and regenerates the part coordinate queue, regardless of data
remaining or not of the queue. This can be used when you want to get the part coordinate with each pick
for picking with high accuracy.

PF_CALLBACK_RESTART_ACTIVEPART

The PartFeeding process continues and regenerates the part coordinate queue for the active part only,
regardless of data remaining or not of the queue. This can be useful to speed up of the vision process by
omitting other than the active parts.

User defined error numbers (8000 - 8999)

This is set when you want to invoke the PF_Status callback function to handle errors.
The set value is passed as an argument to the PF_Status callback function.

Software 4. Part Feeding Callback Functions

164 Part Feeding 7.0 Introduction & Software Rev.10

Description
This function should contain the following operations:

1. Get the coordinates of the part from the coordinate queue (using PF_QueGet function).
2. Move the robot to the part coordinates on the feeder
3. Grasping a part by operating a hand, etc.
4. Move the robot to the part placement coordinates.
5. Releasing a part by operating a hand, etc.
6. Delete a coordinate queue (using the PF_QueRemove command)

Normally steps 1 -6 (listed above) are executed in a loop until all the coordinate queue data has been
removed.
The list of coordinates for parts detected in the most recent vision process are added to the coordinates
queue. Coordinates are defined in the local coordinate system. In the case of multi-part operation, a
coordinate queue is generated for each part ID.
The Robot # used in the PF_Robot callback function needs to match the robot # that was selected for the
part. In the case of multi-robot, you can use Robot statements to switch the robot # (refer to EPSON RC+
7.0 SPEL+ Language Reference Robot).

CAUTION

■ To acquire part ID using the parameters is recommended.

■ Be careful not to change to wrong robot number when changing
the robot number in the callback function in a multi-robot system.

Program Example

The following is an example of a simple program written to use a vacuum end effector to process all parts.
A vacuum sensor is used to monitor suction when picking up parts.
Three attempts are made when suction cannot be applied. User error code 8001 is returned as a return
value if suction still cannot be applied.

'
' ** IO Label (Output) **
' O_VacOn Suction
' O_VacRelease Release
'
' ** IO Label (Input) **
' I_VacSensed Suction sensor
'
' ** Point **
' PlacePos Parts place position
'
' ** User Error **
' 8001 Suction timeout occurred
'
Function PF_Robot(partID As Integer) As Integer

 Byte retry

 ' Process entire coordinates queue, or loop until a stop request is issued
 Do While PF_QueLen(partID) > 0 And PF_IsStopRequested(partID) = False

 ' Move the robot to pick up position
 Jump PF_QueGet(partID)

 ' Vacuum ON & suction check (retry three times)
 On O_Adsorb
 retry = 3
 Do While retry > 0
 Wait Sw(I_VacSensed) = On, 0.5

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 165

 If TW = True Then
 ' If timed out, stop and reapply suction
 Off O_VacOn
 Wait 0.1
 On O_VacOn
 EndIf
 Loop
 If TW = True Then
 ' Terminate with error as suction still cannot be applied after reattempts
 ' Perform error processing according to Status callback function
 PF_Robot = 8001
 Exit Function
 EndIf

 ' Move the robot to place position
 Jump PlacePos

 ' Vacuum OFF & vacuum break
 Off O_VacOn
 On O_VacRelease
 Wait 0.1
 Off O_VacRelease

 ' Delete one data entry in the coordinates queue
 PF_QueRemove partID

 Loop

 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 4. Part Feeding Callback Functions

166 Part Feeding 7.0 Introduction & Software Rev.10

PF_Control

PF_Control is called when the system needs the hopper or user lighting to turn on or off. This callback
function is used to control the following devices installed in the system:
- Hopper
- User lighting
When using user lighting, select “Custom front light” in EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding]
- [Lighting].

Syntax
Function PF_Control(part ID As Integer, Control As Integer) As Integer
 ' (Hopper operations)
 ' (External lighting operations)
Fend

Parameters

part ID The part ID (integer number from 1 to 32) goes here.
When multi-part operation, the active part goes here.

Control The type of operation (integer number) goes here.

Operation Value (defined in PartFeeding.inc)
Hopper operation
(when the feeder contains no parts) PF_CONTROL_SUPPLY_FIRST

Hopper operation
(when the feeder contains parts, and parts can be added) PF_CONTROL_SUPPLY

User lighting On PF_CONTROL_LIGHT_ON
User lighting Off PF_CONTROL_LIGHT_OFF

Return Values

Under normal circumstances, set the PF_CALLBACK_SUCCESS constant (defined in PartFeeding.inc).
When an error occurs, set a user-defined error number (8000 - 8999). This value is passed back as a
PF_Status callback function parameter.

Description
Use the Select...Send descriptor text to describe processes by device.

Hopper operation (when the feeder contains no parts)
There are no parts in the feeder. Move the hopper to supply parts to the feeder. You can optimize robot
movement by setting the number of parts supplied to the value obtained when calibrating for the optimum
number of parts (retrieved with the PF_Info command).

Hopper operation (when the feeder contains parts, and parts can be added)
There are parts in the feeder, and more parts can be added. Adding parts at this timing increases the
number of parts that can be detected with the vision system, and improves robot operation efficiency. As
an example, assume the number of parts supplied is equal to the number of parts removed by the robot.

User lighting On
This indicates the timing to turn user lighting on for vision imaging. Operate the user lighting to turn it on.

User lighting Off
This indicates the timing to turn user lighting off when vision imaging has ended. Operate the user lighting
to turn it off.
Describe the following processes in user-prepared code. Have these run before PF_Start.
- Connect to the hopper, and adjust settings, etc.
- Connect to the external lighting, and adjust settings (brightness), etc.

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 167

Program Example
The following program example shows how to control a hopper and external lighting.
The hopper is connected to OUT terminal 1 on the IF-240 (feeder number = 1), and is controlled with the
PF_OutputONOFF command.
The hopper has been configured to supply 30 parts every second while in operation.
In this example, assume that the “Number of part supplies” is set to 60.
Assume that the external lighting is set to a standard IO.

' ** IO Label (Output) **
' O_FrontLight External lighting

Function PF_Control(partID As Integer, Control As Integer) As Integer

 Integer duration, numPart

 numPart = PF_Info(partID, PF_INFO_ID_FEEDER_CALIB_CORRECT_MAXNUM)

 Select Control

 ' Hopper operation. When the feeder contains no parts
 Case PF_CONTROL_SUPPLY_FIRST
 duration = numPart / 1000.0 * 30
 PF_OutputOnOff 1, On, 1, duration

 ' Hopper operation. When adding parts to the feeder
 Case PF_CONTROL_SUPPLY
 duration = 2000
 PF_OutputONOFF 1, On, 1, duration

 ' User lighting On
 Case PF_CONTROL_LIGHT_ON
 On O_FrontLight

 ' User lighting Off
 Case PF_CONTROL_LIGHT_OFF
 Off O_FrontLight

 Send

 PF_Control = PF_CALLBACK_SUCCESS

Fend

Software 4. Part Feeding Callback Functions

168 Part Feeding 7.0 Introduction & Software Rev.10

PF_Status

Describes processes (mainly error processes) based on the callback function return value, and the system
status (parts not supplied, etc.).

Syntax
Function PF_Status(part ID As Integer, Status As Integer) As Integer
 ' (Error processing)
Fend

Parameters

part ID The part ID (integer number from 1 to 32) goes here.
When multi-part operation, the active part goes here.

status The status goes here. This is either the callback function return value or a value set by the system.
(see Description)

Return Values
If the return value is not specified, it is equal that PF_EXIT is specified, and the PartFeeding process is
terminated.

PF_CONTINUE
Continues the PartFeeding process. Normally this value should be specified.

PF_EXIT
Terminate the Part Feeding process. When this value is specified, the Part Feeding process will terminated.
If this value is specified, the device should be returned to the initial state (i.e., returning the robot to the
home position, returning the robot to the motor is off, etc.).

PF_RESTART
Restart the Part Feeding process from vision.

PF_RESTART_ACTIVEPART
Restart the Part Feeding process from vision. Only acquire an image and load the queue for the Active Part.

Description
This function runs after other callback functions (except the PF_CycleStop function and the PF_Status
function).

The return value for the callback function just performed or the error that occurred in the Part Feeding
process is set to the Status parameter. Describes processes based on these Status values.

PF_CALLBACK_SUCCESS
Callback function completed successfully. Normally nothing to be processed.

PF_CALLBACK_RESTART
PF_Robot callback function finished successfully and the return value is PF_CALLBACK_RESTART.
Normally nothing to be processed.

PF_CALLBACK_RESTART_ACTIVEPART
PF_Robot callback function finished successfully and the return value is
PF_CALLBACK_RESTART_ACTIVEPART. Normally nothing to be processed.

PF_STATUS_NOPART
This status indicates that parts are not being supplied from the hopper. Describes the operation to supply
parts to the hopper. Normally nothing to be processed.

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 169

PF_STATUS_TOOMANYPART
This status indicates that too many parts are being supplied from the hopper, and that parts cannot be picked
up. Describe the operation to remove parts from the hopper using an operator call, etc. Review hopper
settings if this status occurs regularly.

PF_STATUS_BAD_ID
The part ID specified when running the PF_Start command is invalid. Make sure that you have specified
the registered part ID correctly.
You tried to start with multiple feeders during a multi-part operation. Please review the settings for each
part.
This immediately terminates the Part Feeding process.

PF_STATUS_BAD_PARAMETER
The part parameter specified when running the PF_Start command is invalid.
This immediately terminates the Part Feeding process.

PF_STATUS_CAL_NOT_COMPLETE
The part specified when running the PF_Start command has not completed the feeder calibration process.
This immediately terminates the Part Feeding process. Run the calibration using the information provided
in 2.3.9 Calibration as a reference.

PF_STATUS_WRONGPART
The parts remaining on the feeder could not be detected. Check that the part vision sequence can detect the
parts properly, or check for different types of parts or damaged parts. This Status value occurs after multiple
attempts have been made to singulate the parts and the Part Blob sequence sees that there is something
inside the Pick Region but the Part sequence is unable to identify it as a Front or Back part.

PF_STATUS_PARTBLOB_ERROR
The vision sequence or object for part blob detection is not valid. This immediately terminates the Part
Feeding process. Check the part blob sequence and object that is used for the part.

PF_STATUS_PARTSEQ_ERROR
The vision sequence or object(s) used for part detection are not valid. This immediately terminates the Part
Feeding process. Check the part sequence and object(s) that are used to detect the part.

PF_STATUS_ERROR
An error (system error) occurred while running the PF_Start command. This immediately terminates the
Part Feeding process. Check that the vision sequence set in 2.3.3. Vision functions properly. Debug
callback functions individually to verify whether they function properly. Error 7730 “The maximum
number of robots per feeder has been exceeded.” can also occur when attempting to share a feeder with
more than 2 robots.

Operation process processes can be specified with the Status callback function return value.
PF_EXIT is set whenever a return value is not specified. This will terminate the Part Feeding process.
Make sure to set a return value to avoid this.

PF_STATUS_FEEDERINUSE_ERROR
The Part Feeding process was launched multiple times for the same feeder. The Feeding process is
terminated immediately. Part Feeding process that is already running will continue.
Recheck the program.

PF_STATUS_PARTNOTENABLED
The part is disabled.
EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding] - [General], make sure Enabled is checked.

PF_STATUS_PURGENOTENABLED
The PF_Purge function has been executed, although purging has been disabled.
EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding] - [Purge], make sure Enabled is checked.

Software 4. Part Feeding Callback Functions

170 Part Feeding 7.0 Introduction & Software Rev.10

Note
1. Ensure that errors do not occur inside the PF_Status callback. If errors occur inside PF_Status, then
PF_Status could be called recursively and error processing may not complete.

2. It is strongly recommended not to execute Feeder control commands (PF_Center, PF_CenterByShift,
PF_Flip, PF_Shift) inside the PF_Status function.

3. PF_Status is responsible for telling the system how to proceed after completing the previous callback
function (i.e., how to proceed after PF_Robot, PF_Vision, PF_Control, PF_MobileCam, PF_Feeder). This
is accomplished by setting the PF_Status return value to one of the following return values -
PF_CONTINUE or PF_RESTART or PF_RESTART_ACTIVEPART or PF_EXIT.
See the example program below for details.

Program Example

The following program describes error processing.
The user error referred to in this example is the suction timeout error referred to in the program example
used for the Robot callback function.
If this error occurs, the robot motors are turned off.

' ** User Error **
' 8001 Suction timeout occurred

Function PF_Status(PartID As Integer, Status As Integer) As Integer

 Select Status

 Case PF_CALLBACK_SUCCESS
 ' Success (do nothing under normal circumstances)
 Case PF_CALLBACK_RESTART
 ' Restart from vision

PF_Status = PF_RESTART
 Exit Function

 Case PF_CALLBACK_RESTART_ACTIVEPART

' Restart from vision –
' only acquire image and the load queue for Active Part

 PF_Status = PF_RESTART_ACTIVEPART
 Exit Function

 Case PF_STATUS_NOPART
 ' No parts in hopper
 MsgBox "Hopper empty."

 Case PF_STATUS_TOOMANYPART
 ' Too many parts in feeder
 MsgBox "Too many parts on Feeder."

 Case PF_STATUS_BAD_ID
 ' The specified part ID does not exist
 MsgBox "Bad PartID."

 Case PF_STATUS_BAD_PARAMETER
 ' Invalid part parameter
 MsgBox "Bad parameter."

 Case PF_STATUS_CAL_NOT_COMPLETE
 ' Calibration not complete
 MsgBox "Calibration incomplete."

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 171

 Case PF_STATUS_WRONGPART
' There may be a wrong part on the feeder platform.

 MsgBox “Wrong Part.”

 Case PF_STATUS_ERROR
 ' Error
 MsgBox "Error!! (code: " + Str$(Err) + ") " + ErrMsg$(Err)

 Case PF_STATUS_PARTBLOB_ERROR

' Part Blob vision error
 MsgBox "Part Blob vision error."

 Case PF_STATUS_PARTSEQ_ERROR

' Part Sequence vision error
 MsgBox "Part Sequence vision error."

 Case PF_STATUS_FEEDERINUSE_ERROR

' Feeder is already in use
MsgBox "Feeder is already in use."

 Case PF_STATUS_PARTNOTENABLED

' Part is disabled
 MsgBox “Part is disabled.”

 Case PF_STATUS_PURGENOTENABLED

' Purge is disabled.
 MsgBox "Purge is disabled."

 Case 8001
 ' Example: Suction timeout
 MsgBox " Vacuum Error!!"
 Motor Off
 PF_Status = PF_EXIT
 Exit Function

 Send

 PF_Status = PF_CONTINUE

Fend

Software 4. Part Feeding Callback Functions

172 Part Feeding 7.0 Introduction & Software Rev.10

PF_MobileCam

Describe the process used to move the robot to the image capture position, and to retreat back after image
capturing, when using a mobile camera. This function will always run, regardless of whether or not a
mobile camera is in use.

Syntax

Function PF_MobileCam(part ID As Integer, Action As Integer) As Integer
' (Move the robot to image capture position)
' (Retract the robot)

Fend

Parameters

part ID The part ID (integer number from 1 to 32) goes here.
When multi-part operation, the active part goes here.

Action The type of movement goes here.

Type of movement Constant (defined in PartFeeding.inc)

Move the robot to the image capture position (and
perform vision imaging and feeder operations after this) PF_MOBILECAM_BEFORE

Retract the robot
(and run the PF_Robot callback function after this) PF_MOBILECAM_AFTER

Return Values

Under normal circumstances, set the PF_CALLBACK_SUCCESS constant (defined in PartFeeding.inc).
To end this function to perform error processing, set a user-defined error number (8000 - 8999). This value
is passed back as a PF_Status callback function parameter.

Description
This function runs before image capturing, and before the PF_Robot callback function is called.
After describing this function, test whether the robot can travel to the assigned destination points safely.

Program Example
The following example describes a program used to move a mobile camera to the image capture position
and retract it.
Positions are defined as point data, and labeled as VisionPos for the image capture position, and HomePos
for the retraction position.

' ** Point **
' VisionPos Mobile camera image capture position
' HomePos Mobile camera retraction position
'
Function PF_MobileCam(partID As Integer, Action As Integer) As Integer

 Select Action

 Case PF_MOBILECAM_BEFORE ' Move the robot to image capture position
 Jump VisionPos
 Case PF_MOBILECAM_AFTER ' Retract the robot
 Jump HomePos
 Send

 MobileCam = PF_CALLBACK_SUCCESS
Fend

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 173

PF_Vision

This is used when the user wishes to program image capture processes (light control, using vision system,
SPEL program processing). This is also used when it is difficult to detect parts and determine orientation
(side facing, etc.) with vision system alone. To use this function, select “User processes vision for part via
PF_Vision callback” in EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding] - [Vision].

Syntax

Function PF_Vision(part ID As Integer, ByRef NumBack As Integer) As Integer
' (Vision processing)

Fend

Parameters

part ID The part ID (integer number from 1 to 32) goes here.
When multi-part operation, the active part goes here.

numBack Assigns the number of parts that cannot be picked up (facing down, etc.). (ByRef is specified)
This value is used by the Part Feeding process to determine whether flipping is required.
Enter “0” if the part does not have defined sides.

Return Values

To continue processing, set the return value to PF_CALLBACK_SUCCESS.
To perform error processing, set the return value to a user-defined error number (8000 - 8999). This value
is passed back as a PF_Status callback function parameter.

Description
This function is used when using combinations of multiple vision sequences and external lighting controls
to detect parts coordinates. The following processes are to be described by the user.

- User lighting controls
- Vision processing (running the VGet statement)
- Parts coordinates queue management (initialization and registering point data)

Program Example

The following example describes a program detecting parts using two vision sequences, VSeq1 (including
one Geom object) and VSeq2 (including one Geom object).
VSeq1 is used with the user lighting 1. This can detect the position of parts, but cannot determine their
orientation. VSeq2 is used with the user lighting 2, and can only detect parts facing up.
The coordinates of detected parts (local number 1 in this example) are added to the coordinates queue with
the PF_QueAdd command. When doing so, the value obtained in 2.3.6 Teach Window is assigned as the Z
coordinate.
Further, in order to enable flipping, first enable flipping in 2.3.1 General, specify VSeq2 for “Part Vision
Sequence” in 2.3.3. Vision, turn on the user lighting 2, and then perform the flip calibration as described in
2.3.7 Calibration.

' ** IO Label (Output) **
' O_FrontLight1 User lighting 1
' O_FrontLight2 User lighting 2

Function PF_Vision(partID As Integer, ByRef NumBack As Integer) As
Integer

 Boolean found
 Integer i, numFound
 Real PX_X, PX_Y, PX_U
 Real RB_X, RB_Y, RB_U, RB_Z

 ' Pick Z coordinate

Software 4. Part Feeding Callback Functions

174 Part Feeding 7.0 Introduction & Software Rev.10

 RB_Z = -80.0

 ' Initialize coordinates queue
 PF_QueRemove partID, All

 ' Turn on the user lighting 1
 On O_FrontLight1

 ' Detect part (run UsrVisionSeq1)
 VRun VSeq1
 VGet VSeq1.Geom01.NumberFound, numFound

 ' Turn off the user lighting 1
 Off O_FrontLight1
 ' Turn on the user lighting 2
 On O_FrontLight2

 NumBack = 0
 For i = 1 To numFound
 ' Retrieve XY pixel coordinates for part detected with VSeq1.Geom01
 ' Set the VSeq2.Geom01 search window to cover this part
 ' Part size = 100 x 100 pxl
 VGet VSeq1.Geom01.PixelXYU(i), found, PX_X, PX_Y, PX_U
 VSet VSeq2.Geom01.SearchWinLeft, (PX_X - 50)
 VSet VSeq2.Geom01.SearchWinTop, (PX_Y - 50)

 ' Run VSeq2
 VRun VSeq2
 VGet VSeq2.Geom01.Found, found

 If found = True Then
 ' If found, register to the coordinates queue as the part is facing up
 ' Local number is 1
 VGet VSeq1.Geom01.RobotXYU(i), found, RB_X, RB_Y, RB_U
 PF_QueAdd partID, XY(RB_X, RB_Y, RB_Z, RB_U) /1

 Else
 ' If not found, part is facing down
 NumBack = NumBack + 1

 EndIf

 Next

 ' Turn off the external lighting 2
 Off O_FrontLight2

 PF_Vision = PF_CALLBACK_SUCCESS

Fend

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 175

PF_Feeder

Describes what actions are recommended with feeder control commands (PF_CenterByShift, PF_Center,
PF_Flip, and PF_Shift commands) if the user processes the feeder vibration rather than the system.

Syntax
Function PF_Feeder(PartID As Integer, NumFrontParts As Integer, NumBackParts As Integer,
state As Integer) As Integer

' (Part Judgement)
' (Vibration Action)

Fend

Parameters

Part ID Specifies the part ID (integer value 1 to 32).
When multi-part operation, the active part goes here.

NumFrontParts The number of Front parts that were found by vision and loaded into the part queue.
NumBackParts The number of Back parts that were found by vision.
State The state of parts, or the recommended action that has been determined by the

System goes here. One of the values from the table below will be provided.
State /

Recommended action
Constant (defined in

PartFeeding.inc) Notes

OK to pick PF_FEEDER_PICKOK Parts are available to pick

Supply more parts PF_FEEDER_SUPPLY Hopper needs to supply more parts when the
Supply method is [supply parts during pick and
place] (see 2.3.5 Part Supply)

Parts are spread out but
need to be flipped

PF_FEEDER_FLIP Flip the parts

Shift parts into pick
region

PF_FEEDER_SHIFT Shift forward into region

Center, Flip and
Separate

PF_FEEDER_CENTER_FLI
P

Center, Flip and Separate

Hopper is empty PF_FEEDER_HOPPER_EM
PTY

No part in the hopper.
Notify the operator and supply parts in the
hopper

Parts have gathered
against the platform
wall

PF_FEEDER_SHIFT_BAC
KWARD

Shift parts back into pick region

Hopper Supply, Center,
Flip and Separate

PF_FEEDER_SUPPLY_CE
NTER_FLIP

Hopper needs to supply more parts and the
parts need to be centered, flipped and separated

Too many parts PF_FEEDER_TOO_MANY There are too many parts on the tray. Notify
the operator.

Wrong part PF_FEEDER_WRONGPAR
T

There may be a wrong part on the feeder
platform. Notify the operator.

Plate Type is Stuctured PF_FEEDER_UNKNOWN The system does not know how to handle
vibration for a custom, structured plate
(see 2.3.2 Vibration)

Software 4. Part Feeding Callback Functions

176 Part Feeding 7.0 Introduction & Software Rev.10

Return Values
Specify the following values based on processes you want the system to perform after
PF_Feeder ends.

Constant (defined in PartFeeding.inc) Part Feeding process operations

PF_CALLBACK_SUCCESS Specify this when the part is ready to be picked and
no more feeder operations are necessary. The system
will call the PF_Robot callback function.
Note: The part coordinate queue will not be
regenerated. If you return this value after a feeder
operation, there will be a difference between the part
coordinates on the feeder and the data in the part
coordinate queue.

PF_CALLBACK_RESTART Specify this after the feeder operation has been
performed.
The system will regenerate all the part coordinate
queues and call the PF_Feeder callback function
again.

PF_CALLBACK_RESTART_ACTIVEPART Specify this after the feeder operation has been
performed.
The system will regenerate the part coordinate queue
for the active part only and call the PF_Feeder
callback function again.

Description

This function allows the user to handle the feeding judgement and action. Normally, the system will process
the vibration for parts. When “User processes vibration for part via PF_Feeder callback” in [PartFeeding] –
[Part] – [Virbation] is selected, the user decides how to feed the parts. The PF_Feeder callback can be used
to solve difficult applications where the system vibration method is not performing well.
For example, PF_Feeder cannot determine what to do with a custom platform (a special platform with
Holes, Slots or Pockets). Instead, you can write your own feeder processing in the PF_Feeder callback
function.

The NumFrontParts and NumBackParts parameters can be used to help determine the appropriate vibration
action. For example, if NumFrontParts > 0 then parts are available to be picked and the system can continue
without any vibration.
The State parameter is the system’s recommended action or the state of parts. It may be helpful in
determining how to best vibrate the feeder.

The PF_Feeder callback must return one of the values shown in the table above. The return value tells the
system how to proceed.

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 177

Program Example 1:
The following example illustrates how to perform part judgement and vibration action via the PF_Feeder
callback using the System’s recommended State parameter.

Function PF_Feeder(PartID As Integer, NumFrontParts As Integer,
NumBackParts As Integer, state As Integer) As Integer

Select state

 Case PF_FEEDER_PICKOK
 ' Call PF_Robot because there are parts ready to pick
 PF_Feeder = PF_CALLBACK_SUCCESS

 Case PF_FEEDER_SUPPLY
 ‘ Need to supply more parts
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 ‘ Shift forward and then Flip
 PF_Shift PartID, PF_SHIFT_FORWARD, 500
 PF_Flip PartID

‘ Restart and re-acquire images
 PF_Feeder = PF_CALLBACK_RESTART

 Case PF_FEEDER_FLIP
 ‘ Flip the parts
 PF_Flip PartID

‘ Restart and re-acquire images
 PF_Feeder = PF_CALLBACK_RESTART

 Case PF_FEEDER_CENTER_FLIP
 ‘ Center, Flip and Separate the parts
 PF_Center PartID, PF_CENTER_LONG_AXIS, 900
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Flip PartID

‘ Restart and re-acquire images
 PF_Feeder = PF_CALLBACK_RESTART

 Case PF_FEEDER_TOO_MANY
 ‘ Notify operator that there are too many parts on the feeder
 PFStatusReturnVal = PF_Status(PartID, PF_STATUS_TOOMANYPART)

‘ Restart and re-acquire images
 PF_Feeder = PF_CALLBACK_RESTART

 Send

Fend

Program Example 2:
The following example illustrates how to perform part judgement and vibration action via the PF_Feeder
callback using the NumFrontParts and NumBackParts parameters.

Function PF_Feeder(PartID As Integer, NumFrontParts As Integer,
NumBackParts As Integer, state As Integer) As Integer
 Integer PFControlReturnVal

 Select True

 Case NumFrontParts = 0 And NumBackParts <> 0
 PF_CenterByShift PartID
 PF_Flip PartID

‘ Restart and re-acquire images

Software 4. Part Feeding Callback Functions

178 Part Feeding 7.0 Introduction & Software Rev.10

 PF_Feeder = PF_CALLBACK_RESTART

 Case NumFrontParts = 0 And NumBackParts = 0
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 ‘ Center, Flip and Separate
 PF_Center 1, PF_CENTER_LONG_AXIS, 900
 PF_Center 1, PF_CENTER_SHORT_AXIS, 700
 PF_Flip 1, 600
 PF_Feeder = PF_CALLBACK_RESTART 're-acquire images

 Default
 ' Call PF_Robot because there are parts ready to pick
 PF_Feeder = PF_CALLBACK_SUCCESS

 Send

Fend

Software 4. Part Feeding Callback Functions

Part Feeding 7.0 Introduction & Software Rev.10 179

PF_CycleStop

Describe processes after the PF_Stop function has been executed.

Syntax

Function PF_CycleStop(part ID As Integer)
' (Processes when stopped)

Fend

Parameters
part ID The part ID (integer number from 1 to 32) goes here.

When multi-part operation, the active part goes here.

Return Values

None

Description
This function runs after the callback function in progress stops running once PF_Stop has been executed.
System processes are described here. Processes to be described include returning the robot to its home
position and turning off the robot motors.

Program Example
The following program executes processes to return the robot to its home position and turn off the motors
when the PF_Stop command is issued.

Function PF_CycleStop(partID As Integer)

 Home
 Motor Off

Fend

Software 5. Part Feeding Log File

180 Part Feeding 7.0 Introduction & Software Rev.10

5. Part Feeding Log File

5.1 Summary
The Part Feeding log file is a log file that records the following actions performed as part
of the process of operations, and the operation time and results.

- Vision processing
- Feeder control
- Callback function operation (Robot, Status)

The Part Feeding log file can be used to perform the following.

- Check the cycle time for part pick up.
- Check the number of parts that can be picked up with each attempt in order to adjust

the hopper feed amount.
- Check and make improvements to actions taking up an undue amount of time based

on operation processing times.

Note that the Controller must be connected to the PC to use this function.

5.2 Enabling the Log Function

Connect the Controller to the PC.
Program PF_InitLog to run before PF_Start.
For more details, refer to 3. Part Feeding SPEL+ Command Reference PF_InitLog.

5.3 Log File Format

5.3.1 Common Items
Log files are in CSV format. File names are specified as a PF_InitLog parameter.
The following data is recorded in chronological order to a single log file. The “Data”
fields vary depending upon the log Type. All other fields are common.

Column Column name Format Details

1 DateTime Character string Time action started
(yyyy/mm/dd hh:MM:ss)

2 Tick Real value Time elapsed since PF_Start started
running [seconds] (s.sss)

3 Time Real value Processing time [seconds] (s.sss)
4 Type Character string Operation Type
5 ID Integer number Part ID
6 Data1 Varies depending on the data type (Type).
7 Data2
8 Data3
9 PartName Character string Name of the part
10 RobotNo Integer number Robot number assigned to the part
11 FeederNo Integer number Feeder number assigned to the part
12 Project Character string EPSON RC+ project name

Software 5. Part Feeding Log File

Part Feeding 7.0 Introduction & Software Rev.10 181

The relationship between the DateTime reading and the Tick, Time reading is as shown in
the diagram below.

Time

Start PF_Start

Start logged action

End logged action

Time

Tick

DateTime

5.3.2 Vision Sequence Log

This log records the time required by the Part Feeding process to process the vision
sequence specified by the Part Vision Sequence described in 2.3.3. Vision, the number of
parts detected facing up, and the number of parts facing down.

Column Column name Format Details

4 Type Character string Log type (“UserVision”)

5 ID Integer number Part ID

6 NumFront Integer number Number of parts facing up

7 NumBack Integer number Number of parts facing down

5.3.3 System Vision Sequence Log

This log records the time required by the Part Feeding process to process the vision
sequence generated internally to detect the distribution of parts, etc.

Column Column name Format Details

4 Type Character string Log type (“SystemVision”)

5 ID Integer number Part ID

Software 5. Part Feeding Log File

182 Part Feeding 7.0 Introduction & Software Rev.10

5.3.4 Vibration Log
This log records types of feeder vibration actions performed by the System or by the User.

Column Column
name Format Details

4 Type Character string Operation type:
Separation Separation
Centering Centering
Shift Shift
BackShift Back shift
Flip Flip
CenterByShift Center by shift
Purge Purge
QtyAdjHopperTime QtyAdjHopperTime

5 ID Integer number Part ID
6 Callback

Name
Character string Name of the callback (or System) where

the vibration was executed:
System Feeder
Robot Vision
Control MobileCam
CycleStop Status

Timing Diagram: User Vibration executed inside a Callback

Software 5. Part Feeding Log File

Part Feeding 7.0 Introduction & Software Rev.10 183

Timing Diagram: System Vibration

The Data1 column in the log file will show “System” if the vibration is performed by the
system. Otherwise, Data1 will show the name of the Callback where the User executed
the vibration.

5.3.5 PF_Robot Callback Function Log

This log records the number of parts processed with the PF_Robot callback function.

Column Column name Format Details

4 Type Character
string

Operation type (“Robot”)

5 ID Integer number Part ID

6 Num Integer number Number of parts processed
(Active parts only)
(Number of registered entries in the
coordinates queue before calling -
Number of registered entries in the
coordinates queue after calling)

5.3.6 PF_MobileCam Callback Function Log

This log records the PF_MobileCam callback function action type.

Column Column name Format Details

4 Type Character string Operation type (“MobileCam”)

5 ID Integer number Part ID

6 Action Integer number Move the robot to
image capture position 2001
Retract the robot 2002

NOTE

Software 5. Part Feeding Log File

184 Part Feeding 7.0 Introduction & Software Rev.10

5.3.7 PF_Control Callback Function Log

This log records the PF_Control callback function action type.

Column Column
name

Format Details

4 Type Character string Operation type (“Control”)

5 ID Integer number Part ID

6 Action Integer number Hopper operation (no parts) 2100
Hopper operation (add parts) 2101
User lighting On 2102
User lighting Off 2103

Timing Diagram: Vision with Front Light

Timing Diagram: User Vibration executed inside PF_Control Callback

Software 5. Part Feeding Log File

Part Feeding 7.0 Introduction & Software Rev.10 185

5.3.8 PF_Status Callback Function Log

This log records the PF_Status callback function status type.

Column Column
name Format Details

4 Type Character string Operation type (“Status”)

5 ID Integer number Part ID

6 Status Integer number The status or user error occurred
Normal 0
Parts not supplied 2200
Excessive parts 2201
Invalid ID 2202
Invalid parameter 2203
Calibration not complete 2204
System error 2205
Part cannot detect 2206
Part blob sequence failure 2207
Part vision sequence failure 2208
Feeder in use 2209
Part disabled 2210
Purge disabled 2211

User error 8000 -
8999

5.3.9 PF_Vision Callback Function Log

This log records the number of parts detected with the PF_Vision callback function that
are facing up/down.

Column Column name Format Details

4 Type Character string Operation type (“VisionCallback”)

5 ID Integer number Part ID

6 NumFront Integer number Number of parts detected that are
facing up

7 NumBack Integer number Number of parts detected that are
facing down

Software 5. Part Feeding Log File

186 Part Feeding 7.0 Introduction & Software Rev.10

Timing Diagram: User Vibration executed inside PF_Vision Callback

5.3.10 PF_Feeder Callback Function Log
This log records the PF_Feeder callback function state type.

Column Column name Format Details

4 Type Character string Operation type (“Feeder”)

5 ID Integer number Part ID

6 State Integer number Recommended Action:
Plate Type is Structured 0
OK to pick 1
Supply more parts 2
Flip 3
Shift 4
Center & Flip 5
Hopper is empty 6
Shift Backwards 7
Hopper supply, Center & Flip 8
Too many parts 9
Wrong part 10

Software 5. Part Feeding Log File

Part Feeding 7.0 Introduction & Software Rev.10 187

Timing Diagram: User Vibrations executed inside PF_Feeder Callback

5.3.11 PF_CycleStop Callback Function Log
This log records the PF_CycleStop callback function state type.

Column Column name Format Details

4 Type Character string Log type (“CycleStop”)

5 ID Integer number Part ID

Software 5. Part Feeding Log File

188 Part Feeding 7.0 Introduction & Software Rev.10

5.4 Log Sample
The following is a sample of a Part Feeding log.

Software 6. Vision Sequences Used With the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 189

6. Vision Sequences Used With the Part Feeding Option
The following two vision sequences must be created in order to use Part Feeding.

- Feeder calibration vision sequence
- Parts detection vision sequence

For more details on the Vision Guide, vision sequences and objects, refer to the Vision
Guide Software manual.

Vision property details are explained in the Vision Guide Properties and Results Reference
manual.

6.1 Vision Calibration

Perform vision calibration for the feeder platform surface.

For more information on how to perform vision calibration, refer to the following
reference materials.

Vision Guide 7.0 (Ver. 7.4) Software 7. Vision Calibration

The following table list important properties for vision calibration.

Property Configuration method

Camera Set the camera number.

CameraOrientation Set the camera fixing method.
Fixed downward facing camera - Fixed downward
Mobile camera - Mobile J4 or Mobile J6

RobotLocal Specify the robot local number.

RobotNumber Specify the robot number.
Match this number to the robot number set in 2.2.2 General.

RobotTool Specify the robot tool number.

If there are one or more feeders with backlights:

If the Calibration’s TargetSequence Camera is the same as a part sequence, a message like
the following will be displayed:

NOTE

Software 6. Vision Sequences Used With the Part Feeding Option

190 Part Feeding 7.0 Introduction & Software Rev.10

If the calibration’s TargetSequence Camera is not used by any part sequences, then a dialog
like the following will be displayed:

6.2 Part Vision Sequence
A parts detection vision sequence is used to detect parts and retrieve part coordinates. Create
a vision sequence as outlined below.

Create a separate parts detection vision sequence to the feeder calibration vision sequence.

6.2.1 Simple Parts

The following is an example of a vision sequence created to detect parts that simply need
to be gripped without needing to take into account orientation (how the part is facing) and
the degree of rotation.

Vision sequence
Configure the following properties. Make sure to configure or check the following.
Configure other properties as required.

Property Configuration method

Calibration Configure vision calibration for the camera used for capturing images
of the feeder.
Specify the same calibration as that specified for the calibration
vision sequence.
Vision calibration must be completed.

Camera Set the camera number for the camera used for capturing images of
the feeder.
Specify the same camera as that specified in the calibration vision
sequence.

ExposureTime Adjust this while the feeder backlight is on so that parts can be
captured clearly. Additionally, ensure that the area surrounding the
feeder does not appear darkened out.

NOTE

Software 6. Vision Sequences Used With the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 191

Vision objects
Register one of the following objects for which robot coordinates can be retrieved.

- ArcFinder
- ArcInspector
- Blob
- BoxFinder
- ColorMatch
- CornerFinder

- Correlation
- DefectFinder
- Edge
- Geometric
- LineInspector
- Point
- Polar

Configure the following properties for the object. Make sure to configure or check the
following. Configure other properties as required based on the object type.

Property Configuration method

NumberToFind Set to All.

SearchWindow Match to the inner circumference of the platform. Additionally,
ensure that darkened areas surrounding the platform do not enter the
search window.

This can be used with other objects.

Example: Using an ImageOp object for binarization processing
 Sequence

When a new sequence is created and one or more part feeders with backlights exist, then a
dialog is displayed asking the user to select a feeder with a backlight if desired. When
running a vision sequence or object from the EPSON RC+ Vision Guide window, this
selection will allow the backlight to be turned on automatically.

If the feeder with a backlight is an IF-80, then the backlight will turn off after the image is
grabbed and the video will be temporarily frozen. Freezing the image allows the user to see
the image even though the backlight has been turned off. The user can click on the video
area to switch back to live video.

TIP

NOTE

Software 6. Vision Sequences Used With the Part Feeding Option

192 Part Feeding 7.0 Introduction & Software Rev.10

This is mainly for the case where a new project has been created but no part feeding parts
have been added.

6.2.2 Parts With Sides

Configure settings as follows to retrieve one side of parts with multiple sides.

Vision sequence
Create a vision sequence in the same manner as 6.3.1 Simple Parts 6.2.1 Simple Parts.

Vision objects

1. Register an object detecting the front side of parts (e.g.: Geometric).
2. Register an object detecting the back side of parts (e.g.: Geometric).
E.g.: Create two Geometric objects to determine which side a part is facing.

(Geom01 to detect the front side of parts, Geom02 to detect the back side of parts)

 Sequence

The Geometric property settings example is as follows.

Property Configuration method
Accept Set to ensure that parts are detected.
NumberToFind Set to All.
SearchWindow Match to the inner circumference of the platform.

ModelWindow Teach parts along their contour.

The Timeout property setting can be important for Geometric and Correlation vision
objects. The Timeout property should be set just higher than the normal time it takes to
run the sequence, otherwise it will sometimes take 2000 ms (default timeout).

Example:

TIP

Software 6. Vision Sequences Used With the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 193

Geometric with NumberToFind = 9
A lot of parts in the image
VRun
 Time to find is 75 ms. for this example.
Set NumberToFind = All
VRun
 Time is about 2000 ms (the timeout value)
Set Timeout to 100 ms
VRun
 Time is about 100 ms (the timeout value)

So, if Timeout is not set correctly, the application may take for up to 2000 ms (default)
when the Geometric or Correlation runs. For time critical applications, it is important to
set Timeout correctly.

Software 6. Vision Sequences Used With the Part Feeding Option

194 Part Feeding 7.0 Introduction & Software Rev.10

6.2.3 Parts that Require Gripper Clearance

Some parts detected using pattern matches (Geometric, Correlation) may partially overlap,
hindering the robot from picking up parts. Configure the following settings to exclude
such parts using the clearance checking feature of Vision Guide.

Vision sequence
Create a vision sequence in the same manner as 6.3.1. Simple Parts.

Vision objects
1. Add two objects for detecting parts. (E.g.: Geometric)

Example: Create GeomF for front detection and GeomB for back detection.

2. Add one or more objects to check clearance for the object that detects the part.
Example: Create Blob objects with CheckClearanceFor set to the Geometric object
 to determine overlapping parts.

Software 6. Vision Sequences Used With the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 195

Geometric property settings example

Property Settings example

Accept Set to ensure that parts are detected.

NumberToFind Set to All.

SearchWin Match to the inner circumference of the platform.

ModelWin Teach parts along their contour.

Name GeomB : Name of the object that detects the back side
GeomF : Name of the object that detects the front side

Blob property settings example

Property Settings example

CheckClearanceFor GeomF Name of the object that detects the front side
ClearanceCondition NotFound

FailColor LightGreen

Name BlobRF : Detect space for right finger
BlobLF : Detect space for left finger

PassColor Red
SearchWin Type RotatedRectangle

ThresholdHigh 192

In this example, only the front side is checked for clearance.

BlobRF BlobLF

(1) One part is put on the center of the feeder.

(2) Run Vision Sequence.

TIP

Software 6. Vision Sequences Used With the Part Feeding Option

196 Part Feeding 7.0 Introduction & Software Rev.10

(3) Rotate parts 90°. Run Vision Sequence again.

Check to rotate BlobRF and BlobLF SearchWindow in accordance with the rotation of the
parts. Detection result when there is a space for end effector finger. Detection result when
there is no space for the end effector finger.

Software 6. Vision Sequences Used With the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 197

6.2.4 Special Vision Configurations

When using two or more vision sequences, or multiple lighting sources to detect parts, you
can enable the vision callback function to describe all lighting controls and part detection
processes.

Refer to 4. Part Feeding Callback Functions PF_Vision for more details.

6.2.5 Example of not picking up when contacting with the next parts

This section is an example of not making to the picking up object detecting the contact and
a space with the next parts little.

The vision sequence is made as well as 6.2.3. Parts that Require Gripper Clearance.

BlobR: Detect contact on the right
side of the part

BlobT: Detect contact on upper part

BlobB: Detect contact below part

BlobL: Detect contact on the left side of the part

Software 6. Vision Sequences Used With the Part Feeding Option

198 Part Feeding 7.0 Introduction & Software Rev.10

No contacting with the next parts.

Contacting with the next parts.

Software 6. Vision Sequences Used With the Part Feeding Option

Part Feeding 7.0 Introduction & Software Rev.10 199

6.3 Part Blob Vision Sequence
Create a vision sequence to use for feeder calibration.

 Sequence

Create a separate feeder calibration vision sequence to the parts detection vision sequence.

6.3.1 Vision Sequence

Configure the following properties. Make sure to configure or check the following.
Leave all other properties as their default values.

Property Configuration method

Calibration Configure the vision calibration created in 6.1. Vision Calibration.
Vision calibration must be completed (the CalComplete result must
be True).

Camera Set the camera number for the camera used for capturing images of
the feeder.

ExposureTime Adjust this while the feeder backlight is on so that parts can be
captured properly. Additionally, ensure that the area surrounding
the platform does not appear darkened out.
Values need to be fine-tuned for parts that readily transmit light.

NOTE

Software 6. Vision Sequences Used With the Part Feeding Option

200 Part Feeding 7.0 Introduction & Software Rev.10

6.3.2 Vision Objects

Configure the following properties. Make sure to configure or check the following.
Leave all other properties as their default values.

Property Configuration method

MaxArea Leave as the default value (width × height of the camera).

MinArea Set to around 0.9 times that of the parts area.
Use the following procedure to confirm the size of the parts area.

1. Turn on the feeder backlight
2. Place several parts on the platform so that they do not overlap
3. Run the vision sequence
4. The parts area is the average area for Blob results

NumberToFind Set to “All”.

SearchWin Set as close to the inner circumference of the platform as is
possible. Additionally, ensure that darkened areas surrounding the
platform do not enter the search window.

When rotating the search window (Select [Rotated Rectangle] in
[Type]), the rotation angle should be set within +/-45 deg.

ThresholdColor Set to Black.

ThresholdHigh Set so that parts can be detected, and that darkened areas on the
platform’s periphery are not detected.
Values need to be fine-tuned for parts that readily transmit light.

ThresholdLow Set to “0”.

Software 7. How to Adjust the Hopper

Part Feeding 7.0 Introduction & Software Rev.10 201

7. How to Adjust the Hopper
The following is an example of how to adjust the hopper.

7.1 How to Adjust

This is an example of a hopper adjustment for the IF-240, 380 and 530.

It is assumed that the installation and connection of the hopper and feeder have been
completed, and feeder calibration is finished.

1. Open the [Test Hopper] dialog (see 2.3.5 Parts Supply).

Hopper number Select the OUT terminal 1 or 2.
Duration Enter a duration of 10000 (10 sec) (for reference).

2. Insert parts into the hopper.
Approx. quantity of parts to be put in: 5 to 10 times the [Optimum number of
parts to load]
The optimal number of parts is shown in the [Test Hopper] dialog.

3. Click the <Hopper On> button.
Adjust the volume of the hopper controller to make the part move smoothly.
When the feeder stops during adjustment, click the <Hopper On> button again.

4. Adjust the amount or condition of parts into the hopper so that feed quantity of
the parts is constant.
In some cases, it is a good idea to attach a divider to the hopper outlet.

5. Repeat steps 2-4 to adjust.

6. Modify the program.
Refer to following command example in 3. Part Feeding SPEL+ Command
Reference.

PF_OutputOnOff
PF_Output
PF_QtyAdjHopperTime

Software 7. How to Adjust the Hopper

202 Part Feeding 7.0 Introduction & Software Rev.10

7.2 How to Adjust the IF-80 Hopper
The IF-80 has a built-in hopper. The following is an example of how to adjust this hopper.
It is assumed that the installation and connection of the hopper and feeder have been
completed.

1. Run the hopper caolbration. (see 2.4.13 Hopper - Test & Adjust (for IF-80))
2. Modify the program.

Refer to following command example in 3. Part Feeding SPEL+ Command
Reference.

PF_OutputOnOff
PF_QtyAdjHopperTime

Software 8. Errors that Occur While Using EPSON RC+

Part Feeding 7.0 Introduction & Software Rev.10 203

8. Errors that Occur While Using EPSON RC+
Message Cause/solution

There are no cameras in the system.
You can add cameras from [Setup] –
[System Configuration] – [Vision].

A camera has not been registered to the system.
Register the camera.

Part Feeding is not supported for virtual
controllers.

The Part Feeding option does not support virtual controllers.
Connect to the Controller.

Part Feeding Option is not installed or
enabled. Check [Setup] – [Options].

The Part Feeding option has not been enabled. This option
requires a separate fee.
Please purchase an option key code from one of our distributors
and perform the setup process.

There are no part feeders enabled in System
Configuration.

A feeder has not been registered to the system.
Alternatively, the feeder has not been enabled.
Register or enable the feeder.

The calibration vision sequence has not
been specified.

The calibration vision sequence has not been specified.
Specify the calibration vision sequence on the Vision page of
the Part Feeding dialog.

No more parts can be added.
Up to 32 part types can be registered on a single project. Either
delete parts that are not in use, or overwrite parameters on parts
not in use to keep using them.

Invalid vision calibration for calibration
vision sequence. A robot camera
calibration must be specified for the
sequence.

Vision calibration has not been configured for the parts
detection vision sequence or the feeder calibration vision
sequence. Configure a valid vision calibration for Calibration
property in each vision sequence.

Calibration Error: Too many parts.

The number of parts to feed is too large during feeder
calibration. Or, the part is falsely detected due to improper
vision settings.
Input the correct number of parts displayed on the screen.
Alternatively, review vision settings to make changes.

Calibration Error: Not enough parts.

The number of parts to feed is too small during feeder
calibration. Or, the part is not detected due to improper vision
settings.
Input the correct number of parts displayed on the screen.
Alternatively, review vision settings to make changes.

Part could not be found.

No parts have been feeded during feeder calibration. Or, the
part is not detected due to improper vision settings.
Input the correct number of parts displayed on the screen.
Alternatively, review vision settings to make changes.

Failed to open as client for the Ethernet
port.

1) Feeder connection disconnected. Check that the Ethernet
connection between the feeder and the Controller is functioning
normally (have cables become disconnected, is there a hub
failure or a lack of power supply to the hub, etc.). Check the
power supply to the feeder.
2) Settings for communication with feeder (Feeder model, IP
address, Subnet mask, Port) is incorrect. Review settings to
make changes.

Cannot connect with part feeder x

Feeder connection disconnected. Check that the Ethernet
connection between the feeder and the Controller is functioning
normally (have cables become disconnected, is there a hub
failure or a lack of power supply to the hub, etc.). Check the
power supply to the feeder.

An undefined function was specified. Close the Part Feeding window and try rebuilding the project.

Software 8. Errors that Occur While Using EPSON RC+

204 Part Feeding 7.0 Introduction & Software Rev.10

Message Cause/solution

The controller could not connect with the
part feeder using the current settings.

Settings for communication with feeder (Feeder model, IP
address, Subnet mask, Port) is incorrect. Review settings to
make changes.

To support Part Feeding, this version of
EPSON RC+ 7.0 requires that the
controller firmware must be x or greater.

The controller version does not match the RC + version. Update
the firmware of the controller.

Part Feeding Part x was configured for use
with part feeder x, model x, but feeder x in
the controller is model x.
The feeder model for the part will be
changed and the part will need to be re-
calibrated.
Continue?

Unconformity arised with feeder setting of part because feeder
model has been changed at system settings.
Change feeder model correctly at system settings or operate
calibration again for the parts.

The part feeder firmware version (x) is not
compatible with this version of EPSON
RC+ 7.0.
The part feeder firmware version for model
x must be x or greater.

1) Part Feeding is not supporting this firmware version of this
feeder. Update the firmware of the feeder.
2) Other manufacturers feeder is connected. Connect the feeder
purchased from us.

One or more Part Feeding parts uses a
Compact Vision unit with firmware x.
Compact Vision firmware version must be
x or greater for use with Part Feeding.

1) When using CV with Part Feeding, CV firmware version
needs to be 3.0.0.0 or greater. Update firmware version of
CV.

2) When using CV with Part Feeding, use CV2-SA, CV2-HA.
CV1 or CV2-S/H/L is not supported.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 205

9. Application Programming Examples
This chapter contains application programming examples for various scenarios.

9.1 One Robot Per Feeder & One Part Per Feeder

9.1.1 Program Example 1.1

Example Type:
Using the PF_Robot Callback for motion

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

Parts are removed from the feeder and placed into a box. When all the parts have been removed, the
Control callback will request more parts. When the operator or hopper replenishes the feeder with more
parts, the cycle continues. If the PF_Stop command is executed, the current cycle ends and then the
application will terminate. (PF_Stop command is not used in the following sample code.)

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

206 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 207

9.1.2 Program Example 1.2

Example Type:
Multiple robot system – 1 robot per feeder & 1 part per feeder

Configuration

Number of Robots: 2. Robot 1 is connected to the Control Unit and Robot 2 is using a Drive Unit
Number of Feeders: 2
Number of Parts Types on each Feeder: 1
Number of Placement Positions: 1 per robot
Camera Orientation: Each Feeder has its own Fixed Downward Camera

Description

Both robots independently pick and place parts. The robots do not share feeders or placement position. The
robot work envelopes do not overlap. Both robots have points that are labeled “Park”, “Pick” and “Place”
in their respective point files.

Sample Code

Main.prg

Function main
 Robot 1
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 Robot 2
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 PF_Start 1

PF_Start 2
Fend

Software 9. Application Programming Examples

208 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Integer gripperOutput

 Select PartID
 Case 1
 Robot 1
 gripperOutput =1

Case 2
 Robot 2
 gripperOutput =2
 Send

Do While PF_QueLen(PartID) > 0
 Pick = PF_QueGet(PartID)
 Jump Pick
 On gripperOutput; Wait 0.2;
 Jump Place
 Off gripperOutput; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 209

9.1.3 Program Example 1.3

Example Type:
Parallel processing vision & vibration with robot motion

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera

Description

The robot picks up a Part #1 from the parts feeder and places it into a fixture. This continues until all the
“Front” parts are removed from the Feeder. When the last available part is being placed (90% of the way
through the motion), the feeder will vibrate, the hopper will replenish the feeder if necessary, etc
This example demonstrates how the feeder action can occur in parallel with the robot motion to optimize
throughput.

Sample Code

Main.prg

Function main
 MemOff PartsToPick
 Off Gripper

 Robot 1
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 PF_Start(1)

 Xqt RobotPickPlace
Fend

Software 9. Application Programming Examples

210 Part Feeding 7.0 Introduction & Software Rev.10

Function RobotPickPlace
 DO

Wait MemSw(PartsToPick) = On
If PF_QueLen(1) > 0 Then

 Do
 Pick = PF_QueGet(1)
 PF_QueRemove 1
 Jump Pick
 On Gripper; Wait 0.2
 If PF_QueLen(1) = 0 Then
 Jump Place ! D90; MemOff PartsToPick!
 Off Gripper; Wait 0.2
 Exit Do
 Else
 Jump Place
 Off Gripper; Wait 0.2
 EndIf
 Loop
 Else
 MemOff PartsToPick
 EndIf

Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 MemOn PartsToPick
 Wait MemSw(PartsToPick) = Off

 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 211

9.1.4 Program Example 1.4

Example Type:
1 Robot, 2 Feeders and 1 Part Per Feeder

Configuration

Number of Robots: 1
Number of Feeders: 2
Number of Parts Types on each Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Each Feeder has its own Fixed Downward Camera

Description

The robot picks up a Part #1 from Feeder #1 and places it into a box. This continues until all the “Front”
parts are removed from Feeder #1. Then the robot picks up each “Front” part from Feeder #2 and places
them into the box. The Cameras and Feeders work in parallel with one another.

Sample Code

Main.prg

Function main
 MemOff PartsToPick1; MemOff PartsToPick2
 Off Gripper

 Robot 1
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 PF_Start(1)

PF_Start(2)

 Xqt rbt1
Fend

Software 9. Application Programming Examples

212 Part Feeding 7.0 Introduction & Software Rev.10

Function rbt1
 Do
 Call RobotPickPlace(1)

Call RobotPickPlace(2)
Loop

Fend

Function RobotPickPlace(PartID As Integer)
 Integer partsToPickMembit,

Select PartID
 Case 1
 partsToPickMembit = IONumber("PartsToPick1")

Case 2
 partsToPickMembit = IONumber("PartsToPick2")
 Send

 Wait MemSw(partsToPickMembit) = On

If PF_QueLen(PartID) > 0 Then

 Do
 Pick = PF_QueGet(PartID)
 PF_QueRemove PartID
 Jump Pick
 On Gripper; Wait 0.2
 If PF_QueLen(PartID) = 0 Then
 Jump Place ! D90; MemOff partsToPickMembit !
 Off Gripper; Wait 0.2
 Exit Do
 Else
 Jump Place
 Off Gripper; Wait 0.2
 EndIf

 If PF_IsStopRequested(PartID) = True Then
 MemOff partsToPickMembit

Exit Do
 EndIf
 Loop
 Else
 MemOff partsToPickMembit
 EndIf
Fend

PartFeeding.prg
Function PF_Robot(PartID As Integer) As Integer

 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 Case 2
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 Send

 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 213

9.1.5 Program Example 1.5

Example Type:
1 Robot, 2 Feeders and 1 Part Per Feeder – Mobile Mounted Camera

Configuration

Number of Robots: 1
Number of Feeders: 2
Number of Parts Types on each Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Each Feeder will use the Mobile Mounted Camera on the robot

(there are no Fixed Downward cameras for this example)

Description

The robot moves the Mobile Mounted camera over Feeder #1 and takes a picture. The robot picks up each
part from Feeder #1 and places it into a box. This continues until all the “Front” parts are removed from
Feeder #1. Then the robot moves the Mobile Mounted camera over Feeder #2 and takes a picture.
The robot picks up each correctly oriented part from Feeder #2 and places them into the box.

When using a mobile camera with multiple feeders which have backlights, use separate
vision sequences for parts associated with each feeder.

Sample Code

Main.prg

Function main
 MemOff PartsToPick1; MemOff PartsToPick2;
 MemOff mobileCamBefore1; MemOff mobileCamAfter1
 MemOff mobileCamBefore2; MemOff mobileCamAfter2
 MemOff mobileCamInPos1; MemOff mobileCamInPos2

 Robot 1
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 PF_Start(1)
 PF_Start(2)
 Xqt rbt1
Fend

NOTE

Software 9. Application Programming Examples

214 Part Feeding 7.0 Introduction & Software Rev.10

Function rbt1

 Do
 Wait MemSw(mobileCamBefore1) = On
 Jump MobileCamShotFeeder1; MemOn mobileCamInPos1
 Wait MemSw(mobileCamAfter1) = On
 MemOff mobileCamInPos1

 Call RobotPickPlace(1)

 Wait MemSw(mobileCamBefore2) = On
 Jump MobileCamShotFeeder2; MemOn mobileCamInPos2
 Wait MemSw(mobileCamAfter2) = On
 MemOff mobileCamInPos2

 Call RobotPickPlace(2)
 Loop
Fend

Function RobotPickPlace(PartID As Integer)
 Integer partsToPickMembit, partCnt, gripperOutput, toolNum

Select PartID
 Case 1
 partsToPickMembit = IONumber("PartsToPick1")

Case 2
 partsToPickMembit = IONumber("PartsToPick2")
 Send

 Wait MemSw(partsToPickMembit) = On
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 MemOff partsToPickMembit
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 215

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 Case 2
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 Send

 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Function PF_MobileCam(PartID As Integer, Action As Integer) As Integer

Integer mobileCamBeforeMembit, mobileCamAfterMembit, mobileCamInPosMembit

 Select PartID
 Case 1
 mobileCamBeforeMembit = IONumber("mobileCamBefore1")
 mobileCamAfterMembit = IONumber("mobileCamAfter1")
 mobileCamInPosMembit = IONumber("mobileCamInPos1")
 Case 2
 mobileCamBeforeMembit = IONumber("mobileCamBefore2")
 mobileCamAfterMembit = IONumber("mobileCamAfter2")
 mobileCamInPosMembit = IONumber("mobileCamInPos2")
 Send

 Select Action
 Case PF_MOBILECAM_BEFORE

' Request for robot move to camera position
 MemOff mobileCamAfterMembit
 MemOn mobileCamBeforeMembit
 Wait MemSw(mobileCamInPosMembit) = On
 Case PF_MOBILECAM_AFTER

' Request for robot move after part vision acquisition
 MemOff mobileCamBeforeMembit
 MemOn mobileCamAfterMembit
 Wait MemSw(mobileCamInPosMembit) = Off
 Send

 PF_MobileCam = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

216 Part Feeding 7.0 Introduction & Software Rev.10

9.1.6 Program Example 1.6

Example Type:
Specifying the number of parts to pick

Configuration

Number of Robots: 1
Number of Feeders: 2
Number of Parts Types on each Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Each Feeder has its own Fixed Downward Camera

Description
The robot picks up four Part #1 from Feeder #1 and place them individually. The robot will then pick up
five Part #2 from Feeder #2 and place them. The Cameras and Feeders work in parallel with one another.
This example illustrates how the robot can pick up a specific number of parts from each feeder. The
sample code also supports picking all available parts by setting the numToPick parameter to
ALL_AVAILABLE. If “Front” parts remain on either feeder after picking the desired quantity, the feeder
will not vibrate unnecessarily.

Sample Code

Main.prg

#define ALL_AVAILABLE -1

Function main
 MemOff PartsToPick1; MemOff PartsToPick2
 Off Gripper

 Robot 1
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 PF_Start(1)
 PF_Start(2)

Xqt rbt1
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 217

Function rbt1

Do

 Call RobotPickPlace(1, 4) 'part 1...pick & place 4 times
 Call RobotPickPlace(2, 5) 'part 2...pick & place 5 times
 Loop
Fend

Function RobotPickPlace(PartID As Integer, numToPick As Integer)
 Integer partsToPickMembit, partCnt,

Select PartID
 Case 1
 partsToPickMembit = IONumber("PartsToPick1")

Case 2
 partsToPickMembit = IONumber("PartsToPick2")
 Send

 partCnt = 0
 Do
 Wait MemSw(partsToPickMembit) = On
 If PF_QueLen(PartID) > 0 Then
 Pick = PF_QueGet(PartID)
 PF_QueRemove PartID
 Jump Pick
 On Gripper; Wait 0.2
 partCnt = partCnt + 1
 If PF_QueLen(PartID) = 0 Then
 Jump Place ! D90; MemOff partsToPickMembit !
 Off Gripper; Wait 0.2
 If (partCnt = numToPick) Or (numToPick = ALL_AVAILABLE) Then
 Exit Do
 EndIf
 Else
 Jump Place
 Off Gripper; Wait 0.2
 If (partCnt = numToPick) Then
 Exit Do
 EndIf
 EndIf
 Else
 MemOff partsToPickMembit
 EndIf
 If PF_IsStopRequested(PartID) = True Then
 MemOff partsToPickMembit
 Exit Do
 EndIf
 Loop
Fend

Software 9. Application Programming Examples

218 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 Case 2
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 Send

 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 219

9.1.7 Program Example 1.7

Example Type:
Ensuring that the Robot matches the Robot # that was used for the Part

Configuration

Number of Feeders: More than 1
Number of Parts Types on each Feeder: 1
Camera Orientation: Each Feeder has its own Fixed Downward Camera

Description

When using multiple feeders, it is common that the robot makes motion in a multitask rather than inside the
PF_Robot callback. In other words, the PF_Robot callback simply loads part locations (points) into the
Part Feeding Queue. A robot motion task uses the points in the queue. When the code is structured in this
fashion, it is recommended that the robot motion task verifies that current robot # matches the robot # that
was selected for the part. This additional check will ensure that the robot does not use the wrong points
and cannot crash the robot.

Sample Code

Main.prg

Function RobotPickPlace(PartID As Integer, numToPick As Integer)

 If PF_Info(PartID, PF_INFO_ID_ROBOT_NO) <> Robot Then

Print "Robot does not match the robot # for the current part"
 Quit All
 EndIf

 ‘Robot Motion Code

Fend

Software 9. Application Programming Examples

220 Part Feeding 7.0 Introduction & Software Rev.10

9.1.8 Program Example 1.8

Example Type:
Acquiring a new image and loading the queue after every pick

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera

Description

The robot picks up a Part #1 from the parts feeder and places it into a fixture. After each pick and place
operation, a new image will be acquired and the queue will be reloaded. For this example, we are
concerned that surrounding parts may be disturbed during pick up. The PF_Robot callback return value
“PF_CALLBACK_RESTART” will force vision to re-run for all parts and all part queues will be reloaded.
This method is not efficient but “PF_CALLBACK_RESTART” can be useful in certain circumstances
where acquiring an image every cycle can improve performance accuracy. The vision and feeder vibration
occurs in parallel with robot motion.

Sample Code

Main.prg

Function main
 MemOff PartsToPick
 Off Gripper

 Robot 1
 If Motor = Off Then Motor On
 Power Low
 Jump Park

 PF_Start(1)

 Xqt RobotPickPlace
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 221

Function RobotPickPlace
 Do

Wait MemSw(PartsToPick) = On
If PF_QueLen(1) > 0 Then

 Pick = PF_QueGet(1)
 PF_QueRemove 1
 Jump Pick
 On Gripper; Wait 0.2
 Jump Place ! D90; MemOff PartsToPick!
 Off Gripper; Wait 0.2
 Else
 MemOff PartsToPick
 EndIf
 Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 MemOn PartsToPick
 Wait MemSw(PartsToPick) = Off

 PF_Robot = PF_CALLBACK_RESTART
Fend

Software 9. Application Programming Examples

222 Part Feeding 7.0 Introduction & Software Rev.10

9.1.9 Program Example 1.9

Example Type:
Sorting a Part by Front and Back orientation

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 2 (one for the Front side and one for the Back side)
Camera Orientation: Fixed Downward Camera over Feeder #1

Part 1 General Page:

Part 1 Vision Page:

Description

For this application, the robot will sort the parts based upon their Front and Back orientation. Front side
parts will be placed at a point labeled “PlaceFront” and Back side parts will be placed in another point
labeled “PlaceBack”. The pick order does not matter for this application – the robot will pick / place as
many Front parts as it can and then pick / place as many Back parts as it can. When “Needs Flip” is
uncheck but vision objects have been selected in “Vision object for front of part” and “Vision object for
back of part”, the system will load both the Front & Back parts into the coordinate queue and set the Part
Orientation value accordingly. Remember that the “Needs Flip” setting tells the system that you want parts
in a certain orientation. By Unchecking this setting, you are telling the system that you want both
orientations.

In this case, the Front parts will automatically have their orientation data (in the part coordinate queue) set
to constant “PF_PARTORIENT_FRONT”. The Back parts will automatically have their orientations set to
constant “PF_PARTORIENT_BACK”.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 223

Sample Code
Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;

If PF_QuePartOrient(PartID) = PF_PARTORIENT_FRONT Then
 Jump PlaceFront
 ElseIf PF_QuePartOrient(PartID) = PF_PARTORIENT_BACK Then
 Jump PlaceBack
 EndIf
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

224 Part Feeding 7.0 Introduction & Software Rev.10

9.1.10 Program Example 1.10

Example Type:
Using the PF_Vision Callback

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

This example illustrates how to use the PF_Vision callback to acquire an image and load the parts
coordinate queue with the vision results. To use this function, select “User processes vision for part via
PF_Vision callback” in EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding] - [Vision].

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 225

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Function PF_Vision(PartID As Integer, ByRef numBack As Integer) As Integer
 Boolean found
 Integer i, numFront
 Real RB_X, RB_Y, RB_U, RB_Z

 ' Pick Z coordinate
 RB_Z = -132.0

 ' Initialize coordinates queue
 PF_QueRemove PartID, All

 PF_Backlight 1, On

 ' Detect the parts
 VRun UsrVisionSeq

 PF_Backlight 1, Off

 VGet UsrVisionSeq.Geom01.NumberFound, numFront ‘Front Parts
 VGet UsrVisionSeq.Geom02.NumberFound, numBack ‘Back Parts
 If numFront <> 0 Then
 For i = 1 To numFront
 VGet UsrVisionSeq.Geom01.RobotXYU(i), found, RB_X, RB_Y, RB_U
 If found Then
 PF_QueAdd PartID, XY(RB_X, RB_Y, RB_Z, RB_U)
 EndIf
 Next
 EndIf

 PF_Vision = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

226 Part Feeding 7.0 Introduction & Software Rev.10

9.1.11 Program Example 1.11

Example Type:
Picking a Multi-sided Part

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Unique Sides on the Part: 3
Number of Placement Positions: 3 (one placement position for each side of the part)
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

For this example, there is 1 physical part type on the feeder. The part has 3 unique sides (Right side, Left
side and Top side). The robot can pick up the part in any one of the 3 orientations. From the perspective of
the vision system, each side is a different part (even though it is actually 1 physical part). Part Feeding
supports 4 unique parts running on the same feeder at the same time. Consequently, we are going to create
a separate Part for each side. We will make 3 Part Vision sequences and name them “Left”, “Right” and
“Top”. Each vision sequence will use a Geometric object to locate the part in its specific orientation. In the
Part Feeding dialog, we will create 3 Parts - Part 1, 2 and 3. Part 1 will locate the part in the “Left” side
orientation. Part 2 will locate the part in the “Right” side orientation. Part 3 will locate the part in the
“Top” side orientation. “Needs Flip” will be unchecked for all 3 Parts. All 3 parts will use the same Part
Blob Vision Sequence called “PartBlob”.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 227

Software 9. Application Programming Examples

228 Part Feeding 7.0 Introduction & Software Rev.10

Teach the Pick Z for each Part (the pick height may be different for each side of the part). Left side parts
will be placed at a point labeled “PlaceLeft”. Right side parts will be placed at a point labeled
“PlaceRight”. Top side parts will be placed at a point labeled “PlaceTop”. The robot will pick / place all
the parts in the Left orientation, then pick / place all the parts in the Right orientation and lastly it will pick
/ place all the parts in the Top orientation.

Sample Code

Main.prg

Function main
 If Not Motor = On Then Motor On
 Power Low
 Jump park
 PF_Start 1,2,3
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

 Do While PF_QueLen(PartID) > 0
 P10 = PF_QueGet(PartID)
 Jump P10
 On Vacuum; Wait 0.2
 Select PartID
 Case 1
 Jump PlaceLeft
 Case 2
 Jump PlaceRight
 Case 3
 Jump PlaceTop
 Send
 Off Vacuum; Wait 0.2
 PF_QueRemove PartID
 Loop

 PartID = PartID + 1
 If PartID > 3 Then PartID = 1
 PF_ActivePart PartID
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

This example illustrates a simple method of handling a multi-side part by using the Multi-
Part functionality. Another method is for the “User to Process Vision” via the PF_Vision
callback. When using PF_QueAdd, User Data can be included with the part coordinates.
The user data could be a numerical value that represents the part orientation (i.e., 1 = Left,
2=Right, 3=Top). The PF_QueUserData function would be used to get the orientation
value so that the part can be placed in the correct location. The code would also need to
account for height differences in the part sides.

NOTE

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 229

9.1.12 Program Example 1.12

Example Type:
Using the PF_Vision Callback and the Part Sequence uses Multi-Search

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description
The PF_Vision callback is used when the Part Sequence vision processing is difficult (i.e., the application
requires multiple vison sequences to detect the part or several different lighting controls are required
etc…).

This example illustrates how to use the PF_Vision callback to acquire an image and load the parts
coordinate queue with the vision results. To use this function, select “User processes vision for part via
PF_Vision callback” in EPSON RC+ 7.0 - Menu - [Tools] - [Part Feeding] - [Vision].

This example uses multi-search for the Part Sequence. Multi-search is a feature where an object will search
for each result of the CenterPointObject property or a Frame obgject. In multi-search, the found results may
not be found sequentially. PF_Vision shows how to iterate through all the results to find the found results.

Example of multi-search with CenterPointObject:
1. Create an object to find multiple parts, such as a Blob
2. Create another object, such as a Polar, that will use the Blob as its CenterPointObject.
3. Set the CenterPntObjResult property to All.
4. Run the sequence. You will see an instance of the Polar object for each Blob result that was found.

Example of multi-search with Frame:
1. Create an object to find multiple parts, such as a Blob.
2. Create a Frame object and set the OriginPoint property to the Blob.
3. Set the OriginPntObjResult property to All.
4. Create another object, such as a Polar, that will use the Frame.
5. Set the FrameResult property to All.
6. Run the sequence. You will see an instance of the Frame object for each Blob result that was found,

and an instance of the Polar object for each Frame result.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

230 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

Do While PF_QueLen(PartID) > 0
 P10 = PF_QueGet(PartID)

 Select PF_QuePartOrient(PartID)
 Case PF_PARTORIENT_FRONT ' Front
 Tool 1 ' Tool to pick Front
 ' Pick
 Jump P10 ! D90; On Vacuum !
 Wait 0.1
 ' Place
 Jump FrontPlace
 Off Vacuum
 Wait 0.1
 Case PF_PARTORIENT_BACK ' Back

Tool 2 ' Tool to pick Back
 ' Pick
 Jump P10 ! D90; On Vacuum !
 Wait 0.1
 ' Place
 Jump BackPlace
 Off Vacuum
 Wait 0.1
 Send

 PF_QueRemove PartID

 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf

 Loop

 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 231

 Boolean found
 Real x, y, z, u

 z = -170 ' Set the pick Z coordinate to the desired height for your application

 PF_QueRemove 1, All

 PF_Backlight 1, On
 VRun FindPart

 VGet FindPart.Front.NumberFound, numFront
 VGet FindPart.Front.NumberOfResults, numResults
 count = 0
 For i = 1 To numResults
 VGet FindPart.Front.RobotXYU(i), found, x, y, u
 If found Then
 count = count + 1
 P999 = XY(x, y, z, u) /R
 PF_QueAdd 1, P999, PF_PARTORIENT_FRONT
 EndIf
 If count = numFront Then
 Exit For
 EndIf
 Next

 VGet FindPart.Back.NumberFound, numBack
 VGet FindPart.Back.NumberOfResults, numResults
 count = 0
 For i = 1 To numResults
 VGet FindPart.Back.RobotXYU(i), found, x, y, u
 If found Then
 count = count + 1
 P999 = XY(x, y, z, u) /R
 PF_QueAdd 1, P999, PF_PARTORIENT_BACK
 EndIf
 If count = numBack Then
 Exit For
 EndIf
 Next

 PF_Backlight 1, Off
 PF_Vision = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

232 Part Feeding 7.0 Introduction & Software Rev.10

9.2 One Robot – Multiple Parts

9.2.1 Program Example 2.1

Example Type:
1 Robot and Multiple Parts - Parallel processing vision & vibration with robot motion

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on Feeder: 2
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera

Description
There are two unique (physically different) parts. The robot will continuously pick and place two of Part #1
and then pick and place one of Part #2. This is accomplished by alternating “PF_ActivePart”. For this
application, the pick order matter (for example, in the case of a part assembly). When the last part has been
placed, the “PF_ActivePart” is changed to feed the desired part and signal the system to vibration and
acquire images if necessary. This is accomplished in parallel with the robot motion (30% of the way to
“place”).

Sample Code

Main.prg

Function Main
 Integer numToPick1, numToPick2, i

 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park

 MemOff PartsToPick1
 MemOff PartsToPick2
 numToPick1 = 2
 numToPick2 = 1

 PF_Start 1,2

 Do
 i = 0
 Do

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 233

 Wait MemSw(PartsToPick1) = On
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On Gripper
 Wait .25
 i = i + 1
 If i < numToPick1 And PF_QueLen(1) > 0 Then
 Jump place
 Else
 'Last part or no more parts available to pick
 If i = numToPick1 Then
 PF_ActivePart 2
 EndIf
 Jump place ! D30; MemOff PartsToPick1 !
 EndIf
 Off Gripper
 Wait .25
 Loop Until i = numToPick1
 i = 0
 Do
 Wait MemSw(PartsToPick2) = On
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /R
 On Gripper
 Wait .25
 i = i + 1
 If i < numToPick2 And PF_QueLen(2) > 0 Then
 Jump place
 Else
 'Last part or no more parts available to pick
 If i = numToPick2 Then
 PF_ActivePart 1
 EndIf
 Jump place ! D30; MemOff PartsToPick2 !
 EndIf
 Off Gripper
 Wait .25
 Loop Until i = numToPick2
 Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 Case 2
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 Send

 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

234 Part Feeding 7.0 Introduction & Software Rev.10

9.3 Two Robots – One Part

9.3.1 Program Example 3.1

Example Type:
2 Robots & 1 Physical Part Type – Motion in PF_Robot callback – Picking in a specific order

Configuration

Number of Robots: 2
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 2
Camera Orientation: Fixed Downward Camera

Description
There are two robots and one feeder. There is only 1 physical part type. Because each robot has its own
camera calibration, there are two logical Parts – Part 1 for Robot 1 and Part 2 for Robot 2. The robots will
take turns picking from the feeder. The pick order matters for this application. The alternating pick order is
accomplished with “PF_ActivePart”. Robot motion is performed inside the PF_Robot callback. This
example does not have parallel processing of the feeder and robot motion. The code is simple but not
efficient. Each robot has a point labeled “park” and a point labeled “place”.
The key concept of this example is the PF_Robot callback return value
“PF_CALLBACK_RESTART_ACTIVEPART”. This return value allows multiple robots to use the same
feeder without the potential of the part coordinates in both Part’s queues. The return value forces a new
image to be acquired for only the PF_ActivePart and only the PF_ActivePart’s queue is loaded.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 235

Sample Code
Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park

 PF_Start 1, 2
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 If PF_QueLen(PartID) > 0 Then
 Select PartID
 Case 1
 Robot 1
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On rbt1Gripper
 Wait .25
 Jump place
 Off rbt1Gripper
 Wait .25
 PF_ActivePart 2
 Case 2
 Robot 2
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On rbt2Gripper
 Wait .25
 Jump place
 Off rbt2Gripper
 Wait .25
 PF_ActivePart 1
 Send

 EndIf

 PF_Robot = PF_CALLBACK_RESTART_ACTIVEPART

Fend

Software 9. Application Programming Examples

236 Part Feeding 7.0 Introduction & Software Rev.10

9.3.2 Program Example 3.2

Example Type:
2 Robots & 1 Physical Part Type – motion in separate tasks – pick order does not matter
– Picking in a specific order

Configuration

Number of Robots: 2
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 2
Camera Orientation: Fixed Downward Camera

Description
There are two robots and one feeder. There is only 1 physical part type. Because each robot has its own
camera calibration, there are two logical Parts – Part 1 for Robot 1 and Part 2 for Robot 2. Pick order does
not matter - first come, first served. What makes this example different is that vision is acquired for each
part every cycle. This may be helpful if you are concerned that surrounding parts may be disturbed during
pick up. The PF_Robot callback return value “PF_CALLBACK_RESTART” will force vision to re-run
for all parts and all part queues will be reloaded.
This method is not efficient but “PF_CALLBACK_RESTART” can be useful in certain circumstances.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 237

Sample Code
Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 MemOff PartsToPick
 PF_Start 1,2
 Xqt Robot1PickPlace
 Xqt Robot2PickPlace
Fend

Function Robot1PickPlace
 Robot 1

 Do
 PF_AccessFeeder(1)
 Wait MemSw(PartsToPick) = On

If PF_QueLen(1) > 0 Then
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On 5
 Wait .5
 Jump place ! D30; MemOff PartsToPick; PF_ReleaseFeeder 1!
 Off 5
 Wait .25
 Else
 MemOff PartsToPick; PF_ReleaseFeeder 1
 EndIf
 Loop
Fend

Function Robot2PickPlace
 Robot 2

 Do
 PF_AccessFeeder(1)
 Wait MemSw(PartsToPick) = On

If PF_QueLen(2) > 0 Then
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On 2
 Wait .5
 Jump place ! D30; MemOff PartsToPick; PF_ReleaseFeeder 1!
 Off 2
 Wait .25
 Else
 MemOff PartsToPick; PF_ReleaseFeeder 1

Software 9. Application Programming Examples

238 Part Feeding 7.0 Introduction & Software Rev.10

 EndIf
 Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 MemOn PartsToPick
 Wait MemSw(PartsToPick) = Off

 PF_Robot = PF_CALLBACK_RESTART 'Force vision and vibration to refresh
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 239

9.3.3 Program Example 3.3

Example Type:
2 Robots & 1 Physical Part Type – motion in separate tasks – First Come, First Served -
Simulated process delay

Configuration

Number of Robots: 2
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 2
Camera Orientation: Fixed Downward Camera

Description
There are two robots and one feeder. There is only 1 physical part type. Because each robot has its own
camera calibration, there are two logical Parts – Part 1 for Robot 1 and Part 2 for Robot 2. For this
example, each robot has a variable process time (simulated by a random wait time). Each robot is busy
performing some other operation after picking up a part from the feeder. Memory bits “Rbt1Complete”
and “Rbt2Complete” are used to signal when the robot has finished its secondary operation and it is now
ready to pickup another part from the feeder. The PF_Robot callback will return the value
“PF_CALLBACK_RESTART_ACTIVEPART” if the desired part (PF_ActivePart) is not the same as the
current part (i.e., the other robot wants to pick up a part). This will prevent duplication of points in the
robot queues. A new image will be acquired for the PF_ActivePart and only the PF_ActivePart’s queue
will be loaded. However, if the next part is the same as the current part (i.e, the same robot is going to pick
from the feeder) then the PF_Robot callback return value will be “PF_CALLBACK_SUCCESS”.
PF_AccessFeeder and PF_ReleaseFeeder ensure that the robots will not collide when accessing the feeder.

Software 9. Application Programming Examples

240 Part Feeding 7.0 Introduction & Software Rev.10

Sample Code
Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump place
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump place
 MemOff PartsToPick1
 MemOff PartsToPick2

 PF_Start 1,2
 Xqt Robot1PickPlace
 Xqt Robot2PickPlace
Fend

Function Robot1PickPlace
 Integer randomTime

 Robot 1
 MemOn Rbt1Complete

 Do
 Wait MemSw(PartsToPick1) = On
 PF_AccessFeeder(1)
 MemOff Rbt1Complete
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On rbt1Gripper
 Wait .25
 Jump place ! D30; MemOff PartsToPick1; PF_ReleaseFeeder 1!
 Off rbt1Gripper
 Wait .25
 'Test long process time - robot is doing something else
 Randomize
 randomTime = Int(Rnd(9)) + 1
 Wait randomTime
 MemOn Rbt1Complete
 Loop
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 241

Function Robot2PickPlace
 Integer randomTime

 Robot 2
 MemOn Rbt2Complete

 Do
 Wait MemSw(PartsToPick2) = On
 PF_AccessFeeder(1)
 MemOff Rbt2Complete
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On rbt2Gripper
 Wait .25
 Jump place ! D30; MemOff PartsToPick2; PF_ReleaseFeeder 1!
 Off rbt2Gripper
 Wait .25
 'Test long process time - robot is doing something else
 Randomize
 randomTime = Int(Rnd(9)) + 1
 Wait randomTime
 MemOn Rbt2Complete
 Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

Integer nextPart

 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 Case 2
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 Send

 Wait MemSw(Rbt1Complete) = On Or MemSw(Rbt2Complete) = On
 If MemSw(Rbt1Complete) = On Then
 nextPart = 1
 ElseIf MemSw(Rbt2Complete) = On Then
 nextPart = 2
 EndIf

 PF_ActivePart nextPart

 If nextPart = PartID Then
 'Same part so no need to re-acquire an image and reload the queue
 PF_Robot = PF_CALLBACK_SUCCESS
 Else
 'Restart from vision -

'Acquire image and load queue for only the Active Part
 PF_Robot = PF_CALLBACK_RESTART_ACTIVEPART
 EndIf

Fend

Software 9. Application Programming Examples

242 Part Feeding 7.0 Introduction & Software Rev.10

9.4 Two Robots – Multiple Parts

9.4.1 Program Example 4.1

Example Type:
2 Robots, 1 Feeder, Multiple Parts – Motion in PF_Robot callback – Picking in a specific order

Configuration

Number of Robots: 2
Number of Feeders: 1
Number of Parts Types on Feeder: 2
Number of Placement Positions: 2
Camera Orientation: Fixed Downward Camera

Description
There are two robots and one feeder. Each robot picks up a unique (physically different) part. The robots
will take turns picking from the feeder. The pick order matters for this application. The alternating pick
order is accomplished with “PF_ActivePart”. Robot motion is performed inside the PF_Robot callback.
This example does not have parallel processing of the feeder and robot motion. The code is simple but not
efficient. Robot 1 is picking and placing Part #1. Robot 2 is picking and placing Part #2. Each robot has a
point labeled “park” and a point labeled “place”.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 243

Sample Code
Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park

 PF_Start 1, 2
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 If PF_QueLen(PartID) > 0 Then
 Select PartID
 Case 1
 Robot 1
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On rbt1Gripper
 Wait .25
 Jump place
 Off rbt1Gripper
 Wait .25
 PF_ActivePart 2
 Case 2
 Robot 2
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On rbt2Gripper
 Wait .25
 Jump place
 Off rbt2Gripper
 Wait .25
 PF_ActivePart 1
 Send

 EndIf

 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

244 Part Feeding 7.0 Introduction & Software Rev.10

9.4.2 Program Example 4.2

Example Type:
2 Robots, 1 Feeder, Multiple Parts – Motion in separate tasks – Picking in a specific order

Configuration

Number of Robots: 2
Number of Feeders: 1
Number of Parts Types on Feeder: 2
Number of Placement Positions: 2
Camera Orientation: Fixed Downward Camera

Description
There are two robots and one feeder. Each robot picks up a unique (physically different) part. The robots
will take turns picking from the feeder. This is accomplished by alternating “PF_ActivePart”. If one of the
robots does not have parts to pick then the other robot is allowed to continue picking from the feeder until
no more parts are available for the robot. Robot 1 is picking and placing Part #1. Robot 2 is picking and
placing Part #2. Each robot has a point labeled “park” and a point labeled “place”. “PF_AccessFeeder” &
“PF_ReleaseFeeder” are used to prevent both robots from attempting to access the feeder at the same time.
When either robot has moved 30% of the way to its place position, the other robot is allowed to access the
feeder.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 245

Sample Code
Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power Low
 Speed 50
 Accel 50, 50
 Jump park
 MemOff PartsToPick1
 MemOff PartsToPick2

 PF_Start 1, 2
 Xqt Robot1PickPlace
 Xqt Robot2PickPlace
Fend

Function Robot1PickPlace
 Robot 1
 Do
 Wait MemSw(PartsToPick1) = On
 PF_AccessFeeder 1
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On 5
 Wait .5
 Jump place ! D30; MemOff PartsToPick1; PF_ReleaseFeeder 1 !
 Off 5
 Wait .25
 Loop
Fend

Function Robot2PickPlace
 Robot 2
 Do
 Wait MemSw(PartsToPick2) = On
 PF_AccessFeeder 1
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On 2
 Wait .5
 Jump place ! D30; MemOff PartsToPick2; PF_ReleaseFeeder 1 !
 Off 2
 Wait .25
 Loop
Fend

Software 9. Application Programming Examples

246 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 If PF_QueLen(1) > 0 Then
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 PF_ActivePart 2
 Else
 PF_ActivePart 1
 EndIf
 Case 2
 If PF_QueLen(2) > 0 Then
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 PF_ActivePart 1
 Else
 PF_ActivePart 2
 EndIf
 Send
 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 247

9.4.3 Program Example 4.3

Example Type:
2 Robots, 1 Feeder, Multiple Parts – Motion in separate tasks – Picking in a specific order

Configuration

Number of Robots: 2
Number of Feeders: 1
Number of Parts Types on Feeder: 3
Number of Placement Positions: 2
Camera Orientation: Fixed Downward Camera

Description
There are two robots and one feeder. Each robot will pick a different parts. Robot 1 will pick and place one
of Part 1. Robot 2 will then pick and place one Part 4 and one Part 5. The pick order matters for this
application. The alternating pick order is accomplished with “PF_ActivePart”. Robot motion is performed
in parallel with the feeder vibration.

Sample Code

Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 MemOff PartsToPick1
 MemOff PartsToPick4
 MemOff PartsToPick5

 PF_Start 1,4,5
 Xqt Robot1PickPlace

Software 9. Application Programming Examples

248 Part Feeding 7.0 Introduction & Software Rev.10

 Xqt Robot2PickPlace
Fend

Function Robot1PickPlace
 Robot 1
 Do
 Wait MemSw(PartsToPick1) = On
 PF_AccessFeeder(1)
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On rbt1Gripper; Wait .25
 Jump place ! D30; MemOff PartsToPick1; PF_ReleaseFeeder 1!
 Off rbt1Gripper
 Wait .25
 Loop
Fend

Function Robot2PickPlace
 Robot 2
 Do
 Wait MemSw(PartsToPick4) = On
 PF_AccessFeeder(1)
 P0 = PF_QueGet(4)
 PF_QueRemove (4)
 Jump P0 /L
 On rbt2Gripper; Wait .25
 Jump place ! D30; MemOff PartsToPick4!
 Off rbt2Gripper; Wait .25
 Wait MemSw(PartsToPick5) = On
 P0 = PF_QueGet(5)
 PF_QueRemove (5)
 Jump P0 /L
 On rbt2Gripper; Wait .25
 Jump place ! D30; MemOff PartsToPick5; PF_ReleaseFeeder 1!
 Off rbt2Gripper; Wait .25
 Loop
Fend

PartFeeding.prg
Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 PF_ActivePart 4
 Case 4
 MemOn PartsToPick4
 Wait MemSw(PartsToPick4) = Off
 PF_ActivePart 5
 Case 5
 MemOn PartsToPick5
 Wait MemSw(PartsToPick5) = Off
 PF_ActivePart 1
 Send
 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 249

9.5 User Processes Vibration for Part via PF_Feeder Callback

9.5.1 Program Example 5.1

Example Type:
Flat Platform – User Processes vibration for Part via PF_Feeder Callback

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 1
Platform Type: Flat
Pick Area: Pick Region B
Camera Orientation: Fixed Downward Camera

Description
For this example, a standard Flat Platform is being used. Normally <System processes vibration for part>
in Menu-[Tool]-[PartFeeing]-[Part]-[Vibration] would be selected for a Flat plate. For this example, we
will demonstrate how you can select <User processes vibration for part via PF_Feeder callback> to handle
the vibration action yourself.
The user’s vibration code will be performed inside the PF_Feeder callback. <User processes vibration for
part via PF_Feeder callback> is required when you want a different vibration strategy than what the system
can provided. When using a custom platform (i.e, holes, slots or pockets), you must handle the vibration
yourself via the PF_Feeder callback (refer to Example 5.2 for details).

Software 9. Application Programming Examples

250 Part Feeding 7.0 Introduction & Software Rev.10

Even if the <User processes vibration for part via PF_Feeder callback> is selected (for Standard Flat, Anit-
stick and Anti-roll platforms), the system will make the determination of how to best vibrate the part in
different situations. The part judgement is provided to the PF_Feeder callback using a parameter called
“state”. The different states are defined with constants in the “PartFeeding.inc” file. For example, the
constant “PF_FEEDER_PICKOK” means that parts are available to be picked up by the robot. As another
example, the constant “PF_FEEDER_FLIP” is passed to the PF_Feeder callback when the system has
determined that the best action is to Flip the parts. It is entirely up to the user whether to use the “state”
recommendation or not.

Conceptually, the user can recreate the System Processing via the PF_Feeder state and the appropriate
vibration statements. Once again, normally the <System processes vibration for part> would be selected for
a Flat tray. That said, this example demonstrates how to mimic the System Processing using the PF_Feeder
callback and vibration commands.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 251

Function PF_Feeder(PartID As Integer, NumFrontParts As Integer,
NumBackParts As Integer, state As Integer) As Integer

Select state

‘ OK to Pick
 Case PF_FEEDER_PICKOK
 ' Call PF_Robot because there are parts ready to pick
 PF_Feeder = PF_CALLBACK_SUCCESS

‘ Supply more parts
 Case PF_FEEDER_SUPPLY
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

 ‘ Parts are spread out but need to be flipped
 Case PF_FEEDER_FLIP
 PF_Flip PartID
‘ Restart and re-acquire images
 PF_Feeder = PF_CALLBACK_RESTART

 ‘ Shift parts into pick region
Case PF_FEEDER_SHIFT
PF_Shift PartID, PF_SHIFT_FORWARD
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

‘ Center the parts
 Case PF_FEEDER_CENTER
 PF_Center PartID, PF_CENTER_LONG_AXIS
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

‘ Center, Flip and Separate
 Case PF_FEEDER_CENTER_FLIP
 PF_Center PartID, PF_CENTER_LONG_AXIS
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Flip PartID
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

‘ Hopper is empty
Case PF_FEEDER_HOPPER_EMPTY
 PFStatusReturnVal = PF_Status(PartID, PF_STATUS_NOPART)
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 ‘ Center, Flip and Separate
 PF_Center PartID, PF_CENTER_LONG_AXIS
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Flip PartID
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

‘ Parts have gathered against the platform wall
Case PF_FEEDER_SHIFT_BACKWARDS
 PF_Shift PartID, PF_SHIFT_BACKWARD
 PF_Feeder = PF_CALLBACK_RESTART

‘ Hopper Supply, Center, Flip and Separate
Case PF_FEEDER_SUPPLY_CENTER_FLIP
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY)
 PF_Center PartID, PF_CENTER_LONG_AXIS
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Flip PartID

Software 9. Application Programming Examples

252 Part Feeding 7.0 Introduction & Software Rev.10

 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

‘ Too many parts
Case PF_FEEDER_TOO_MANY
 PFStatusReturnVal = PF_Status(PartID, PF_STATUS_TOOMANYPART)
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

‘ Wrong part
Case PF_FEEDER_WRONGPART
 PFStatusReturnVal = PF_Status(PartID, PF_STATUS_WRONGPART)
 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

 Send

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 253

9.5.2 Program Example 5.2

Example Type:
Custom Platform with Holes – User Processes vibration for Part via PF_Feeder Callback

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 1
Platform Type: Holes
Pick Area: Anywhere
Camera Orientation: Fixed Downward Camera

Description
Because this is a custom platform, the <User processes vibration for part via PF_Feeder callback> is
automatically selected.

After vision acquires an image and the part queue is loaded, the PF_Feeder callback is called.
The user’s code must judge how to vibrate the feeder inside the PF_Feeder callback. The quantity of
“front” and “back” parts are provided to the PF_Feeder callback. The parameters are called
“NumFrontParts” and “NumBackParts”. For this example, if the NumFrontParts is greater than 0 then no
vibration is required since parts are available to be picked up by the robot. In that case, the callback return
value is ”PF_CALLBACK_SUCCESS”. This return value tells the system to go ahead and call the
PF_Robot callback.

Software 9. Application Programming Examples

254 Part Feeding 7.0 Introduction & Software Rev.10

If the NumFrontParts equals 0 then the sample code VRun’s the Part Blob sequence to determine if there is
a clump of parts or whether there are no parts at all. If the Part Blob sequence does not find any parts, then
the hopper is turned on. If the Part Blob sequence finds something then the feeder Flips, Shifts Forward
and then Shifts backward so that parts can fall into the holes.
After parts have been vibrated on the feeder, the system must re-acquire vision images (the location of the
parts has changed due to vibration). This is accomplished by setting the return value to
“PF_CALLBACK_RESTART”. “PF_CALLBACK_RESTART” will restart the Part Feeding process
from the beginning, re-aquire new images, reload the part queue and then call PF_Feeder once again to
determine if any further action is required.

A Flip, a long duration Shift Forward and a short duration Shift Backward is the typical
feeding strategy for Custom Platforms.

The constant PF_FEEDER_UNKNOWN is passed to PF_Feeder when the Platform Type
is Holes, Slots or Pockets. In the case of Custom Plates, the system has no knowledge of
how the plate is machined and consequently, the system can not properly determine how to
best feed the parts.

Sample Code
Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

TIP

NOTE

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 255

Function PF_Feeder(PartID As Integer, NumFrontParts As Integer,
NumBackParts As Integer, state As Integer) As Integer

' Example for Structured Platform with holes state = PF_FEEDER_UNKNOWN

 Integer PFControlReturnVal
 Integer numFound

Select True

 ‘ OK to Pick
 Case NumFrontParts > 0

' Call PF_Robot because there are parts ready to pick
 PF_Feeder = PF_CALLBACK_SUCCESS ‘

 ‘ No Front parts were found but there are Back parts
 Case NumFrontParts = 0 And NumBackParts <> 0

 ‘ Flip, long Shift Forward and short Shift Backward
 PF_Flip PartID, 500
 PF_Shift PartID, PF_SHIFT_FORWARD, 1000
 PF_Shift PartID, PF_SHIFT_BACKWARD, 300

 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

 ‘ There are no Front or Back parts found
 ‘ Either there is a clump of parts or there are no parts on the tray
 ‘ Acquire an image from the Part Blob sequence to make a determination
 Case NumFrontParts = 0 And NumBackParts = 0

 PF_Backlight 1, On ‘ Backlight on
 VRun PartBlob ‘ Acquire Image
 PF_Backlight 1, Off ‘Backlight off
 VGet PartBlob.Blob01.NumberFound, numFound ‘ Were any Blobs found?

 If numFound > 0 Then ' Clump of parts found

 ‘ Flip, long Shift Forward and short Shift Backward
 PF_Flip PartID, 500
 PF_Shift PartID, PF_SHIFT_FORWARD, 1000
 PF_Shift PartID, PF_SHIFT_BACKWARD, 300

 Else ‘ No parts found

 ‘ Call the Control callback to supply more parts
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 EndIf

 PF_Feeder = PF_CALLBACK_RESTART ‘ Restart and re-acquire images

Send

Fend

Software 9. Application Programming Examples

256 Part Feeding 7.0 Introduction & Software Rev.10

9.6 Error Handling
This section describes how to process errors in different use case scenarios.

9.6.1 Program Example 6.1

Example Type:
Handling a potential error condition inside the Callback Function

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

This example detects and handles a potential error condition inside a callback function so that the error
does not occur inside the main Part Feeding process loop. For this example, the PF_Vision callback is used
to acquire an image and load the part coordinate queue with the vision results. The robot has a large tool
offset. In some instances, the Tool cannot align with the part angle (determined by vision) because the
robot would have to travel outside its work envelope. If left unhandled, this condition would result in a
“coordinate conversion” error. This sample code checks whether the robot can pick up the part with the
Tool at the vision angle prior to loading the coordinates into the part queue. This is achieved with the
TargetOK statement.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 257

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

' Tool 1 will be used to pick up the part
 Tool 1

Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Function PF_Vision(PartID As Integer, ByRef numBack As Integer) As Integer
 Boolean found
 Integer i, numFront
 Real RB_X, RB_Y, RB_U, RB_Z

 ' Tool 1 will be used to pick up the part
 Tool 1

 ' Pick Z coordinate
 RB_Z = -132.0

 ' Initialize coordinates queue
 PF_QueRemove PartID, All
 PF_Backlight 1, On
 ' Detect the parts
 VRun UsrVisionSeq
 PF_Backlight 1, Off

 VGet UsrVisionSeq.Geom01.NumberFound, numFront ‘Front Parts
 VGet UsrVisionSeq.Geom02.NumberFound, numBack ‘Back Parts
 If numFront <> 0 Then
 For i = 1 To numFront
 VGet UsrVisionSeq.Geom01.RobotXYU(i), found, RB_X, RB_Y, RB_U
 If found Then
 If TargetOK(XY(RB_X, RB_Y, RB_Z, RB_U)) Then
 PF_QueAdd PartID, XY(RB_X, RB_Y, RB_Z, RB_U)
 EndIf
 EndIf
 Next
 EndIf

 PF_Vision = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

258 Part Feeding 7.0 Introduction & Software Rev.10

9.6.2 Program Example 6.2

Example Type:
Handling a process error inside the Callback Function

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

For this example, the PF_Vision callback is used to acquire an image and load the part coordinate queue
with the vision results. In this example, a minimum number of pickable parts must be on the feeder tray to
load the part queue. If the part queue is not loaded after 3 attempts, a message is displayed asking the
operator whether to continue trying to find parts or Stop.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 259

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

' Tool 1 will be used to pick up the part
 Tool 1

Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

260 Part Feeding 7.0 Introduction & Software Rev.10

Function PF_Vision(PartID As Integer, ByRef numBack As Integer) As Integer
 Boolean found
 Integer i, numFront
 Real RB_X, RB_Y, RB_U, RB_Z

Integer RetryCount
String msg$
Integer mFlags, answer

 ' Pick Z coordinate
 RB_Z = -132.0

 ' Initialize coordinates queue
 PF_QueRemove PartID, All
 RetryCount=0

 Do
 PF_Backlight 1, On
 ' Detect the parts
 VRun UsrVisionSeq
 PF_Backlight 1, Off

 VGet UsrVisionSeq.Geom01.NumberFound, numFront 'Front Parts
 VGet UsrVisionSeq.Geom02.NumberFound, numBack 'Back Parts
 If numFront >= 5 Then 'Min number of parts = 5 for this example
 For i = 1 To numFront
 VGet UsrVisionSeq.Geom01.RobotXYU(i), found, RB_X, RB_Y, RB_U
 If found Then
 PF_QueAdd PartID, XY(RB_X, RB_Y, RB_Z, RB_U)
 EndIf
 Next
 Exit Do
 Else
 If RetryCount < 3 Then
 PF_Center 1, PF_CENTER_LONG_AXIS

PF_Center 1, PF_CENTER_SHORT_AXIS
PF_Flip 1,500
RetryCount = RetryCount + 1

 Else
 msg$ = PF_Name$(PartID) + CRLF + CRLF

msg$ = msg$ + "Min Number of Parts Cannot be Loaded." + CRLF
 msg$ = msg$ + "Do you want to Continue trying?"
 mFlags = MB_YESNO + MB_ICONQUESTION
 MsgBox msg$, mFlags, "Minimum Number Parts", answer
 If answer = IDNO Then
 PF_Stop(PartID)
 Exit Do
 Else
 RetryCount=0
 EndIf
 EndIf
 EndIf
 Loop

 PF_Vision = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 261

9.6.3 Program Example 6.3

Example Type:
Handling a Status Error in the PF_Status Callback

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

For this example, the last part in the tray is detected as a wrong part. The tray has the Purge Gate option
installed and enabled. The detected “wrong part” will be Purged from the tray, new parts will be fed from
the hopper and the parts will be centered & flipped.

Sample Code

PartFeeding.prg

Function PF_Status(PartID As Integer, Status As Integer) As Integer

 Select Status

' Other Status Cases have been removed from this sample code for simplicity

 Case PF_STATUS_WRONGPART

' There may be a wrong part on the feeder platform.
 ' Purge Part 1 without vision feedback. Purge duration is default.
 ' The Purge Gate automatically opens and closes

PF_Purge 1, PF_PURGETYPE_NOVISION
' Turn on the hopper for 3 sec
PF_OutputOnOff 1, On, 1, 3000

 Wait 3.0
 PF_Center 1, PF_CENTER_LONG_AXIS

PF_Center 1, PF_CENTER_SHORT_AXIS
PF_Flip 1,500

' Other Status Cases have been removed from this sample code for simplicity

 Send

 PF_Status = PF_CONTINUE
Fend

Software 9. Application Programming Examples

262 Part Feeding 7.0 Introduction & Software Rev.10

9.6.4 Program Example 6.4

Example Type:
Handling a User Error inside the PF_Status Callback

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

The robot has a vacuum cup gripper with a vacuum switch to detect that the part has been properly picked
up. If the vacuum sensor fails to detect the part, the robot will attempt to re-pick the part. After 3
unsuccessful attempts, a User Error (8000) is generated. The User Error is sent to the PF_Status callback
by setting the PF_Robot return value to the User Error number. The PF_Status call back displays a
message box allowing the operator to Continue or Exit the application.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 263

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

Integer PickRetryCount ' Pick Retry Count

 Do While PF_QueLen(PartID) > 0

 ' Get position of part to be picked
 P10 = PF_QueGet(PartID)

 PickRetryCount = 0
 Do
 Jump P10
 On Vacuum
 Wait Sw(VacOn), 0.5 ' 0.5 second timeout on Vacuum switch
 If TW = False Then ' Vacuum successful
 Exit Do ' Exit Do Loop and place the part
 EndIf
 Off Vacuum
 PickRetryCount = PickRetryCount + 1 ' Increment retry count
 If PickRetryCount = 3 Then
 ' Vacuum retries were not successful
 Jump park
 PF_QueRemove PartID
 PF_Robot = 8000 ' Set the return value to user error 8000

' PF_Status callback will be called with status value 8000
 Exit Function
 EndIf
 Loop

 ' Part detected in vacuum gripper
 Jump place
 Off Vacuum
 Wait 0.25

 ' Deque
 PF_QueRemove PartID

 'Check Cycle stop
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf

 Loop

 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

264 Part Feeding 7.0 Introduction & Software Rev.10

Function PF_Status(PartID As Integer, Status As Integer) As Integer

String msg$
Integer mFlags, answer

 Select Status

' Other Status Cases have been removed from this sample code for simplicity

 Case 8000 ' User Error 8000 occured.

 msg$ = PF_Name$(PartID) + CRLF + CRLF

msg$ = msg$ + "Vacuum Pick error has occurred." + CRLF
 msg$ = msg$ + "Do you want to Continue?"
 mFlags = MB_YESNO + MB_ICONQUESTION
 MsgBox msg$, mFlags, "Vacuum Pick Error", answer
 If answer = IDNO Then
 PF_Status = PF_EXIT
 Else
 PF_Status = PF_CONTINUE
 EndIf

 Exit Function

Send

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 265

9.6.5 Program Example 6.5

Example Type:
Handling a Controller Error inside a Part Feeding Callback

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

Normally when a controller error occurs, the Part Feeding Process automatically sets the constant
PF_STATUS_ERROR to the Status parameter and the PF_Status function will be called. This happens
without any additional user code. PF_Status typically prints or displays the error number and message. The
Part Feeding process will terminate once the PF_Status function ends.

In this example, however, we want to handle a specific controller error inside the PF_Robot callback. All
other controller errors will be sent to the PF_Status callback with the Status parameter set to
PF_STATUS_ERROR.

In this case, the gripper’s electrical and pneumatic lines prevent the U axis (SCARA robot) from rotating
the full +/-360 degrees. The Joint 4 motion range has been limited inside the EPSONRC+ Robot Manager.
Limiting the Joint 4 motion range prevents the electrical and pneumatic lines from being damaged. If a part
on the feeder would require Joint 4 to rotate beyond its motion range, an Error 4001 “Arm reached the limit
of motion range” will occur. The error handler removes the part from the queue and the robot will resume
picking up all the remaining parts. To prevent the vision system from re-acquiring an image of the same
rejected parts and re-adding them to the queue, a PF_Flip is executed after all parts have been picked and
the queue is empty.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

266 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

Integer errNum

 OnErr GoTo ehandle ' Error Handler

retry:
 Do While PF_QueLen(PartID) > 0

 ' Get position of part to be picked
 P10 = PF_QueGet(PartID)

' Error 4001 can occur if the part’s angle
' causes Joint 4 to rotate beyond its motion range

 Jump P10

 On gripper
 Wait 0.25
 Jump place
 Off gripper
 Wait 0.25

 'Deque
 PF_QueRemove PartID

 'Check Cycle stop
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf

 Loop

 PF_Flip PartID

 PF_Robot = PF_CALLBACK_SUCCESS
 Exit Function

ehandle:

 errNum = Err
 If errNum = 4001 Then ' Example of Handled error
 Print "Error 4001: Arm reached the limit of motion range"

PF_QueRemove PartID ' Remove the part from the queue
 EResume retry ' Continue picking the remaining parts in the queue
 Else

' Other unhandled errors
' PF_Status is called with the PF_STATUS_ERROR status parameter

 PF_Robot = PF_STATUS_ERROR
 EndIf
Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 267

Function PF_Status(PartID As Integer, Status As Integer) As Integer

 Select Status

' Other Status Cases have been removed from this sample code for simplicity

 Case PF_STATUS_ERROR ' Error.
 msg$ = PF_Name$(PartID) + CRLF
 msg$ = msg$ + "Error!! (code: " + Str$(Err) + ") " + ErrMsg$(Err)
 MsgBox msg$, MB_ICONSTOP

' Other Status Cases have been removed from this sample code for simplicity

 Send

 If Status = PF_STATUS_ERROR Then
 ' A controller error occurred. Terminate the Part Feeding Process.

PF_Status = PF_EXIT
 Else
 ' Otherwise Continue running the Part Feeding Process.
 PF_Status = PF_CONTINUE
 EndIf

Fend

Software 9. Application Programming Examples

268 Part Feeding 7.0 Introduction & Software Rev.10

9.7 Multiple Cameras
This section describes how improve pick accuracy by using multiple cameras.

9.7.1 Program Example 7.1

Example Type:
Using Multiple Fixed Downward Cameras for Improved Pick Region Accuracy

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 1
Platform Type: Flat
Pick Area: Pick Region B
Camera Orientations:
Camera #1: Fixed Downward. Field of View is the size of the entire feeder tray. Used by the Part Blob
Sequence.
Camera #2 - Fixed Downward. Field of View is the same size as Pick Region B (1/2 of the feeder tray).
Used by the Part Sequence.

Description
Camera #1 has a field of view that covers the entire feeder tray. The Part Blob sequence uses Camera #1.
The Part Blob sequence determines how to vibrate the feeder based upon the number of parts and the
distribution of parts on the entire tray. Camera #2’s field of view is the same area as Pick Region B. To
fill as much of the field of view as possible, Camera #2 should be rotated 90 degrees relative to Camera #1
(i.e., the cameras are orthogonal to each other). Camera #2 is used for the Part Sequence. The parts that are
found by the Part Sequence are used to load the part feeding queue. Because the field of view is half the
size of Camera #1’s field of view, the mm/pixel resolution can be significantly improved. Additionally,
since Camera #1 is only used for making a judgement on how to vibrate the feeder, it can have a lower
resolution than Camera #2. For example, Camera #1 could have a 640 x 480 resolution and Camera #2
could have a 5472 x 3648 resolution. By reducing the field of view and increasing the camera resolution,
the robot’s pick accuracy will be improved.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 269

Flip & Separate Auto Calibration uses the Part Sequence to verify that an acceptable number of pickable
parts were found. If a small field of view camera is used for the Part Sequence, then the Flip & Separate
Auto Calibration will not work properly without additional setup steps.

You can do one of the following.

1. Skip the Auto Calibration and manually adjust the Flip & Separate calibration parameters.

Software 9. Application Programming Examples

270 Part Feeding 7.0 Introduction & Software Rev.10

2. Make a Part Sequence that uses Camera #1 (large field of view) just for the Auto Calibration. For this
example, the Part Sequence that uses Camera #2 (small field of view) is called “PartSeq”. The
temporary Part Sequence that uses Camera #1 (large field of view) is called “PartSeqTemp”.
“PartSeqTemp” uses a Geometric object to find the part. “PartSeqTemp” will only be used temporary
to calibrate the feeder.Select “PartSeqTemp” as the Part Vision Sequence (shown below).

3. Go to the Part Feeding Calibration page and Run the Automatic Calibration for Separation.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 271

4. After all the desired calibrations have been completed, close the Calibration & Test dialog. Change the
Part Vision Sequence to “PartSeq” (which uses the small field of view Camera #2). At runtime, the
vision results from “PartSeq” will be used to load the part feeding queue.

No special part feeding code is required.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

272 Part Feeding 7.0 Introduction & Software Rev.10

9.7.2 Program Example 7.2

Example Type:
Using both a Fixed Downward Camera and a Mobile Mounted Camera to Improve Pick
Accuracy

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 1
Platform Type: Flat
Pick Area: Anywhere
Camera Orientations:
Camera #1: Fixed Downward. Field of View is the size of the entire feeder tray. Camera #1 is used by the
Part Blob Sequence and the Part Sequence.
Camera #2 – Mobile Mounted onto Joint 2. Field of View is slightly larger than the part itself. Camera #2
acquires a secondary image of the part prior to pick up.

Description

An “Arm” will be defined for the Mobile Joint #2 camera (SCARA robot only). If you are using a Six Axis
robot then a Tool (rather than an Arm) can be defined for a Mobile Joint #6 camera. Instead of
commanding the gripper to go directly to the part queue location, Camera #2 will be driven over the top of
the part. An additional vision sequence will be run to determine a more precise pick position for the part.
The Mobile camera has a much smaller field of view than the Fixed Downward camera and as a result, the
pick accuracy will be improved. Because of the additional motion required to position the camera over the
part and the additional vision acquisition, the overall cycle time will be longer.

To automatically define the Arm, go to the EPSONRC+|Tools|Robot Manager. Select the [Arms] tab in the
Robot Manager. For this example, select Arm 1 and click the Arm Wizard button. Go through each step of
the Arm Wizard. Additional information about the Arm Wizard can be found in the section in the Vision
Guide 7.0 Software Manual called “Arm Setting of Camera Installation Position”.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 273

Calibrate the mobile mounted camera and create a vision sequence that can locate a single part on the
feeder. This sequence will be VRun from within the PF_Robot callback. For this example, the sequence is
called “MobileCam”. “MobileCam” will not be selected in the Part Feeding dialog. The Part Blob
Sequence and Part Sequence use Camera #1 and are selected in the Part Feeding dialog as normal.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

Software 9. Application Programming Examples

274 Part Feeding 7.0 Introduction & Software Rev.10

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

Boolean found
 Real x, y, u

Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Arm 1 ‘Select the Arm that is defined for the Mobile Camera
 Jump P0:Z(0) ‘Position the Mobile camera over the part
 Vrun MobileCam
 VGet MobileCam.Geom01.RobotXYU, found, x, y, u
 Arm 0 ‘Select default robot arm
 If found then
 Jump XY(x, y, PICKZ, u) /R
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 EndIf
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 275

9.7.3 Program Example 7.3

Example Type:
Using Multiple Fixed Cameras for Improved Pick Accuracy

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on Feeder: 1
Number of Placement Positions: 1
Platform Type: Flat
Pick Area: Anywhere
Camera Orientations:
Camera #1: Fixed Downward. Field of View is the size of the entire feeder tray. Used by the Part Blob
Sequence and the Part Sequence
Camera #2 - Fixed Upward. Field of View is slightly larger than the part. This camera is used to create a
tool offset for the part held in the robot’s gripper.

Description
Camera #1 is Fixed Downward over the feeder tray. Camera #2 is Fixed Upward. Camera #1 has a field of
view that covers the entire feeder tray. The Part Blob Sequence amd Part Sequence uses Camera #1.
Camera #2’s field of view should slightly larger than the part itself. After the robot picks up the part from
the feeder, the robot will hold the part over the Camera #2. The Camera #2 is used to dynamically create a
Tool for the part being held in the gripper. The robot will then place the part in the newly defined Tool.
The Tool offsets compensate for inaccuracy in the pick-up from the feeder. Camera #2 is only used in the
PF_Robot callback code. It is not selected on the EPSON RC+ 7.0-Menu-[Tools]-[Part Feeding]-[Vision].
The sample code uses the RobotToolXYU result from the Camera #2 to determine the tool offsets. The
PF_Robot function first runs a sequence to locate the part in the gripper. Then the tool offsets are retrieved
using VGet RobotToolXYU, and the tool is defined using TLSet. The robot then places the part using the
new Tool.

This example requires the Fixed Upward camera to be calibrated. For details on how to calibrate a Fixed
Upward camera, refer to the section of the Vision Guide 7.0 Software Manual call “7.6.3 Calibration
Procedure: Fixed Upward Camera”.

Software 9. Application Programming Examples

276 Part Feeding 7.0 Introduction & Software Rev.10

Sample Code
Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer

Boolean found
Real xTool, yTool, uTool

Do While PF_QueLen(PartID) > 0

 P0 = PF_QueGet(PartID)
 Tool 0 ‘ Select the correct Tool number for the Gripper
 Jump P0
 On Gripper; Wait 0.2;
 Jump upCam

VRun findPartInGripper
VGet findPartInGripper.Geom01.RobotToolXYU, found, xTool, yTool,

uTool
If found Then

TlSet 1, XY(xTool, yTool, 0, 0)
Tool 1
Jump place

 Else
 Jump reject ‘ Part not found in gripper – reject part

EndIf

 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 277

9.8 Improving Vision Results
This section describes how improve vision results.

9.8.1 Program Example 8.1

Example Type:
Using Image Buffers and ImageOp SubtractAbs

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

Even with the backlight turned on, the corners of the tray can have shadows. If the Part Blob search
window includes the corners and if the Blob’s thresholds are not properly adjusted, then the shadows can
be mistakenly identified as parts. The Part Blob Sequence is used to detect individual parts or an
accumulation of parts. If the Part Blob sees the shadows as parts, then the system will make a bad decision
on how to vibrate or the PF_Control callback may not turn on the hopper since the system thinks that there
are sufficient parts in the tray.

The following is an example of how the corner shadowing can be misidentified as parts.

An ImageOp vision object can be added to the Part Blob sequence to help fix this issue. The ImageOp will
use the SubtractAbs operation. SubtractAbs outputs the difference between two image buffers. For this
example, the ImageBuffer1 property will be an image file of the empty feeder and the ImageBuffer2
property will be the image acquired by the camera (value “0” is the camera’s image buffer). When the
image buffers are subtracted, the feeder will effectively be removed from the image.

Software 9. Application Programming Examples

278 Part Feeding 7.0 Introduction & Software Rev.10

Here are the steps.

1. Create a new vision sequence and call it “Part Blob”.
2. Turn on the feeder’s backlight and remove any parts in the feeder tray.
3. Click on the “Click to Save” button on the Part Blob’s SaveImage property. For this example, we will

name the file “Empty IF-240”. The image of the file is shown below.

4. Drag and drop an ImageOp vision object from the Vision Guide toolbar.

5. Resize the ImageOp to be the entire camera field of view.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 279

6. Change the ImageOp’s Operation property to “SubtractAbs”.

7. Change the ImageOp’s ImageBuffer1 property to “File.

8. Click the ImageBufferFile button and navigate to the file which was previously saved as “Empty IF-
240”.

Software 9. Application Programming Examples

280 Part Feeding 7.0 Introduction & Software Rev.10

9. Add a Blob from the Vision Guide toolbar. Resize the Blob’s Search Window to be larger than the
feeder tray.

10. Change the Blob’s ThresholdColor property to “White”.

11. Place a part on the tray and click the Histogram button on the Vision Guide toolbar.

Drag the red ThresholdHigh bar on the histogram until the part is properly binarized. Click the Update as
necessary and click the OK button on the histogram window when finished.

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 281

Now when the Part Blob sequence is run, the image of the feeder will be completely removed. The part
will appear black on a completely white background. The feeder has effectively been masked out of the
Part Blob sequence.

12. Select “PartBlob” as the Part Blob Vision Sequence for the desired part in the EPSON RC+ 7.0 -
Menu - [Tools] - [Part Feeding] Vision page.

Software 9. Application Programming Examples

282 Part Feeding 7.0 Introduction & Software Rev.10

No special part feeding code is required.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 283

9.8.2 Program Example 8.2

Example Type:
Using Part Blob SearchWinType RotatedRectangle

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

When the camera’s field of view and feeder tray are not parallel to each other, it can be difficult to properly
size the Part Blob’s search window. If the search window is too large, then the Part Blob may detect the
tray as parts. If the search window is too small, then the system can not make proper judgements on the
quantity and dispersion of the parts on the tray. Starting with EPSONRC+ 7.5.2, the Part Blob object can
use a “RotatedSearchWin” for the SearchWinType property.

Here is an example of when the SearchWinType is set to “Rectangle”.

Software 9. Application Programming Examples

284 Part Feeding 7.0 Introduction & Software Rev.10

When the Part Blob’s SearchWinType is set to “RotatedRectangle”, the camera’s field of view and the
feeder’s tray can be aligned.

The SearchWin Angle property is restricted to +/-45 degrees for the Part Blob.

No special part feeding code is required.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

NOTE

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 285

9.8.3 Program Example 8.3

Example Type:
Using Don’t Care Pixels for the Part Blob Search Window

Configuration

Number of Robots: 1
Number of Feeders: 1
Number of Parts Types on the Feeder: 1
Number of Placement Positions: 1
Camera Orientation: Fixed Downward Camera over Feeder #1

Description

Even with the backlight turned on, the corners of the tray can have shadows. If the Part Blob search
window includes the corners and if the Blob’s thresholds are not properly adjusted, then the shadows can
be mistakenly identified as parts. The Part Blob Sequence is used to detect individual parts or an
accumulation of parts. If the Part Blob sees the shadows as parts, then the system will make a bad decision
on how to vibrate.

The following is an example of how the corner shadowing can be misidentified as parts.

The Blob’s Search Window can be masked by painting “Don’t Care Pixels” in the regions where you do
not want to search (i.e., the corners of the tray).

Right click on the Blob and select “Edit Window” from the fly out menu or select the SearchWin
“EditWindow” property for the Blob.

Software 9. Application Programming Examples

286 Part Feeding 7.0 Introduction & Software Rev.10

Use the paint brush to remove the tray from the Search Window.

Now when you Run the Blob, the tray will not be included in the Search Window (as shown below).

Software 9. Application Programming Examples

Part Feeding 7.0 Introduction & Software Rev.10 287

No special part feeding code is required.

Sample Code

Main.prg

Function main
 If Not Motor = On Then
 Motor On
 EndIf
 Power Low
 Jump park
 PF_Start 1
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Do While PF_QueLen(PartID) > 0
 P0 = PF_QueGet(PartID)
 Jump P0
 On Gripper; Wait 0.2;
 Jump Place
 Off Gripper; Wait 0.2;
 PF_QueRemove PartID
 If PF_IsStopRequested(PartID) = True Then
 Exit Do
 EndIf
 Loop
 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Software 9. Application Programming Examples

288 Part Feeding 7.0 Introduction & Software Rev.10

Advanced

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 291

1. Multiple Parts & Multiple Robots
This chapter explains how to use multiple parts on the same feeder at the same time. It
also outlines how multiple robots can safely access the same feeder when running a group
of parts.

1.1 Specifications & Requirements for Multiple Parts & Multiple Robots

- A maximum of 4 Parts Feeders can be used with 1 robot controller.

- Part Feeders cannot be shared between robot controllers. For example, two T/VT series
robot cannot share the same feeder. If you want multiple robots to share a feeder then
you must use an Controller which supports multiple robots on a single robot controller.

- A system can have any combination of feeder models. For example, a system could have
one IF-80, one IF-240, one IF-380 and one IF-530 or any other combination.

- A maximum of 4 parts can run on the same feeder at the same time. When multiple parts
are running on the same feeder at the same time, the parts should have similar physical
characteristics. In other words, the parts should weigh about the same amount, have
similar dimensions, be made of similar materials, have approximately the same surface
area etc…. Every part will use its own unique vibration parameters. Consequently, a
part’s vibration parameters should not cause other parts to fly out of the feeder.

- A maximum of 2 robots can use the same feeder at the same time. If you attempt to
PF_Start a grouping of parts (i.e., PF_Start 1, 2, 5) and the parts are assigned to more
than 2 robots, an error will occur.

- When PF_Start is executed, a single part or a grouping of parts will run on the feeder. If
you attempt to execute PF_Start multiple times for parts that are assigned to the same
feeder #, a message (issued from the PF_Status callback) will appear indicating that the
“feeder is already in use” and the second PF_Start will not be executed.

- When executing PF_Start with a grouping of parts (i.e., PF_Start 1, 2, 5), all the parts
must be assigned to the same feeder #.

- PF_Start runs a single part or a grouping of parts on a feeder. Each feeder that is running
is assigned a specific controller task# (see the table below). The user’s application code
should not use a task that has been reserved for the feeder. If a Feeder # is not being
used, then its task is available for the user’s code. If you use the PF_InitLog statement
for logging Part Feeding data, specific timer #’s is reserved for the system and should not
be used in the user’s code. If you use the feeder control commands (PF_Center,
PF_ConterByShift, PF_Flip, PF_Shift), specific SyncLock #’s are reserved for the
system and should not be used in the user’s code. The Task #, Timer # and SyncLock #
are specific to the Feeder # (as shown below).

Feeder Number Task Timer SyncLock
1 32 63 63
2 31 62 62
3 30 61 61
4 29 60 60

Advanced 1. Multiple Parts & Multiple Robots

292 Part Feeding 7.0 Introduction & Software Rev.10

- The first part that is listed in the PF_Start statement will be the first “Active Part” (i.e.,
the first desired part). Selection of the next desired part is done with the PF_ActivePart
statement. PF_ActivePart will be discussed in more detail throughout this chapter.

- The feeding action (vibrations, pick area and supply method) is performed for the current
Active Part. Every part that is listed in the PF_Start statement will use its own settings
when it has been selected as the Active Part. For example, each part in the PF_Start
grouping could have a different pick area if that’s what is needed for the application.

- The PartID that is passed into each of the callback functions will be the Part # of the

current Active Part (i.e., the current desired part).

- Images are acquired for every part that is listed in the PF_Start statement and each part’s
queue will be loaded with the vision results. Every part uses its own vision and lighting
settings. For example, one part could use “system processes vision” and another part in
the PF_Start list could use “user processes vision” - all parts use their own settings.
Similarly, every part can use its own specific lighting criteria - front lights, no backlight,
different brightness etc…

- The Part Feeding Log File (started with the PF_InitLog statement) will contain the data
for all the parts that are running on a feeder.

- When multiple robots are accessing the same feeder, the user’s application code must use
the PF_AccessFeeder & PF_ReleaseFeeder statements to ensure that the robots cannot
collide. This will be covered in more detail throughout the chapter.

- Every part must be calibrated individually. Once again, it is assumed that the parts that
are running on a feeder at the same time will have similar characteristics (size, weight,
material etc…).

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 293

1.2 Key Concepts for Multiple Parts and Multiple Robots

1.2.1 PF_ActivePart

The PF_ActivePart statement notifies the Part Feeding process of the user’s intent at
runtime. The system needs to know what part is desired. The system will feed (uses the
correct vibration settings, supplies parts from the hopper etc…) to ensure that the desired
part is available.

As a simple illustration of why PF_ActivePart is needed at runtime, let’s consider a
“kitting” application where all the parts are being fed by the same Part Feeder. An empty
box is delivered to the robot on a conveyor. A barcode on the box indicates what part type
and the quantity of parts that need to be placed into the box. The desired part type and the
pick quantity are only known when the box is presented to the barcode reader. The Part
Feeder needs to vibrate and find the parts that are needed to fill the order.

As another example of how PF_ActivePart is used, let’s consider a two-part assembly
operation. Both parts are on the same Part Feeder. For this application, the robot needs to
pick one of Part #1 and place it in a fixture. Then the robot picks two of Part #2 and
inserts them into Part #1. PF_ActivePart tells the system which part it needs to feed so
that the assembly process can be completed. To make this application more realistic, let’s
assume that each part is inspected by a vision system prior to assembly. If Part #1 fails its
inspection, PF_ActivePart must remain as Part #1 so that the robot can go back to the
feeder and get a good Part #1. If Part#1’s inspection passes then PF_ActivePart needs to
switch to Part #2.

The first Part ID in PF_Start statement is the initial Active Part. PF_ActivePart is
normally set prior to exiting the PF_Robot callback so that the feeding action will be
specific to the desired part.

PF_ActivePart will be demonstrated by an example in a later section of this chapter.

Advanced 1. Multiple Parts & Multiple Robots

294 Part Feeding 7.0 Introduction & Software Rev.10

1.2.2 PF_Start

As previously mentioned, up to four Part types can run on the same feeder at the same
time. This is accomplished by specifying each of the Part ID’s when executing the
PF_Start statement.

For example, Part 1, 2, 3 and 4 all use Feeder #1. The feeder # was specified during the
Part Wizard when each of the parts was originally created.

Only Parts that are assigned to the same feeder can be run together with PF_Start. To run
all 4 parts on Feeder #1 at the same time, the code would look like the following –

PF_Start 1, 2, 3, 4

Part #1 will be the initial Active Part for this example. The feeder will initially use Part
#1’s vibration parameters. For this example, a value of “1” will be sent as the PartID
parameter in each of the callback functions until the PF_ActivePart is changed to a
different Part ID.

Unless PF_ActivePart is executed with a different PartID, the Active Part will continue to
be the first Part in the PF_Start list.

If the user’s code attempts to start another part on the same feeder, a “Feeder In Use Error”
will occur. The error is handled in the PF_Status callback and the status value will be
constant PF__D_STATUS_FEEDERINUSE_ERROR.

Here is an example of how the “Feeder In Use” error can occur->

Parts 1, 2, 3, 4 are all using Feeder #1

PF_Start 1, 3, 4 ' starts a grouping of parts on Feeder #1

‘A “Feeder In Use” error will occur if the next line of code is executed

PF_Start 2

If you want to run all 4 parts on Feeder #1 at the same time, you must execute the
following statement instead –

PF_Start 1, 2, 3, 4

NOTE

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 295

A maximum of 2 robots can use the same feeder at the same time. If PF_Start attempts to
run parts that use more than 2 robots on the same feeder at the same time, a “Max Robots
Per Feeder” error will occur.

For example ->

Part 1: Uses Robot #1 and Feeder #1

Part 3: Uses Robot #2 and Feeder #1

Part 5: Uses Robot #3 and Feeder #1

PF_Start 1,3,5 <- Error 7731: The maximum number of simultaneous feeders for
the controller type has been exceeded.

1.2.3 Vision and Queue Loading

By default, vision images are acquired for all parts running on the same feeder. There is
also a mechanism to acquire the image for only the Active Part (this will be discussed in
the next section). Each part uses its specific lighting requirements (front | backlight,
mobile camera, user processes vision using the PF_Vision callback etc….).

After all the Part Vision Sequences have run, all of the queues are loaded with the vision
results.

For added efficiency the CameraBrightness and CameraContrast can be set the same for
all part vision sequences. The vision sequence for the first part in the PF_Start list would
have the RuntimeAcquire property set to Stationary. The remaining part vision sequences
using the same feeder would have RuntimeAcquire set to None., This eliminates the time
for additional grabs. This method assumes that all parts can be found using the same
lighting conditions.

1.2.4 PF_Robot Return Values

All callback functions require you to return a value. Normally the return value will
indicate that the operation has completed successfully (constant
PF_CALLBACK_SUCCESS). The return value can be used to change how the system
operates. The PF_Robot return values redirects the main process flow and provides
different behavior depending upon the “use case scenario”. Having different return values
gives the developer the ability to control the Part Feeding process flow for different
situations.

TIP

Advanced 1. Multiple Parts & Multiple Robots

296 Part Feeding 7.0 Introduction & Software Rev.10

Let’s begin by describing each of the return values for the PF_Robot callback function –

PF_CALLBACK_SUCCESS:

When the PF_Robot callback function finishes and “PF_Robot =
PF_CALLBACK_SUCCESS”, the system will check to see if the next Active Part
(desired part) is available in its queue. If the Active Part is available, then the system will
call the PF_Robot function again. The PartID parameter that is passed into PF_Robot will
be the part # for the Active Part. In the case where the Active Part is available, there is no
need to acquire a new image or vibrate the feeder since the desired part is already in the
queue. If the Active Part is not available, then the system will acquire new images for
every part that was executed in the PF_Start statement. The vision results will be loaded
into every part queue and the system will make a judgement of whether to vibrate the
feeder.

PF_CALLBACK_RESTART:

When the PF_Robot callback function finishes and “PF_Robot =
PF_CALLBACK_RESTART”, the system will acquire new images for every part that was
executed in the PF_Start statement regardless of whether there are parts available in the
Active Part’s queue. The vision results will be loaded into all the part queues and the
system will make a judgement of whether to vibrate the feeder. The main purpose of the
PF_CALLBACK_RESTART return value is to force new images to be acquired, queues
reloaded, re-judgement and re-feeding from the beginning of the main Part Feeding
process loop. This return value is convenient when you want to acquire new images for
every pick and place cycle. For example, if surrounding parts are accidentally disrupted
during the pick and place, it may be helpful to acquire new images and refresh the queues.

PF_CALLBACK_RESTART_ACTIVEPART:

When the PF_Robot callback function finishes and “PF_Robot =
PF_CALLBACK_RESTART_ACTIVEPART”, the system will acquire a new image for
only the Active Part (not all the parts listed in the PF_Start statement). This return value is
particularly useful when multiple robots are sharing the same feeder.
PF_CALLBACK_RESTART_ACTIVEPART can be used to prevent duplication of parts
in multiple queues. The return value forces a new image to be acquired for only the
Active Part and only the Active Part’s queue will be loaded. The queues for all the other
parts listed in the PF_Start statement are cleared. This is best illustrated by an example.

Suppose that the feeder has one physical part type on its platform and two robots are
picking up parts from the feeder. For this application, two parts are added in the Part
Feeding dialog. Each part will have a different Robot #. Additionally, the vision
sequences for each part will have a different vision calibration (since the camera is
calibrated to a specific robot). Even though there is only one physical part type on the
platform, two logical parts must be created (one for each robot). The PF_Start statement
will include both part numbers. Vision is acquired for both logical parts and both queues
are loaded. Because both vision sequences are locating the same physical parts on the
platform, there will be duplication of coordinates in the queues. If robot #1 picks a part
and removes it from its queue, the part will remain in the other robot’s queue. As a result,
robot #2 will attempt to pick up a part that was already removed by robot #1.
PF_CALLBACK_RESTART_ACTIVEPART is used to ensure that a part is only loaded
into one queue. As a result, no special sorting and no special queue distribution is

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 297

required. Please refer to the following section for details on how to program this use case
scenario.

Software 9.3 Two Robots - One Part

1.2.5 PF_AccessFeeder / PF_ReleaseFeeder

PF_AccessFeeder / PF_ReleaseFeeder locks and unlocks access to a feeder to prevent
potential collisions on a multi-robot / one feeder system. These commands are required
when two robots are sharing the same feeder at the same time. PF_AccessFeeder is a
mutual exclusion lock. If a lock has already been obtained, PF_AccessFeeder will pause
the task (i.e., wait its turn) until the lock is released or until the specified timeout
(optional) is reached. When a robot finishes using a feeder, it must release the lock using
the PF_ReleaseFeeder statement in order to relinquish the feeder to the other robot.
PF_ReleaseFeeder can be used inside the “!...!” parallel processing statement of a motion
command to allow one robot to approach the feeder as the other robot is departing from
the feeder.

The code to prevent robots from colliding while accessing a feeder looks something like
the following:
PF_AccessFeeder 1
Pick = PF_QueGet(1)
PF_QueRemove (1)
Jump Pick
On gripper
Wait .25
Jump Place ! D80; PF_ReleaseFeeder 1 !

1.2.6 PF_Stop

The PF_Stop statement has PartID as a parameter. For a single part system, the PartID is
the same as the part that is running. For a multi-part system, the PartID can be the part #
of any of the parts that are running on the feeder. In other words, you can specify any part
in the PF_Start list. However, please be aware the PartID that is passed to the
PF_CycleStop callback function will be the Part ID for the current Active Part.

1.2.7 PF_InitLog

PF_InitLog initiates the Part Feeding log file. All the parts listed in the PF_Start statement
will have data logged to the file. Each entry in the log files will include the Part ID for the
current Active Part. For example, the number of parts processed inside the PF_Robot
callback will be recorded for the current Active Part. Please refer to the following chapter
for further details.

Software “5. Part Feeding Log File”

Advanced 1. Multiple Parts & Multiple Robots

298 Part Feeding 7.0 Introduction & Software Rev.10

1.2.8 PF_QtyAdjHopperTime

The PF_QtyAdjHopperTime function calculates how much time a hopper should be turned
on to supply the “optimal number of parts”. The time is calculated from the number of
parts that are supplied within a specific amount of time, the approximate number of parts
that are currently on the feeder platform and the “Optimal Number of Parts” value that was
determined during the “Part Area” calibration for the part. The PF_QtyAdjHopperTime
function can be executed anywhere in the user’s code. For example, it could be executed
before the PF_Start statement in order to supply parts prior to running. In that case, the
Part Feeding system has no idea what group of parts will be used on the feeder. Perhaps
one part will be running on the feeder or maybe four different parts will be running on the
feeder at the same time. If PF_QtyAdjHopperTime is executed prior to PF_Start, the
calculation can only guess that the part specified by the PartID parameter will be the only
part on the platform. In that case, only the Part Blob vision sequence (for that PartID) is
used. If PF_QtyAdjHopperTime is executed after PF_Start has been executed, then the
Part Feeding system knows which parts are running on the feeder (since they were
specified in the PF_Start statement). In that case, the Part Blob vision sequence (for the
supplied PartID) is run as well as each individual Part Sequence. When multiple parts are
running at the same time, the system assumes that an equal quantity of each part type is
optimal. In some rare cases, however, that may not be true. For example, it may be
desirable to have twice as many of Part #1’s as Part #2’s. In that case, the user’s code
should scale (multiply or divide) the calculated time that is returned from the
PF_QtyAdjHopperTime function in order to supply the desired amount of parts from the
hopper.

1.3 Tutorials

The purpose of this section is to demonstrate how to implement both a multi-part
application as well as a multi-part / multi-robot application. In many cases we will simply
explain the steps to follow but will not explain the details behind what was done. It is
assumed that you have already read Introduction chapter 7 “Let’s Use the Part Feeding
Option” and you understand how to create a new part, perform a part calibration and write
a program for a one robot / one-part application.

1.3.1 Tutorial #1: 1 Robot, 1 Feeder, 2 Parts

For this tutorial, there are two parts running on the same feeder at the same time. The
parts are physically different. Part #1 and Part #2 are being used. There is a Fixed
Downward camera over the feeder. The robot will pick and place two of Part #1 and then
pick and place one of Part #2. This operation will be performed continuously in a loop.
Each part will be picked up with a different gripper (i.e., output bit). The quantity of parts
and the pick order are important for this assembly application. The process of alternating
between Part #1 and Part #2 will be accomplished using “PF_ActivePart”. At first, we will
write the code so that the robot motion is performed inside of the PF_Robot callback
function. Then we will improve the robot throughput by performing the motion in a
separate multitask and by parallel processing the feeder vibration.

(1) Create a new EPSON RC+ project.

(2) Calibrate the Fixed Downward camera.

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 299

(3) From Vision Guide, create the Part Blob Sequence. The “Part Blob Sequence” is
used for feedback during the Part Calibration and at runtime to make judgements
about how to best feed the parts. The Part Blob Sequence detects individual parts or
clumps of parts at runtime. The Part Blob Sequence generally contains a single Blob
vision object. The Part Blob Sequence will need to have the camera calibration
assigned to the Calibration property. The Blob object’s NumberToFind property
should be set to “All”. The ThresholdAuto property of the Blob should be set to
False (default value). Place parts on the platform, open the Histogram window and
adjust the Threshold High and Low until only the parts are detected. Set the Blob’s
MinArea to roughly 0.9 times that of the part’s area. If the part has multiple sides,
then set the MinArea so that the part can be found in any orientation. You can have
separate Part Blob Sequences for each of the two parts (running on the feeder) but in
general you can use the same Part Blob Sequence for all the parts. Make sure that the
Part Blob Sequence can detect each Part that will be running on the feeder. The Blob
object’s Search Window should fill as much of the platform area as possible. That
said, it is critical that the Blob object only finds the Parts and not the feeder tray
itself. If the Part Blob sequence finds any portion of the tray then the system will not
function properly.

(4) From Vision Guide, create the Part Sequence for each of the two Parts that will be
running on the feeder. Make sure that the Calibration property for each sequence is
set. Typically, a Geometric object is used to locate the Front (and a second
Geometric object is typically used to find the Back of the part if Flip is required).
The vision object’s NumberToFind property is normally set to “All”.

(5) Go to the [Tools]-[Part Feeding] dialog and add a new part. The “Part Wizard” will
walk you through the process of adding a part. For more details about the Part
Wizard, please refer to the following chapter.

Introduction 8 “Let’s Use the Part Feeding Option”.

(6) Go to the [Calibration] page for the new Part and click on the <Calibrate> button to
start the Calibration Wizard. Please refer to the following section for details on how
to use the Calibration Wizard.

Introduction “8.12 Calibration & Test”

(7) Go to the [Pick] page for Part #1 and click the <Teach> button. Jog the robot to the
part pick height and teach the “Pick Z”.

(8) Click the <Add> button in the [Part Feeding] dialog to add Part #2. Configure the
part using the “Part Wizard”.

(9) Go to the [Calibration] page and click the <Calibrate> button to start the Calibration
Wizard.

(10) Go to the [Pick] page for Part #2 and click the <Teach> button. Jog the robot to the
part pick height and teach the “Pick Z”.

(11) Close the Part Feeding dialog. The Part Feeding template code (i.e., the Part Feeding
callback functions) is automatically created.

(12) Teach robot points for “park” and “place” and label them respectively.

(13) Modify the template code as follows –

Advanced 1. Multiple Parts & Multiple Robots

300 Part Feeding 7.0 Introduction & Software Rev.10

Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park

 PF_Start 1, 2
Fend

PartFeeding.prg

Global Integer numPicked ' number of parts that have been picked

Function PF_Robot(PartID As Integer) As Integer

Integer numRequired, gripperOutput

Select PartID

Case 1
numRequired = 2 ' number of parts required
gripperOutput = 1

Case 2
numRequired = 1
gripperOutput = 2

Send
Do

If PF_QueLen(PartID) > 0 Then
P0 = PF_QueGet(PartID)
PF_QueRemove(PartID)
Jump P0
On gripperOutput
Wait .1
Jump place
Off gripperOutput
Wait .1
numPicked = numPicked + 1

Else
' Not enough parts were picked
PF_ActivePart PartID ' No change in Active Part
PF_Robot = PF_CALLBACK_SUCCESS
Exit Function

EndIf
Loop Until numPicked = numRequired

numPicked = 0
' select the next Active Part
If PartID = 1 then

PF_ActivePart 2
Else

PF_ActivePart 1
EndIf
PF_Robot = PF_CALLBACK_SUCCESS

Fend

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 301

For the sample code shown above, the feeder will vibrate (if necessary) only after the
robot has completed its motion to “place” and the PF_Robot function has finished.

The code can be restructured such that the feeder vibration will occur in parallel with the
robot motion. The PF_Robot callback will be used to notify a motion task (function Main
in this example) that parts are available to be picked up.

Memory IO (labeled “PartsToPick1” and “PartsToPick2”) are used to signal when parts
are available.

When the last available part is being placed (80% of the way through the motion for this
example), the motion task signals the PF_Robot function to finish and return a value. The
return values let’s the system know that it is ok to acquire new images, vibrate, supply
parts from a hopper etc…We will now modify our tutorial code so that the feeder action
can occur in parallel with the robot motion.

Main.prg

Function Main
 Integer numToPick1, numToPick2, numPicked

 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park

 MemOff PartsToPick1
 MemOff PartsToPick2
 numToPick1 = 2
 numToPick2 = 1

 PF_Start 1,2

 Do
 numPicked = 0

 Do
 Wait MemSw(PartsToPick1) = On
 pick = PF_QueGet(1)
 PF_QueRemove (1)
 Jump pick
 On gripper1
 Wait .1
 numPicked = numPicked + 1
 If numPicked < numToPick1 And PF_QueLen(1) > 0 Then
 Jump place
 Else
 ' Last part or no more parts available to pick
 If numPicked = numToPick1 Then
 ' Select the next part

PF_ActivePart 2
 EndIf
 Jump place ! D80; MemOff PartsToPick1 !
 EndIf
 Off gripper1
 Wait .1
 Loop Until numPicked = numToPick1

Advanced 1. Multiple Parts & Multiple Robots

302 Part Feeding 7.0 Introduction & Software Rev.10

 numPicked = 0
 Do
 Wait MemSw(PartsToPick2) = On
 pick = PF_QueGet(2)
 PF_QueRemove (2)
 Jump pick
 On gripper2
 Wait .1
 numPicked = numPicked + 1
 If numPicked < numToPick2 And PF_QueLen(2) > 0 Then
 Jump place
 Else
 ' Last part or no more parts available to pick
 If numPicked = numToPick2 Then
 ' Select the next part
 PF_ActivePart 1
 EndIf
 Jump place ! D80; MemOff PartsToPick2 !
 EndIf
 Off gripper2
 Wait .1
 Loop Until numPicked = numToPick2
 Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 Case 2
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 Send

 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 303

1.3.2 Tutorial #2: 2 Robots, 1 Feeder, 2 Parts

For this tutorial, there are two parts running on the same feeder at the same time. The
parts are physically different. Part #1 and Part #2 are being used. There is a Fixed
Downward camera over the feeder. Two robots will be sharing the same feeder. The
robots will take turns picking from the feeder. Each robot will pick and place its own part.
Robot #1 will pick up one of Part #1 and then Robot #2 will pick up one of Part #2. The
pick order matters for this application. The alternating pick order is accomplished with
“PF_ActivePart”. At first, we will write the code so that the robot motion is performed
inside of the PF_Robot callback function. In this case, the robot motion will be sequential.
In other words, only one robot will move at a time. Then we will improve the robot
throughput by performing motion in a separate multitasks. The revised tutorial will also
include PF_AccessFeeder / PF_ReleaseFeeder. PF_AccessFeeder / PF_ReleaseFeeder are
used to ensure that the robots will not collide when picking from the feeder.

(1) Create a new EPSON RC+ project.

(2) Calibrate the Fixed Downward camera for Robot #1.

(3) Calibrate the Fixed Downward camera for Robot #2.

(4) From Vision Guide, create the Part Blob Sequence for Part #1. The Part Blob
Sequence generally contains a single Blob vision object. The sequence will need to
have the camera calibration that was performed for Robot #1 assigned to the
Calibration property. The Blob object’s NumberToFind property should be set to
“All”. The ThresholdAuto property of the Blob should be set to False (default value).
Place parts on the platform, open the Histogram window and adjust the Threshold
High and Low until only the parts are detected. Set the Blob’s MinArea to roughly
0.9 times that of the part’s area. If the part has multiple sides, then set the MinArea so
that the part can be found in any orientation. Make sure that the Part Blob Sequence
can detect Part #1. The Blob object’s Search Window should fill as much of the
platform area as possible. That said, it is critical that the Blob object only finds the
Part and not the feeder tray itself.

(5) From Vision Guide, create the Part Blob Sequence for Part #2. The Part Blob
Sequence generally contains a single Blob vision object. The sequence will need to
have the camera calibration that was performed for Robot #2 assigned to the
Calibration property. The Blob object’s NumberToFind property should be set to
“All”. The ThresholdAuto property of the Blob should be set to False (default value).
Place parts on the platform, open the Histogram window and adjust the Threshold
High and Low until only the parts are detected. Set the Blob’s MinArea to roughly
0.9 times that of the part’s area. If the part has multiple sides, then set the MinArea so
that the part can be found in any orientation. Make sure that the Part Blob Sequence
can detect Part #2. The Blob object’s Search Window should fill as much of the
platform area as possible. That said, it is critical that the Blob object only finds the
Part and not the feeder tray itself.

(6) From Vision Guide, create the Part Sequence which will be used to find Part#1. Make
sure to set the Calibration property to the calibration that was performed for Robot #1.
Typically, a Geometric object is used to locate the Front (and a second Geometric
object is typically used to find the Back of the part if Flip is required). The vision
object’s NumberToFind property is normally set to “All”.

Advanced 1. Multiple Parts & Multiple Robots

304 Part Feeding 7.0 Introduction & Software Rev.10

(7) From Vision Guide, create the Part Sequence which will be used to find Part#2. Make
sure to set the Calibration property to the calibration that was performed for Robot #2.
Typically, a Geometric object is used to locate the Front (and a second Geometric
object is typically used to find the Back of the part if Flip is required). The vision
object’s NumberToFind property is normally set to “All”.

(8) Go to the [Tools]-[Part Feeding] dialog and Add a new part for Part #1. The “Part
Wizard” will walk you through the process of adding a part. Make sure that you
select Robot #1 on the first page of the Part Wizard. For more details about the Part
Wizard, please refer to the following chapter.

Introduction chapter 7 “Let’s Use the Part Feeding Option”

(9) Go to the [Calibration] page for the new Part #1 and click on the <Calibrate> button to
start the Calibration Wizard. Please refer to the following section for details on how
to use the Calibration Wizard.

Introduction “8.12 Calibration & Test”

(10) Go to the [Pick] page for Part #1 and click the <Teach> button. Jog Robot #1 to the
part pick height and teach the “Pick Z”.

(11) Click the <Add> button in the [Part Feeding] dialog to add Part #2. Configure the
part using the “Part Wizard”. Make sure that you select Robot #2 on the first page of
the Part Wizard.

(12) Go to the [Calibration] page and click the <Calibrate> button to start the Calibration
Wizard.

(13) Go to the [Pick] page for Part #2 and click the <Teach> button. Jog Robot #2 to the
part pick height and teach the “Pick Z”.

(14) Close the [Part Feeding] dialog.
The Part Feeding template code (i.e., the Part Feeding callback functions) is
automatically created.

(15) Modify the template code as follows –

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 305

Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park

 PF_Start 1, 2
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 If PF_QueLen(PartID) > 0 Then
 Select PartID
 Case 1
 Robot 1
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On rbt1Gripper
 Wait .25
 Jump place
 Off rbt1Gripper
 Wait .25
 PF_ActivePart 2
 Case 2
 Robot 2
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On rbt2Gripper
 Wait .25
 Jump place
 Off rbt2Gripper
 Wait .25
 PF_ActivePart 1
 Send

 EndIf

 PF_Robot = PF_CALLBACK_SUCCESS

Fend

Advanced 1. Multiple Parts & Multiple Robots

306 Part Feeding 7.0 Introduction & Software Rev.10

We will now modify the example code so that the robot motion will be performed in
separate multitasks. When one robot is leaving the feeder, the other robot can begin
moving toward the feeder. When robots share a feeder with parallel motion, it is critical
that the PF_AccessFeeder and PF_ReleaseFeeder commands are used to prevent robot
collisions.

In addition, the revised code will parallel process the feeder vibration and robot motion.
In this tutorial, when each robot is 80% of the way to its place position, the robot has
cleared the camera’s field of view and an image can be acquired.

Furthermore, when each robot is 80% of the way to its place position, it is safe for the
other robot to begin moving toward the feeder. Of course, this is just an example. The
actual percentage of motion depends on the speed and relative positioning of the robots in
your specific situation. Each robot has a point labeled “park” and a point labeled “place”.
For this tutorial, Robot #1 picks from the feeder in a Righty arm orientation and Robot #2
picks from the feeder in a Lefty arm orientation.

Here is the revised template code -

Main.prg

Function Main
 Robot 1
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 Robot 2
 Motor On
 Power High
 Speed 50
 Accel 50, 50
 Jump park
 MemOff PartsToPick1
 MemOff PartsToPick2

 PF_Start 1, 2
 Xqt Robot1PickPlace
 Xqt Robot2PickPlace
Fend

Function Robot1PickPlace
 Robot 1
 Do
 Wait MemSw(PartsToPick1) = On
 PF_AccessFeeder 1
 P0 = PF_QueGet(1)
 PF_QueRemove (1)
 Jump P0 /R
 On rbt1Gripper
 Wait .25
 Jump place ! D80; MemOff PartsToPick1; PF_ReleaseFeeder 1 !
 Off rbt1Gripper
 Wait .25
 Loop
Fend

Advanced 1. Multiple Parts & Multiple Robots

Part Feeding 7.0 Introduction & Software Rev.10 307

Function Robot2PickPlace
 Robot 2
 Do
 Wait MemSw(PartsToPick2) = On
 PF_AccessFeeder 1
 P0 = PF_QueGet(2)
 PF_QueRemove (2)
 Jump P0 /L
 On rbt2Gripper
 Wait .25
 Jump place ! D80; MemOff PartsToPick2; PF_ReleaseFeeder 1 !
 Off rbt2Gripper
 Wait .25
 Loop
Fend

PartFeeding.prg

Function PF_Robot(PartID As Integer) As Integer
 Select PartID
 Case 1
 If PF_QueLen(1) > 0 Then
 MemOn PartsToPick1
 Wait MemSw(PartsToPick1) = Off
 PF_ActivePart 2
 Else
 PF_ActivePart 1
 EndIf
 Case 2
 If PF_QueLen(2) > 0 Then
 MemOn PartsToPick2
 Wait MemSw(PartsToPick2) = Off
 PF_ActivePart 1
 Else
 PF_ActivePart 2
 EndIf
 Send
 PF_Robot = PF_CALLBACK_SUCCESS
Fend

Advanced 1. Multiple Parts & Multiple Robots

308 Part Feeding 7.0 Introduction & Software Rev.10

1.4 Multi-Part / Multi-Robot Summary
Here is a brief summary of the key concepts that are required for a multiple part / multiple
robot Part Feeding application –

A) PF_Start allows you to specify up to 4 parts that you want to run on the same feeder
at the same time

B) PF_ActivePart allows you to select which part is currently desired. The system will
vibrate to ensure that the desired part is available.

C) Up to 2 robots can access the same feeder at the same time. PF_AccessFeeder &
PF_ReleaseFeeder ensure that both robots can safely pick from the feeder without the
possibility of collision.

D) The PF_Robot Return Value controls the main process flow.

The following return values provide different functionality -

PF_Robot = PF_CALLBACK_SUCCESS

If the PF_ActivePart (i.e., the desired part) is available, the system will call the
PF_Robot function again without re-acquiring vision images or reloading the part
queues. If the PF_ActivePart is not available, new images are acquired each of the
parts and the part queues are reload.

PF_Robot = PF_CALLBACK_RESTART

The system will acquire new images for every part that was executed in the PF_Start
statement and reload all the part queues.

PF_Robot = PF_CALLBACK_RESTART_ACTIVEPART

The system will acquire a new image for the PF_ActivePart only. The
PF_ActivePart’s queue will be loaded with the vision results and all other part queues
will be cleared.

Please refer to the following section for additional information on multiple parts &
multiple robots.

Application programming examples in Introduction 8.3 Tutorials

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 309

2. Platform Types
The following section decides how and when to use each of the platform types.

2.1 Standard Platform Types

There are 3 standard platform types – Flat, Anit-stick and Anti-roll. All standard
platforms are available in either white or black.

2.1.1 Platform color

For most applications the best imaging is achieved using the feeder’s built-in LED
backlight. When using the built-in backlight, a white translucent tray is used. Backlighting
provides a silhouette of the part’s outline. Surface features of the part will not be visible to
the vision system. In some cases, the maximum image contrast can be achieved with a
black platform and using custom front lighting. In general, however, the system is meant
to be used with the backlight option. Consider whether the part can be found (right side up
| upside down, angular orientation etc …) when it is backlit. Sometimes transparent and
semi-transparent objects have poor contrast when backlit. Different colored backlights can
be beneficial for transparent parts.

2.1.2 Platform Material

Depending upon the feeder model, different material may be available for Antistatic ESD
or Medical Grade applications (refer to the specific feeder hardware manual for details).

Advanced 2. Platform Types

310 Part Feeding 7.0 Introduction & Software Rev.10

2.1.3 Standard Platforms Usage

- Flat: Parts that have a stable orientation when seated on a tabletop can use a Flat
Platform. The parts should have a stable equilibrium and fast stabilization time
after vibration. For high-mix low-volume production, most applications use a Flat
Platform.

Appearan
ce

Platform

Parts

Cross-
sectional
view

The platforms supplied by Epson meet a flatness and parallelism specification to
ensure picking precision as summarized in the table below.

 IF-80 IF-240 IF-380 / IF-530
Flatness of the surface [mm] 0.1 0.2 0.6

Parallelism between surface and
reference [mm] 0.1 0.5 0.6

- Anti-Stick: Anti-stick platforms have narrow grooves to reduce surface contact
for flat and light components. This reduces friction forces and improves the
component movement on the platform surface. Parts that do not spread well
because of kinetic friction (sliding friction or dynamic friction) are a good
candidate for Anti-Stick platforms.

 A B C D
IF-80 0.4 0.4 0.2 90

Geometry of standard anti-stick platform for small parts

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 311

 A B C

IF-240 0.7 1.3 0.5

Geometry of standard anti-stick platform for large parts

- Anti-Roll: Anti-Roll platforms have a machined, structured surface that can
stabilize parts that tend to roll on the platform. The Anti-Roll platform is
particularly useful when cylindrical components are being fed. The Anti-Roll
platform reduces the stabilization time by preventing the parts from rolling.

 A B C D Suitable for Parts
IF-80 1.25 1 0.5 90 ø 0.7mm – ø 1.5mm
IF-80 2.75 2.5 1.25 90 ø 1.5mm – ø 3.5mm

IF-240 1.25 1 0.5 90 ø 1.7mm – ø 3.5mm
IF-240 3 2.5 1.25 90 ø 3.5mm – ø 7mm
IF-240 5.5 5 2.5 90 ø7mm – ø 14mm
IF-380 3 2.5 0.722 120 ø 3mm – ø 5mm
IF-380 5.5 5 1.443 120 ø 5mm – ø 10mm
IF-530 6.5 6 1.732 120 ø 6mm – ø 12mm

Geometry of standard anti-roll platform structure for small parts

Advanced 2. Platform Types

312 Part Feeding 7.0 Introduction & Software Rev.10

 A B C D E Suitable for Parts

IF-380 10.5 12 5.31 120 2 ø 10mm – ø 24mm
IF-530 12.5 14 4.9 120 4 ø 12mm – ø 28mm

Geometry of standard anti-roll platform structure for large parts

2.2 Custom Platforms
Custom platforms need to be designed and manufactured by the customer.

2.2.1 Basic designs for custom platforms

There are 3 basic designs for custom platforms – Holes, Slots, and Pockets. Custom
platforms must be designed and manufactured by the user. In the case of a custom
platform, the goal is to sufficiently pre-orientate parts in Holes, Slots and Pockets such that
the desired cycle time is obtained. A custom platform is necessary to orient the part
correctly when the natural resting position of the parts does not match the picking
orientation.

The following summarizes what parts are typically used with each platform types:

- Holes:

Surface Cross-sectional view

Parts

Platform

- Slots:

Surface

Parts

Platform
Cross-sectional view

NOTE

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 313

- Pockets:

Surface

Part

Platform

Oblique view

2.2.2 Guidelines for Custom Platform Design

Holes:
Holes are useful when cylindrical components are to be fed and presented upright.
The basic design for a platform with holes should consider the following items:

- In general, the simpler design is better.

- The diameter of the hole (d’) is the most important dimension of the plate. It is
mandatory to have a large enough diameter to allow the part to straighten out
once inside the hole. For parts up to 3.5mm of diameter, 0.05 mm is added to the
maximum part diameter (d). However, for larger parts, with diameter larger than
3.5mm, as well as non-cylindrical parts (e.g. conical), a larger diameter is
required.

- The hole should be deep enough (l’) to allow the part to be guided along the
walls if necessary. If the workpiece rests on the bottom, there is no need for a
long guide.

- It is preferable to guide the part at least on 1/3 of the height of the part (L),
ideally ½, so that the piece stays as straight as possible.

- Attention should also be paid to the residual height of the part above the plate
(L’).

- The chamfer (A) is essential to allow the part to fall into the hole. In most cases,
the chamfer angle is 60°.

- The weight of the custom platform should be the same as the weight of the
standard flat platform. If the weight changes significantly, the resonant
frequency may change and affect the operation of the feeder. In this case, it may
be possible to adjust the frequency of each feeder operation.

 D’ d’ l’ A
IF-80 >0.5*L d+0.05mm 0.5*L 60
IF-240 >0.5*L d+0.1mm 0.5*L 60
IF-380 >0.5*L d+0.5mm 0.5*L 60
IF-530 >0.5*L d+1.0mm 0.5*L 60

Slots:

Advanced 2. Platform Types

314 Part Feeding 7.0 Introduction & Software Rev.10

A structured platform with slots is used to supply screw-type components to be fitted
vertically.
The basic design for a platform with slots should consider the following items:

- In general, the simpler design is better.

- A platform with non-traversing grooves is used to supply components with a
maximum length of 60 mm. For longer parts, grooves are manufactured through
the whole thickness of the plate.

- The width of the slot (d’) is determined by the diameter of the component (d). In
general, 0.05mm to 0.1mm is added to the maximum diameter size (allow for
tolerance). The tolerance on the width of the slot, which will depend on the
machining and is not identical on all sizes of feeder, must also be taken into
consideration. A 0/+ tolerance is preferred.

- The depth of the slot (L’) is usually not very important because the workpiece
does not rest on the bottom. It must therefore be large enough to allow the part to
tip and not touch the bottom. For the tolerance, a 0/+ tolerance is usually used.

Non-traversing slots can be manufactured for parts up to 60mm long structure
for large parts.

For parts longer than 60mm, traversing slots must be manufactured through the
entire thickness of the plate.

 d’ L’
IF-80 d+0.05mm L’>L
IF-240 d+0.1mm L’>L
IF-380 d+0.5mm -
IF-530 d+1.0mm -

- If the slot goes through the bottom of the platform, an “internal diffuser” is

required to prevent the operator from seeing the LED backlight directly and to
prevent the backlight light from entering the camera directly. The “internal
diffuser” is placed above the backlight.

- The weight of the custom platform should be the same as the weight of the
standard flat platform. If the weight changes significantly, the resonant
frequency may change and affect the operation of the feeder. In this case, it may
be possible to adjust the frequency of each feeder operation.

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 315

Pockets:
The basic design for a platform with pockets should consider the following items:

- The pockets should be designed such that the parts can be easily grasp by the
robot. Ideally the parts will be pre-oriented such that a flat, parallel surface on
the part can be picked up by a vacuum cup gripper.

- The part does not need to be perfectly aligned in the pocket. The purpose of the
vision system is to provide the position and rotation of the part with in a 2D
plane. Once again, the simpler the design, the cheaper the platform. Moreover, a
simple platform design typically functions better.

These are only general guidelines. The specific design should be adapted on a case-by-
case basis.

2.2.3 Permissible Platform Weight

 Maximum weight of the platform **1 Maximum weight of component **2

IF-80 150 g 50 g
IF-240 800 g 400 g
IF-380 4 kg 1.5 kg
IF-530 5 kg 2 kg

**1

For the IF-80/IF-240, it represents the maximum platform weight (without components).

For the IF-380/IF-530, it represents the maximum weight of the frame + platform
assembly (without components).

**2

For the IF-80/IF-240, it represents the maximum weight of components (without
platform).

For the IF-380/IF-530, it represents the maximum weight of components (without frame +
platform assembly).

Advanced 2. Platform Types

316 Part Feeding 7.0 Introduction & Software Rev.10

2.3 Platform Selection
Platform Type selection is made from the Part Feeding dialog EPSON RC+ 7.0-Menu-
[Tools]-[Part Feeding]-[Vibration Page]. (See also Software “2.3.2 Vibration”)

When a standard platform type (Flat, Anit-stick and Anti-roll) is selected, the user has the
option of letting the System process the feeder vibration or the User can handle the
vibration via the PF_Feeder callback. Typically, it is best for the System to process the
feeder vibration.

When “User processes vibration for part via PF_Feeder callback” is selected on the
Vibration page, the user decides how to feed the parts. The System will make a
recommendation of how to vibrate the feeder. This recommendation is provided to the
PF_Feeder callback as the “state” parameter. This will be explained in more detail in the
next section.

When a custom plate type (Slots, Holes and Pockets) is selected, the user must handle the
vibration for the part via the PF_Feeder callback. In the case of Custom platforms, the
system has no knowledge of how the plate is machined and consequently, the system can
not properly determine how to best feed the parts. (Because the optimum vibration type
changes depending on the processing of the platform.)

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 317

2.3.1 Example for Custom Platform

For this example, a custom platform with holes has been designed to vertically pre-orient
pins.

Surface Cross-sectional view

Parts

Platform

When the user wants to run the vision and load the part queue themselves, select Menu-
[Tool]-[PartFeeding]-[Parts]-[Vision]- “User Processes Vision via PF_Vision callback”.
For this example, however, the System will process the Vision.
The robot pick & place will be performed inside the PF_Robot callback.
The Platform Type has been selected as “Holes”. Because this is a custom platform, the
“User processes vibration for part via the PF_Feeder callback” is the only allowable
selection.
The top of the pins is found by the Part Sequence and the coordinates are automatically
loaded into the part queue. For this example, no vision object is being used to find the
back of the part.
After vision acquires an image and Front parts are loaded into the part queue, the
PF_Feeder callback is called. The user’s code judges how to vibrate the feeder inside the
PF_Feeder callback. The quantity of “Front” parts is provided to the PF_Feeder callback
as the parameter called “NumFrontParts”. For this example, if the “NumFrontParts” is
greater than 0 then no vibration is required since parts are available to be picked up by the
robot. In this case, the PF_Feeder return value will need to be set
to ”PF_CALLBACK_SUCCESS”. This return value tells the system to go ahead and call
the PF_Robot callback.
If the “NumFrontParts” equals 0 then the sample code VRun’s the Part Blob sequence to
determine if there is a clump of parts or whether there are no parts at all. If the Part Blob
sequence does not find any parts, then the hopper is turned on to supply parts. If the Part
Blob sequence finds something then the feeder Flips, Shifts Forward and then Shifts
Backward so that the pins can fall into the holes. Whenever parts have been vibrated on
the feeder, the system will need to re-acquire new vision images. This is accomplished by
setting the return value to “PF_CALLBACK_RESTART”.
“PF_CALLBACK_RESTART” will restart the Part Feeding process from the beginning,
re-aquire new images, reload the part queue and then call PF_Feeder once again to
determine if any further action is required.

A Flip, a long duration Shift Forward and a short duration Shift Backward is the typical
feeding strategy for Custom Platforms. See section 9.5.2 Program Example 5.2 for more
details.

TIP

Advanced 2. Platform Types

318 Part Feeding 7.0 Introduction & Software Rev.10

The constant PF_FEEDER_UNKNOWN is passed to PF_Feeder when the Platform Type
is Holes, Slots or Pockets. In the case of Custom Platforms, the system has no knowledge
of how the surface is machined and consequently, the system can not properly determine
how to best feed the parts. See section 9.5.2 Program Example 5.2 for more details.

NOTE

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 319

Function PF_Feeder(PartID As Integer, NumFrontParts As Integer,
NumBackParts As Integer, state As Integer) As Integer

' Example for Structured Platform with holes state = PF_FEEDER_UNKNOWN

 Integer PFControlReturnVal
 Integer numFound

Select True

 ' OK to Pick
 Case NumFrontParts > 0
 ' Call PF_Robot because there are parts ready to pick
 PF_Feeder = PF_CALLBACK_SUCCESS

 ' No Front parts were found but there are Back parts
 Case NumFrontParts = 0 And NumBackParts <> 0

 ' Flip, long Shift Forward and short Shift Backward
 PF_Flip PartID, 500
 PF_Shift PartID, PF_SHIFT_FORWARD, 1000
 PF_Shift PartID, PF_SHIFT_BACKWARD, 300

 PF_Feeder = PF_CALLBACK_RESTART ' Restart and re-acquire images

 ' There are no Front or Back parts found
 ' Either there is a clump of parts or there are no parts on the tray
 ' Acquire an image from the Part Blob sequence to make a determination
 Case NumFrontParts = 0 And NumBackParts = 0

 PF_Backlight 1, On ' Backlight On
 VRun PartBlob ' Acquire images
 PF_Backlight 1, Off ' Backlight Off
 VGet PartBlob.Blob01.NumberFound, numFound ' Were any Blobs found?

 If numFound > 0 Then ' Clump of parts found

 ' Flip, long Shift Forward and short Shift Backward
 PF_Flip PartID, 500
 PF_Shift PartID, PF_SHIFT_FORWARD, 1000
 PF_Shift PartID, PF_SHIFT_BACKWARD, 300

 Else ' No parts found

 ' Call the Control callback to supply more parts
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)

 EndIf

 PF_Feeder = PF_CALLBACK_RESTART ' Restart and re-acquire images
 Send

Fend

Advanced 2. Platform Types

320 Part Feeding 7.0 Introduction & Software Rev.10

2.3.2 Example for Standard Flat Platform Using the PF_Feeder
Callback

For this example, a standard flat platform is being used.
Normally the system would determine how to best handle the vibration for a Flat plate.
For this example, however, the user has determined that the vibration requires some
special operation which will requires handling the vibration themselves. When the
Platform Type is Flat, Anti-Stick or Anti-Roll, the system can make the judgement of how
to best vibrate the parts. The system’s judgement is provided to the PF_Feeder callback
using a parameter called “state”.
The different states are defined with constants in the “PartFeeding.inc” file. For example,
the constant “PF_FEEDER_PICKOK” means that parts are available to be picked up by
the robot. As another example, the constant “PF_FEEDER_FLIP” is passed to the
PF_Feeder callback when the system has determined that the best action is to Flip the
parts.Conceptually, the user could recreate the system processing by using the PF_Feeder
“state”and the corresponding vibration statements.
The following sample demonstrates the basic concept of how to use the “state” parameter
to perform the recommended action. This example is not meant to be all inclusive. Refer
to section 9.5.1 Program Example 5.1 for a more complete example.

Advanced 2. Platform Types

Part Feeding 7.0 Introduction & Software Rev.10 321

Function PF_Feeder(PartID As Integer, NumFrontParts As Integer,
NumBackParts As Integer, state As Integer) As Integer

 Integer PFControlReturnVal, PFStatusReturnVal
 Boolean PFPurgeStatus

 Select state

 Case PF_FEEDER_PICKOK
 PF_Feeder = PF_CALLBACK_SUCCESS ' Call PF_Robot because there are parts ready to
 ' be be picked

 Case PF_FEEDER_SUPPLY
 ' Hopper Supply
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 PF_CenterByShift PartID ' Center parts after hopper supply
 PF_Feeder = PF_CALLBACK_RESTART ' Restart and re-acquire images

 Case PF_FEEDER_FLIP
 PF_Flip PartID
 PF_Feeder = PF_CALLBACK_RESTART ' Restart and re-acquire images

 Case PF_FEEDER_CENTER_FLIP
 PF_Center PartID, PF_CENTER_LONG_AXIS, 900
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Flip PartID
 PF_Feeder = PF_CALLBACK_RESTART ' Restart and re-acquire images

 Case PF_FEEDER_HOPPER_EMPTY
 ' Notify user that the hopper is empty
 PFStatusReturnVal = PF_Status(PartID, PF_STATUS_NOPART)
 ' Supply parts from hopper
 PFControlReturnVal = PF_Control(PartID, PF_CONTROL_SUPPLY_FIRST)
 PF_Center PartID, PF_CENTER_LONG_AXIS
 ' Center, Flip and Separate parts
 PF_Center PartID, PF_CENTER_SHORT_AXIS
 PF_Flip PartID
 PF_Feeder = PF_CALLBACK_RESTART ' Restart and re-acquire images

 Case PF_FEEDER_WRONGPART
 If PF_Info(PartID, PF_INFO_ID_OBJECT_PURGE_ENABLED) Then
 ' If Purge is enabled then Purge using vision feedback
 ' Each purge attempt will last for 1500 msec
 ' 0 parts can remain on the platform
 ' 5 retries will be attempted
 PFPurgeStatus = PF_Purge(1, 2, 1500, 3, 5)
 If PFPurgeStatus = False Then
 Print "Purge was not successful"
 Quit All
 EndIf
 Else ' Notify user that the wrong part may be on the feeder
 Print "Wrong part may be on the feeder"
 Quit All
 EndIf

 Send
Fend

Advanced 2. Platform Types

322 Part Feeding 7.0 Introduction & Software Rev.10

Troubleshooting

Troubleshooting

Part Feeding 7.0 Introduction & Software Rev.10 325

Troubleshooting

Don’t know the IP address of the feeder

(1) Set the IP address of the feeder to the default value according to EPSON RC+7.0
Option Part Feeding 7.0 IF-240 4.3.2 Recover IP address using default IP
address.

(2) Use the default IP address in EPSON RC+ 7.0 and connect to the feeder according
to section 2.1. System Configuration in the Hardware manual. Then, change the IP
address.

Feeder does not vibrate or vibration is weak

- Is the feeder LED lit up or flashing? If not lit up or flashing, it is possible that power
is not being supplied.

- If a message displayed, perform the recovery procedures indicated for the
corresponding error message.

- It is possible that feeder calibration has failed. Refer to 2.4 Calibration&Test of the
Software manual to perform feeder calibration again.
If that doesn't work, load the default values and run the calibration again.

If none of the above is applicable, it is possible that the feeder has a malfunction.
Please inquire with us.

Parts in the feeder do not move smoothly or are separated unevenly

- It is possible that the rigidity of the frame to which the feeder is mounted is low,
thereby prevent vibrational energy to be properly transmitted to the platform.
Replace with a highly rigid frame.

- It is possible that feeder calibration has failed. Refer to 2.4 Calibration&Test of the
Software manual to perform feeder calibration again.
If that doesn't work, load the default values and run the calibration again.

- It is possible that the platform has become worn due to use over a long period.
The platform is a consumable part. Replace the platform.

If none of the above is applicable, it is possible that the feeder has a malfunction. Please
inquire with us.

Troubleshooting

326 Part Feeding 7.0 Introduction & Software Rev.10

Hopper does not vibrate

- If the hopper was purchased from Epson, check that the hopper and feeder are
connected properly.
Refer to 6. Toubleshooting of the Hardware (Hopper) manual.

- Check that settings for communication with the hopper are properly specified.

- Refer to 4. Part Feeding Callback Function - PF_Control of the Software manual
and check that hopper operation programming has been properly performed.

Parts completely fill up the platform

- It is possible that too many parts are loaded in the feeder tray for a single hopper
operation. Properly adjust the quantity loaded from the hopper.

Parts on the platform run out

- Check that there are parts in the hopper.

- It is possible that parts from the hopper are not being properly loaded. Adjust the
quantity loaded from the hopper.

- If the hopper was purchased from Epson, check that the hopper and feeder are
connected properly.

Troubleshooting

Part Feeding 7.0 Introduction & Software Rev.10 327

Trouble questionnaire
[Basics] month/date/year:
Your company Department

Name TEL :
E-MAIL :

Manipulator model/Serial number
 /

Controller model name/Serial number
 /

Date of trouble occurred Occasion
Tooling/during production
others ()

[Troubleshooting report]
No. Check item Countermeasure (summary) Result Notes

1 Vision error is
occurred?

Cancel vision error then try
reactivating the feeder system.

Trouble solved
Yes/No

Not

applicable

2

Feeder error
occurred during
EPSON RC+
operation.

Refer to 8. Errors that Occur
While Using EPSON RC+ and
try resolve the obstacle.
Check the countermeasure is
working by testing feeder
communication from EPSON
RC+.

Trouble solved
Yes/No

Not

applicable

3 Feeder error
2582 occurred.

Perform measures of
troubleshooting in the manual
and try resolve the obstacles.
Check the countermeasure is
working by testing feeder
communication from EPSON
RC+.

Trouble solved
Yes/No

Not

applicable

If error occurs even after taking
all the measures described in 1
to 3, there is a problem with the
feeder body.
Try 4 and after.

4

EPSON
RC+LED
(Power and S-
Power) of the
feeder does not
light up.

Check for the feeder power
supply.

Trouble solved
Yes/No

Not

applicable

If there is no problem with the
feeder power supply, there is a
problem with the feeder body.
Try 5 and after.

5 Backlight will
not light up.

Exchange the backlight then try
testing backlight with EPSON
RC+.

Trouble solved
Yes/No

Not

applicable

If not light up even after
backlight test, there is a problem
with the feeder body.
Try 6 and after.

6 In other case
Test calibration from EPSON
RC+ and check the motion of
the feeder.

Trouble solved
Yes/No

Not

applicable

If not vibrate as configured,
there is a problem with the
feeder body.

Troubleshooting

328 Part Feeding 7.0 Introduction & Software Rev.10

[Other notices, questions for Epson]

	ENM238S5890F_EPSON RC+ 7.0 Option Part Feeding 7.0 Introduction & Software_Rev.10
	PREFACE
	FOREWORD
	TRADEMARKS
	TRADEMARK NOTATION IN THIS MANUAL
	NOTICE
	MANUFACTURER
	CONTACT INFORMATION

	Table of Contents
	Introduction
	1. Introduction 3
	1.1 Overview of Part Feeding 3
	1.2 Required Basic Knowledge of EPSON RC+ 7.0 6
	1.3 Related Manuals 6
	1.4 Symbols Used in this Manual 7

	2. Safety 8
	2.1 Safety Precautions 8
	2.2 Robot Safety 8
	2.3 Vision System Safety 8
	2.4 Feeder Safety 8
	2.5 Hopper Safety 8

	3. Definition of Terms 9
	4. System Overview 11
	4.1 Overall Configuration 11
	4.2 Feeder 12
	4.3 Robot 12
	4.4 Vision System 12
	4.5 Lighting 13
	4.6 PC 13
	4.7 Hopper 13

	5. Hardware 14
	5.1 Check Included Items 14
	5.2 System Configuration 15
	5.3 Installation and Adjustment 17
	5.4 Electric Wiring 20

	6. Operation Overview 22
	6.1 Part Feeding Process 22
	6.2 Supplying Parts to the Feeder 23
	6.3 Feeder Operation 25
	6.4 Part Pick Positions on Platform 26
	6.5 Preventing End Effector and Platform Interference 26

	7. Parts 27
	7.1 Conditions for Usable Parts 27
	7.2 Examples of Parts 29

	8. Let’s Use the Part Feeding Option 34
	8.1 Workflow 34
	8.2 Requirements 35
	8.3 Enable the Part Feeding Options Key 36
	8.4 Configure Feeder Communications 37
	8.5 Create a Project for Part Feeding 37
	8.6 Create a New Part 38
	8.7 Configure the Lighting Settings 39
	8.8 Create the Vision Sequences 39
	8.9 Configure the Vision Settings 42
	8.10 Configure the Pick Settings 43
	8.11 Teach Pick Z and Posture 44
	8.12 Calibration & Test 45
	8.13 Create the Part Feeding Process Starting Program 47
	8.14 Create the PF_Robot Callback Function 48
	8.15 Check Robot Operation 50

	Software
	1. Introduction 53
	1.1 Part Feeding Software Configuration 53
	1.2 Part Feeding Projects 57
	1.3 SPEL Programming 60

	2. Part Feeding GUI 71
	2.1 System Configuration 71
	2.2 Part Wizard 74
	2.3 Part Feeding Dialog 84
	2.4 Calibration&Test 96
	2.5 [File] Menu 117

	3. Part Feeding SPEL+ Command Reference 118
	PF_Abort 119
	PF_AccessFeeder 120
	PF_ActivePart 122
	PF_Backlight 123
	PF_BacklightBrightness 124
	PF_Center 125
	PF_CenterByShift 126
	PF_Flip 127
	PF_Info Function 128
	PF_InitLog 129
	PF_IsStopRequested Function 130
	PF_Name$ Function 131
	PF_Number Function 132
	PF_Output 133
	PF_OutputOnOff 135
	PF_PurgeGate 136
	PF_PurgeGateStatus Function 137
	PF_Purge Function 138
	PF_QtyAdjHopperTime Function 140
	PF_QueAdd 142
	PF_QueAutoRemove 143
	PF_QueAutoRemove Function 144
	PF_QueGet Function 145
	PF_QueLen Function 146
	PF_QueList 147
	PF_QuePartOrient 148
	PF_QuePartOrient Function 149
	PF_QueRemove 150
	PF_QueSort 151
	PF_QueSort Function 152
	PF_QueUserData 153
	PF_QueUserData Function 154
	PF_ReleaseFeeder 155
	PF_Shift 157
	PF_Start 159
	PF_Stop 161

	4. Part Feeding Callback Functions 162
	4.1 Common Items 162
	PF_Robot 163
	PF_Control 166
	PF_Status 168
	PF_MobileCam 172
	PF_Vision 173
	PF_Feeder 175
	PF_CycleStop 179

	5. Part Feeding Log File 180
	5.1 Summary 180
	5.2 Enabling the Log Function 180
	5.3 Log File Format 180
	5.4 Log Sample 188

	6. Vision Sequences Used With the Part Feeding Option 189
	6.1 Vision Calibration 189
	6.2 Part Vision Sequence 190
	6.3 Part Blob Vision Sequence 199

	7. How to Adjust the Hopper 201
	7.1 How to Adjust 201
	7.2 How to Adjust the IF-80 Hopper 202

	8. Errors that Occur While Using EPSON RC+ 203
	9. Application Programming Examples 205
	9.1 One Robot Per Feeder & One Part Per Feeder 205
	9.2 One Robot – Multiple Parts 232
	9.3 Two Robots – One Part 234
	9.4 Two Robots – Multiple Parts 242
	9.5 User Processes Vibration for Part via PF_Feeder Callback 249
	9.6 Error Handling 256
	9.7 Multiple Cameras 268
	9.8 Improving Vision Results 277

	Advanced
	1. Multiple Parts & Multiple Robots 291
	1.1 Specifications & Requirements for Multiple Parts & Multiple Robots 291
	1.2 Key Concepts for Multiple Parts and Multiple Robots 293
	1.3 Tutorials 298
	1.4 Multi-Part / Multi-Robot Summary 308

	2. Platform Types 309
	2.1 Standard Platform Types 309
	2.2 Custom Platforms 312
	2.3 Platform Selection 316

	Troubleshooting
	Troubleshooting
	Don’t know the IP address of the feeder
	Feeder does not vibrate or vibration is weak
	Parts in the feeder do not move smoothly or are separated unevenly
	Hopper does not vibrate
	Parts completely fill up the platform
	Parts on the platform run out
	Trouble questionnaire

	Introduction
	1. Introduction
	1.1 Overview of Part Feeding
	1.1.1 Background
	1.1.2 Merits of the Part Feeding Option
	1.1.3 Functions of the Part Feeding Option

	1.2 Required Basic Knowledge of EPSON RC+ 7.0
	1.3 Related Manuals
	1.4 Symbols Used in this Manual

	2. Safety
	2.1 Safety Precautions
	2.2 Robot Safety
	2.3 Vision System Safety
	2.4 Feeder Safety
	2.5 Hopper Safety

	3. Definition of Terms
	4. System Overview
	4.1 Overall Configuration
	4.2 Feeder
	4.3 Robot
	4.3.1 Manipulator
	4.3.2 End Effector

	4.4 Vision System
	4.4.1 Vision System
	4.4.2 Camera

	4.5 Lighting
	4.6 PC
	4.7 Hopper

	5. Hardware
	5.1 Check Included Items
	5.2 System Configuration
	5.2.1 Configuration Example
	5.2.2 Considerations for Configuration Selection
	5.2.3 Select a Camera Lens

	5.3 Installation and Adjustment
	5.3.1 Manipulator and Controller
	5.3.2 Camera and Lens
	5.3.3 Feeder and Hopper

	5.4 Electric Wiring
	5.4.1 Cautions for Power Supply
	5.4.2 Power Wiring for the Feeder
	5.4.3 Power wiring for the Hopper
	5.4.4 Robot Wiring
	5.4.5 Camera Wiring

	6. Operation Overview
	6.1 Part Feeding Process
	6.2 Supplying Parts to the Feeder
	6.2.1 Quantities of Supplied Parts

	6.3 Feeder Operation
	6.3.1 Flip and Separation
	6.3.2 Shift

	6.4 Part Pick Positions on Platform
	6.4.1 Pick From Anywhere
	6.4.2 Pick From Region

	6.5 Preventing End Effector and Platform Interference

	7. Parts
	7.1 Conditions for Usable Parts
	7.1.1 Vision System Compatibility
	7.1.2 Size and Weight
	7.1.3 Materials and Characteristics
	7.1.4 Parts Shape and Other

	7.2 Examples of Parts
	7.2.1 Relation of the Quantity of Parts Loaded to the Feeder and the Quantity Detected by Image Processing
	7.2.2 Relation of Quantity Loaded to Feeder and Average UPM
	7.2.3 Relation Between Feeder Operation and UPM
	7.2.4 Relation Between Quantity of Parts in Feeder and Hopper Operation

	8. Let’s Use the Part Feeding Option
	8.1 Workflow
	8.2 Requirements
	8.2.1 Device Configuration
	8.2.2 Connection and Adjustment
	8.2.3 Part
	8.2.4 Settings
	8.2.5 Others

	8.3 Enable the Part Feeding Options Key
	8.4 Configure Feeder Communications
	8.5 Create a Project for Part Feeding
	8.6 Create a New Part
	8.7 Configure the Lighting Settings
	8.8 Create the Vision Sequences
	8.8.1 Creating a Vision sequence for Part Detection
	8.8.2 Create a Vision Sequence for Feeder Calibration

	8.9 Configure the Vision Settings
	8.10 Configure the Pick Settings
	8.11 Teach Pick Z and Posture
	8.12 Calibration & Test
	8.13 Create the Part Feeding Process Starting Program
	8.14 Create the PF_Robot Callback Function
	8.15 Check Robot Operation

	Software
	1. Introduction
	1.1 Part Feeding Software Configuration
	1.1.1 Part Feeding Window
	1.1.2 Part Feeding SPEL+ Commands
	1.1.3 Part Feeding Process
	1.1.4 Part Feeding Callback Functions

	1.2 Part Feeding Projects
	1.2.1 Applying the Part Feeding Option to a Project
	1.2.2 Creating a Project
	1.2.3 Configuration Files
	1.2.4 Importing Files
	1.2.5 Backing up/Restoring the Controller

	1.3 SPEL Programming
	1.3.1 Programming Overview
	1.3.2 Starting the Part Feeding Process
	1.3.3 Pick and Place Processing
	1. PF_Robot callback function
	2. Supply parts to the feeder (PF_Control) *Optional
	3. Control a user lighting (PF_Control) *Optional

	1.3.4 Processing Errors
	1. Processing errors occurring in the callback function
	2. Processing errors occurring in the PF_Status callback function
	3. Processing errors occurring inside the Part Feeding process

	1.3.5 End Processing
	1.3.6 Functions used by Part Feeding process

	2. Part Feeding GUI
	2.1 System Configuration
	2.1.1 Part Feeding Page
	2.1.2 Security Page

	2.2 Part Wizard
	2.2.1 Add a new part
	2.2.2 General
	2.2.3 Vibration
	2.2.4 Lighting
	2.2.5 Flip
	2.2.6 Vision
	2.2.7 Vision Calibration Sequence
	2.2.8 Vision Find Part Sequence
	2.2.9 Feeder Orientation and Pick Region
	2.2.10 Avoid Hand Interference
	2.2.11 Purge
	2.2.12 Feeder Calibration
	2.2.13 Finish

	2.3 Part Feeding Dialog
	2.3.1 General
	2.3.2 Vibration
	2.3.3 Lighting
	2.3.4 Vision
	2.3.5 Part Supply
	2.3.6 Pick
	2.3.7 Teach Window
	2.3.8 Purge
	2.3.9 Calibration

	2.4 Calibration&Test
	2.4.1 Part Area
	2.4.2 Optimal Part Count
	2.4.3 Flip & Separate - Automatic Calibration
	2.4.4 Flip & Separate - Test & Adjust
	2.4.5 Centering - Automatic Calibration
	2.4.6 Centering - Test & Adjust
	2.4.7 Region - Automatic Calibration
	2.4.8 Region - Test & Adjust
	2.4.9 Shift - Test & Adjust (Simple)
	2.4.10 Shift - Test & Adjust (Advanced)
	2.4.11 Purge - Automatic Calibration (for IF-80)
	2.4.12 Purge - Test & Adjust
	2.4.13 Hopper - Test & Adjust (for IF-80)
	2.4.14 How to adjust feeder parameters

	2.5 [File] Menu
	2.5.1 [Import] (File Menu)

	3. Part Feeding SPEL+ Command Reference
	PF_Abort
	PF_AccessFeeder
	PF_ActivePart
	PF_Backlight
	PF_BacklightBrightness
	PF_Center
	PF_CenterByShift
	PF_Flip
	PF_Info Function
	PF_InitLog
	PF_IsStopRequested Function
	PF_Name$ Function
	PF_Number Function
	PF_Output
	PF_OutputOnOff
	PF_PurgeGate
	PF_PurgeGateStatus Function
	PF_Purge Function
	PF_QtyAdjHopperTime Function
	PF_QueAdd
	PF_QueAutoRemove
	PF_QueAutoRemove Function
	PF_QueGet Function
	PF_QueLen Function
	PF_QueList
	PF_QuePartOrient
	PF_QuePartOrient Function
	PF_QueRemove
	PF_QueSort
	PF_QueSort Function
	PF_QueUserData
	PF_QueUserData Function
	PF_ReleaseFeeder
	PF_Shift
	PF_Start
	PF_Stop

	4. Part Feeding Callback Functions
	4.1 Common Items
	PF_Robot
	PF_Control
	PF_Status
	PF_MobileCam
	PF_Vision
	PF_Feeder
	PF_CycleStop

	5. Part Feeding Log File
	5.1 Summary
	5.2 Enabling the Log Function
	5.3 Log File Format
	5.3.1 Common Items
	5.3.2 Vision Sequence Log
	5.3.3 System Vision Sequence Log
	5.3.4 Vibration Log
	5.3.5 PF_Robot Callback Function Log
	5.3.6 PF_MobileCam Callback Function Log
	5.3.7 PF_Control Callback Function Log
	5.3.8 PF_Status Callback Function Log
	5.3.9 PF_Vision Callback Function Log
	5.3.10 PF_Feeder Callback Function Log
	5.3.11 PF_CycleStop Callback Function Log

	5.4 Log Sample

	6. Vision Sequences Used With the Part Feeding Option
	6.1 Vision Calibration
	6.2 Part Vision Sequence
	6.2.1 Simple Parts
	Vision sequence
	Vision objects

	6.2.2 Parts With Sides
	Vision sequence
	Vision objects

	6.2.3 Parts that Require Gripper Clearance
	Vision sequence
	Vision objects

	6.2.4 Special Vision Configurations
	6.2.5 Example of not picking up when contacting with the next parts

	6.3 Part Blob Vision Sequence
	6.3.1 Vision Sequence
	6.3.2 Vision Objects

	7. How to Adjust the Hopper
	7.1 How to Adjust
	7.2 How to Adjust the IF-80 Hopper

	8. Errors that Occur While Using EPSON RC+
	9. Application Programming Examples
	9.1 One Robot Per Feeder & One Part Per Feeder
	9.1.1 Program Example 1.1
	9.1.2 Program Example 1.2
	9.1.3 Program Example 1.3
	9.1.4 Program Example 1.4
	9.1.5 Program Example 1.5
	9.1.6 Program Example 1.6
	9.1.7 Program Example 1.7
	9.1.8 Program Example 1.8
	9.1.9 Program Example 1.9
	9.1.10 Program Example 1.10
	9.1.11 Program Example 1.11
	9.1.12 Program Example 1.12

	9.2 One Robot – Multiple Parts
	9.2.1 Program Example 2.1

	9.3 Two Robots – One Part
	9.3.1 Program Example 3.1
	9.3.2 Program Example 3.2
	9.3.3 Program Example 3.3

	9.4 Two Robots – Multiple Parts
	9.4.1 Program Example 4.1
	9.4.2 Program Example 4.2
	9.4.3 Program Example 4.3

	9.5 User Processes Vibration for Part via PF_Feeder Callback
	9.5.1 Program Example 5.1
	9.5.2 Program Example 5.2

	9.6 Error Handling
	9.6.1 Program Example 6.1
	9.6.2 Program Example 6.2
	9.6.3 Program Example 6.3
	9.6.4 Program Example 6.4
	9.6.5 Program Example 6.5

	9.7 Multiple Cameras
	9.7.1 Program Example 7.1
	9.7.2 Program Example 7.2
	9.7.3 Program Example 7.3

	9.8 Improving Vision Results
	9.8.1 Program Example 8.1
	9.8.2 Program Example 8.2
	9.8.3 Program Example 8.3

	Advanced
	1. Multiple Parts & Multiple Robots
	1.1 Specifications & Requirements for Multiple Parts & Multiple Robots
	1.2 Key Concepts for Multiple Parts and Multiple Robots
	1.2.1 PF_ActivePart
	1.2.2 PF_Start
	1.2.3 Vision and Queue Loading
	1.2.4 PF_Robot Return Values
	1.2.5 PF_AccessFeeder / PF_ReleaseFeeder
	1.2.6 PF_Stop
	1.2.7 PF_InitLog
	1.2.8 PF_QtyAdjHopperTime

	1.3 Tutorials
	1.3.1 Tutorial #1: 1 Robot, 1 Feeder, 2 Parts
	1.3.2 Tutorial #2: 2 Robots, 1 Feeder, 2 Parts

	1.4 Multi-Part / Multi-Robot Summary

	2. Platform Types
	2.1 Standard Platform Types
	2.1.1 Platform color
	2.1.2 Platform Material
	2.1.3 Standard Platforms Usage

	2.2 Custom Platforms
	2.2.1 Basic designs for custom platforms
	2.2.2 Guidelines for Custom Platform Design
	2.2.3 Permissible Platform Weight

	2.3 Platform Selection
	2.3.1 Example for Custom Platform
	2.3.2 Example for Standard Flat Platform Using the PF_Feeder Callback

	Troubleshooting
	Troubleshooting
	Don’t know the IP address of the feeder
	Feeder does not vibrate or vibration is weak
	Parts in the feeder do not move smoothly or are separated unevenly
	Hopper does not vibrate
	Parts completely fill up the platform
	Parts on the platform run out
	Trouble questionnaire

